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A B S T R A C T   

The marvelous Wilson neuron model involves sodium and potassium ion currents, which offer great significance 
in generating firing activities. This paper firstly deduces that the sodium ion currents can be characterized by a 
locally active memristor (LAM) and the potassium ion current meets the definition of passive memristor. 
Thereafter, a memristive Wilson neuron circuit with memristive sodium and potassium ion channels is built and 
its equilibrium state stability is disclosed. Dynamical explorations display that the memristive Wilson neuron 
circuit can generate abundant periodic bursting activities with different periodicities under low-frequency 
stimulus and chaotic/periodic spiking activities under high-frequency stimulus. Particularly, the bifurcation 
mechanisms for generating the periodic bursting behaviors are uncovered, they are Hopf/fold and fold/fold 
bifurcations. Besides, the memristive Wilson neuron circuit can generate chaotic and periodic bubbles with Type- 
I. To physically confirm these periodic bursting and chaotic/spiking activities, a discrete circuit component- 
based hardware experiment is executed. The experimental results effectively addressed the validity of the nu-
merical explorations and further exhibit the effectiveness of the memristive Wilson neuron circuit in reproducing 
neuron bursting and spiking activities.   

1. Introduction 

Neuron circuit can effectively reproduce firing activities of an 
excitable neuron [1,2], which is the hardware embodiment for exploring 
firing activity-based artificial applications [3,4]. Diversity of firing ac-
tivities and feasibility of hardware implementation are two crucial as-
pects for developing neuron circuits [4,5]. To date, two main categories 
of neuron circuits were constructed. One category was built by mem-
brane theory, which employs capacitor and time-varying resistors to 
respectively characterize the electrophysiology property of a neuron 
membrane and ion channels, e.g., Hodgkin-Huxley circuit [1,6]. This 
category of neuron circuit can effective reproduce firing activities of a 
biological neuron and reflects the forming process of an action potential, 
e.g., the evolution process of depolarization, repolarization, hyperpo-
larization, and after depolarization [7,8]. The other category was built 
by dynamical assumption, which frequently involves capacitor and 
nonlinear circuit elements. This category neuron circuit, e.g., FitzHugh- 
Nagumo circuit [9,10], can generate abundant neuron-like firing ac-
tivities [11]. Summarily, the neuron circuits built by membrane theory 
can more preciously reproduce firing activities of an excitable biological 

neuron. 
The marvelous Wilson neuron model is the simplified version of the 

Hodgkin-Huxley neuron model, which only involves sodium and po-
tassium ion currents [12]. The sodium ion channel is only depicted by a 
voltage-controlled current. From the viewpoint of circuit theory, the 
sodium ion channel is only depicted by a voltage-controlled nonlinear 
resistor. This is very different from the sodium ion channel description in 
the Hodgkin-Huxley circuit, which is a time-varying resistor [13]. 
Indeed, it has been verified that the time-varying resistor for sodium ion 
channel is a LAM in Hodgkin-Huxley circuit, which plays a vital role in 
providing energy for the depolarization process for generating an action 
potential [14]. That is, numerous sodium ions move inwards from 
outside to inside the neuron membrane inducing the increase of mem-
brane potential. The potassium ion current is not only controlled by the 
membrane potential, but also related to the recovery variable. In fact, 
this meets the definition of a memristor [15]. Thus, the potassium ion 
current can be depicted by a memristor from the circuit theory view-
point. Actually, numerous potassium ions move outwards from the in-
side to outside the neuron membrane during the polarization process. In 
this process, the membrane potential decrease, e.g., action potential 
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decrease. These remind us that we can employ memristors to charac-
terize the electrophysiology properties of sodium ion and potassium ion 
channels to build a memristive Wilson neuron circuit. 

Moreover, many scientists have paid their attention to hardware 
implementation of neuron circuits, which are the hardware embodiment 
of firing activities and benefits for firing activity-based applications 
[16]. Till now, various kinds of implementation technologies were 
employed to physically implement the neuron circuits, e.g., 
nanomaterial-based nanocircuit [17] and neuristor [18], silicon-based 
VLSI circuits [19,20] and RRAM array [21], FPGA-based [22,23] and 
STM32-based [24] digital platforms, and discrete circuit component- 
based analog circuits [25,26]. In general, the properties of material 
and circuit architecture should be simultaneously considered in the 
implementation technologies of nanomaterial-based nanocircuit and 
neuristor, silicon-based VLSI circuit, and RRAM array. The limitations of 
hardware resource, speed restriction, and accuracy should be concerned 
in STM32- and FPGA-based ones [27–29], but digital platforms have the 
advantages of easily changing system parameters and presetting initial 
conditions [30]. Thinking about it on as whole and taking the advan-
tages of better designing flexibility and real-time [31], discrete circuit 
components-based analog implementation requires less experimental 
equipment and more suitable for doing validation for numerical simu-
lation. Thus, we will employ discrete circuit component-based hardware 
experiment in this paper. 

In the literature, neuron-like bursting and spiking activities have 
been explored in neuron models [32,33], Josephson junction [34], and 
electronic circuit [35], just to name a few. The bursting activity was 
frequently demonstrated in slow-fast systems referring to fold and Hopf 
bifurcations, which can be employed to analyze the forming mechanism 
of bursting behaviors [33]. Certainly, firing activities are not limited to 
these. There exist some other kinds of interesting neural dynamics, e.g., 
stochastic resonance, which can enhance the detection ability of weak 
signals in the presence of noise [36]. Beyond the neuronal dynamics in a 
single neuron, synchronization and chimeras of neuron-based networks 
[37,38] can be employed to investigate the various functional aspects of 
nature, e.g., animal groups, insect swarms, and brain neurons [39]. 
These are the hot topics in the fascinating fields for researching neuronal 
dynamics. In this paper, we mainly focus on exploring the bursting and 
spiking activities in our proposed memristive Wilson neuron circuit. 

Inspired by these literature, we employ a N-type LAM [40] and a 
passive memristor to describe the sodium and potassium ion channels in 
the marvelous Wilson neuron model, thereby a memristive Wilson 
neuron circuit is built. The memristive Wilson neuron circuit only con-
tains a LAM, a passive memristor, a capacitor, two reversal potentials, 
and an external stimulus. Stimulus-related dynamical distribution, 
bifurcation behavior, and firing activities of bursting and spiking be-
haviors are numerically explored and experimentally validated. 

Different from the previously reported memristive Wilson neuron 
models employing the memristors as synapse and electromagnetic in-
duction [41,42], the N-type LAM and passive memristor are directly 
utilized to characterize ion channels to construct memristive Wilson 
neuron model. This has not been reported in the literature. 

The rest of this paper is given as follows: Section 2 develops the 
memristive Wilson neuron circuit and analyses the stability of its equi-
librium state. Section 3 investigates the dynamical effects of external 
stimulus with low-frequency and deduces the forming mechanism of 
bursting behaviors. Then, high-frequency dynamical effects of spiking 
activities and chaotic/periodic bubbles are uncovered in Section 4. 
Section 5 demonstrates discrete circuit component-based hardware 
implementation and experimental measurement. Section 6 summaries 
the conclusion and draws future works. 

2. Memristive Wilson neuron circuit 

Referring to the above-mentioned inspirations, a memristive Wilson 
neuron circuit is firstly constructed by utilizing a N-type LAM and a 
passive memristor to characterize the sodium and potassium ion cur-
rents in the original Wilson neuron model, respectively. Then, the state 
equation of the memristive Wilson neuron circuit is given, upon which 
the equilibrium state and its stability are demonstrated. 

2.1. Simple review for the Wilson neuron model 

The original Wilson neuron model is depicted by two first-order 
differential equations, which is a simplified version of the Hodgkin- 
Huxley neuron model [12]. The original 2D Wilson neuron model is 
written as 
⎧
⎪⎪⎨

⎪⎪⎩

Cm
dv
dτ = − m∞(v)(v − ENa) − gKr(v − EK) + I,

dr
dτ =

1
τr
( − r + r∞(v) ),

(1)  

where Cm is the membrane capacitor with its voltage v, also known as 
membrane potential. r is recovery variable to describe the potassium ion 
in bringing back the neuron to resting state. ENa and EK are reversal 
potentials for the sodium and potassium ion channels, respectively. gK is 
maximum conductance of potassium ion channel. I is an external stim-
ulus. τr depicts the time-scale constant of potassium ion channel. The 
typical parameters are Cm = 1, τr = 5, gK = 26, ENa = 0.5, EK = − 0.95, 
which are normalized parameters [12]. m∞(v) and r∞(v) are activation 
functions of the two ion channels. They are related to membrane po-
tential and having the quadratic polynomial forms 

Fig. 1. Inner properties of the memristor describing the sodium ion channel: (a) Frequency-dependent pinched hysteresis loops with Vm = 1; (b) DC V− I curve with 
negative slope for AB segment (local active domain) in the VNa − INa plane. 
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m∞(v) = 17.8 + 47.6v + 33.8v2,

r∞(v) = 1.24 + 3.7v + 3.2v2.
(2) 

The m∞(v)(v − ENa) in Eq. (1) can be regarded as sodium ion current, 
which is only controlled by the membrane potential. The gKr(v − EK) in 
Eq. (1) can be regarded as potassium ion current and r can be considered 
as inner state for a memristor from the viewpoint of circuit theory. 

2.2. Memristive sodium and potassium ion channels 

To more preciously characterize the electrophysiological property of 
sodium ion channel, we propose a memristor with linear mem- 
conductance function and quadratic polynomial state function, which 
is the same as the sodium ion expression in the original Wilson neuron 
model. The mathematical model of the memristor is 
⎧
⎨

⎩

iNa = W(φ1)vNa,

dφ1

dτ = − φ1 + 50.05 + 81.4vNa + 33.8v2
Na,

(3)  

where φ1 is the inner state variable and W(φ1) = φ1 is mem-conductance 
of the memristor. The state equation is depicted by a quadratic poly-
nomial state function showing in the second equation in (3) and the 
memristor is voltage-controlled. When a bipolar stimulus vNa = Vmsin 
(2πFτ) is applied, the frequency-dependent pinched hysteresis loops for 
F = 0.2, 0.5, and 1 with Vm = 1 are displayed in Fig. 1(a). One can see 
that the lobe area of the pinched hysteresis loop decreases with the in-
crease of frequency, which manifests the frequency-dependent charac-
teristics of a memristor [15]. 

Thereafter, we set iNa to INa and vNa to VNa in (3) and get the relation 
between INa and VNa, which describes the DC V − I property of the 
memristor. In Fig. 1(b), the DC V − I curve is figured out. Obviously, the 
DC V − I curve has negative slopes between point A and point B, e.g., 
− 1,1911 ≤ VNa ≤ − 0.4144, resp. − 1.2473 ≥ INa ≥ − 9.1675. This reflects 
that the memristor can provide energy when it works in the range of 
− 1.1911 ≤ VNa ≤ − 0.4144, aka, local active domain, which is benefit for 
generation an action potential [43]. Note that the DC V − I curve like a 
‘N’, which is called N-type LAM. 

When the LAM working with a bias voltage, aka, a reversal potential 
ENa, (3) can be rewritten as 
⎧
⎨

⎩

iNa = φ1(v − ENa),

dφ1

dτ = − φ1 + 50.05 + 81.4(v − ENa) + 33.8(v − ENa)
2
.

(4) 

If we set ENa = 0.5, one can get 

dφ1

dτ = − φ1 +m∞(v). (5) 

For dφ1/dτ = 0, a special case of that the sodium ion current only 
controlled by the membrane potential, we obtain φ1 = m∞(v). Then, the 
first equation describing the sodium ion current in (4) is the same as the 
one in Eq. (1). This manifests that the expression of sodium ion current 

in the original Wilson neuron model is a special case of our memristive 
sodium ion current and the LAM is working in its local active domain for 
ENa = 0.5. 

For EK = − 0.95, the potassium ion current can be rewritten as 
⎧
⎪⎨

⎪⎩

iK = gKW(φ2)vK,

dφ2

dτ =
1
τr

(
− φ2 + 0.613 − 2.38vK + 3.2v2

K

)
,

(6)  

where the mem-conductance W(φ2) = φ2 is a linear function. φ2 is the 
memristor inner state. To confirm its memristor property, a bipolar 
stimulus vK = Vmsin(2πFτ) is applied and the frequency-dependent 
pinched hysteresis loops for F = 0.05, 0.1, and 0.5 with Vm = 1 are 
displayed in Fig. 2(a). One can see that the lobe area of the pinched 
hysteresis loop decreases with the increase of frequency. This indicates 
that the potassium ion current also meets the definition of a memristor 
and it is voltage-controlled [15]. To investigate the DC property, we set 
iK to IK and vK to VK in (6) and get the relation between IK and VK. The DC 
V − I curve is figured out as shown in Fig. 2(b). Obviously, the DC V − I 
curve always has positive slope. This reflects that the memristor 
describing potassium ion current in Wilson neuron model is passive. 

2.3. Modeling and stability analysis 

By fully considering the aforementioned thoughts, we firstly 
construct a memristive Wilson neuron circuit with a N-type LAM and a 
passive memristor to characterize the electrophysiological properties of 
sodium and potassium ion channels. The memristive Wilson neuron 
circuit involves a N-type LAM GNa, a passive memristor GK, two reversal 
potentials ENa and EK, a capacitor C, and an AC external stimulus iS, as 
shown in Fig. 3. Herein, we maintain the two reversal potentials ENa =

0.5 and EK = − 0.95. Thus, the memristive Wilson neuron circuit is 
mathematically modeled as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Cm
dv
dτ = − φ1(v − 0.5) − gKφ2(v + 0.95) + iS,

dφ1

dτ = − φ1 + m∞(v),

dφ2

dτ =
1
τr
[ − φ2 + r∞(v) ],

(7)  

where iS = Imsin(Ωτ) having amplitude Im and angular frequency Ω. 
Thus, the circuit state equation described by (7) is a three-dimensional 
non-autonomous dynamical system. Eq. (7) can be utilized to study 
the equilibrium state stability and reveal the dynamical behavior of the 
memristive Wilson neuron circuit. 

The equilibrium state of (7) can be deduced as 

Fig. 2. Inner properties of the memristor describing potassium ion channel: (a) 
Frequency-dependent pinched hysteresis loops with Vm = 1; (b) DC V − I curve 
with positive slope in the VK − IK plane, which declares that the memristor 
is passive. 

Fig. 3. Memristive Wilson neuron circuit containing a membrane capacitor, an 
external stimulus and two memristive ion channels. 
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ES =
[
η, 17.8+ 47.6η+ 33.8η2, 1.24+ 3.7η+ 3.2η2], (8)  

where η can be obtained by solving the follow equation 

117η3 + 205.94η2 + 117.63η+ 21.728 − Imsin(Ωτ) = 0. (9) 

The Jacobian matrix at equilibrium state ES can be derived as 

JES =

⎡

⎣
− 117η2 − 143.8η − 50.04 − η + 0.5 − 26η − 24.7

67.6η + 47.6 − 1 0
1.28η + 0.74 0 − 0.2

⎤

⎦. (10) 

According to the Jacobian matrix, the polynomial equation can be 
written as 

λ3 +m1λ2 +m2λ+m3 = 0, (11)  

where 

m1 = 117η2 + 143.8η + 51.24,
m2 = 241.28η2 + 237.216η + 54.726,
m3 = 70.2η2 + 82.376η + 23.526.

In Fig. 4, the equilibrium state evaluates with the external stimulus 

and the time are displayed. Fig. 4(a) demonstrates that the number of 
equilibrium states and their stability are different for Imsin(Ωτ). The 
curves colored in black, magenta, green, and blue stand for stable node 
point (SNP), unstable saddle point (USP), unstable saddle focus (NSF), 
and stable node focus (SNF), respectively. □ and ● represent the Hopf 
bifurcation point (HBP) and fold bifurcation point (FBP) [44]. It is stated 
that the memristive Wilson neuron circuit possess three equilibrium 
states and they are independent when Im < 0.1777 with evolution of the 
time. When 0.1777 < Im < 0.2317, it has one or three equilibrium states 
and the USP and SNP merged and disappeared in some time range. When 
Im > 0.2325, it has one or three equilibrium states and they are con-
nected at some time. Especially, the Hopf bifurcation can occur only 
when Im > 0.5188. Note that the evolution of the equilibrium state only 
depicts in one period of the external stimulus. Herein, three values of Im 
are utilized to demonstrate the equilibrium state evolution with respect 
to time, they are Im = 0.15, 0.20, and 1 with Ω = 0.3 (period T = 20.93), 
as shown in Fig. 4(b). They display that there exist three independent 
equilibrium states for Im = 0.15, indicating that no bifurcation occurs. 
There exist one or three equilibrium states, for which the USF is inde-
pendent and the USP and SNP merged and disappeared in some time 

Fig. 4. Equilibrium state evolution and stability distribution: (a) Evolution with external stimulus. The memristive Wilson neuron circuit possess three equilibrium 
states and they are independent when Im < 0.1777, one or three equilibrium states when 0.1777 < Im < 0.2317, and one or three equilibrium states when Im >

0.2325; (b) Evolution with the time for three paradigms, they are Im = 0.15 in Im < 0.1777, Im = 0.20 in 0.1777 < Im < 0.2317, and Im = 1 in Im > 0.2325. 

Fig. 5. Double-parameter dynamical distribution in the Im − Ω parameter plane: (a) Bifurcation diagram acquired by checking the periodicity for time-domain 
sequence of membrane potential v, which is painted by different colors to distinguish periodic states with different periodicities; (b) LLE distribution and all the 
LLEs are negative in the considered parameter range. 

Q. Xu et al.                                                                                                                                                                                                                                       



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 181 (2024) 114654

5

range for Im = 0.2, which leads to the occurrence of FBP. For Im = 1, the 
three equilibrium state trajectories are connected into one, but there 
have one or three equilibrium states with respect to the time. The evo-
lution of USF to SNF leading to the occurrence of Hopf bifurcation and 
vice versa [45]. Note that the evolution law has no concern with the 
angular frequency, which only influences the rate of evolution of the 
equilibrium state. In general, the complex equilibrium state evolution 
with HBP and FBP might trigger the bursting behavior in our proposed 
memristive Wilson neuron circuit if there exists fast-slow effect, i.e., 
external stimulus with very low frequency. 

3. Dynamical effect of low-frequency stimulus 

We numerically examine the dynamical behaviors of the memristive 
Wilson neuron circuit with low-frequency stimulus, i.e., Ω in the range 
of [0, 0.05] in this section. That is, the frequency of the external stimulus 
has magnitude difference versus to the internal natural frequency of a 
circuit. For numerical explorations, MATLAB-based ODE45 algorithm 
with fixed time-step 0.01 s and time-end 3000 s is adopted to simulate 
bifurcation diagram and Jacobi matrix-based Wolf's method [46] with 
time-step 1 s and time-end 20,000 s is utilized to calculate Lyapunov 
exponent spectrum. The initial states are assigned as [v(0), φ1(0), φ2(0)] 
= [0, 0, 0] with the consideration of eliminating the dynamical effect of 
initial state. 

3.1. Dynamical distribution and period-adding bifurcation 

Dynamical distribution depicted by doubling-parameter bifurcation 
diagram can well display the distribution of firing activities in the 
double parameters plane. By checking the periodicity of membrane 
potential v, double-parameter bifurcation diagram in the Im − Ω 
parameter plane is obtained, as shown in Fig. 5(a). The bifurcation di-
agram shows that the memristive Wilson neuron circuit runs in periodic 
states with different periodicities in the considered parameter ranges, e. 
g., 0.2 ≤ Im ≤ 1 and 0 ≤ Ω ≤ 0.05. These periodic states are marked by 
different colors in the parameter plane, which only distinguish period-1 
(P1) to period-15 (P15). The periodic states with their periodicities >15 
are marked by multiple period (MP). Thereafter, largest Lyapunov ex-
ponents (LLEs) with respect to the two parameters are depicted in the Im 
− Ω parameter plane, as shown in Fig. 5(b). One can see that the LLEs 
are all negative in the considered parameter ranges, which confirm the 
periodic states revealed by double-parameter bifurcation diagram. Note 
that the LLE is positive for chaos, zero for quasi-period, and negative for 
period in a non-autonomous dynamical system. 

Single-parameter bifurcation diagram can intuitively demonstrate 
the transition process of firing activities with respect to a single 
parameter. To disclose bifurcation behaviors with respect to the two 
parameters of external stimulus, single-parameter bifurcation behaviors 
of bifurcation diagram and LLE are numerically simulated, as respec-
tively shown in Fig. 6(a) and (b). In Fig. 6(a), the up is the single- 
parameter bifurcation diagram described by the maximum value of 
membrane potential vmax and the bottom is the LLE with respect to Im 
under Ω = 0.03. One can see that period-adding bifurcation behaviors 
[47] is triggered with the increase of Im, which leads to the generation of 
periodic states and these periodic states are confirmed by the LLE. Be-
sides, these periodic states are bursting behaviors referring to the ones 
reported in the literature [48]. In Fig. 6(b), the single-parameter bifur-
cation behavior with respect to Ω under Im = 0.8 is displayed, which 
demonstrates period-reducing bifurcation behavior with the increase of 

Fig. 6. Single-parameter bifurcation behaviors with variations of Im and Ω, respectively: (a) Bifurcation diagram (up) described by the maximum value of membrane 
potential vmax and LLE (bottom) for Im changing in 0.2 ≤ Im ≤ 1; (b) Bifurcation diagram (up) and LLE (bottom) for Ω changing in 0 ≤ Ω ≤ 0.05. 

Fig. 7. Periodic bursting behaviors with different periodicities for different 
values of Im: (a) P3 bursting for Im = 0.5; (b) P4 bursting for Im = 0.6; (c) P5 
bursting for Im = 0.7; (d) P6 bursting for Im = 0.8. 
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Ω. The single-parameter bifurcation diagram (up) displays periodic 
bursting behaviors uncountable periodicities and countable periodic-
ities in their parameter ranges. The LLE (bottom) well verifies the pe-
riodic bursting behaviors. 

To further demonstrate the periodic bursting behaviors, some values 
of Im are selected from Fig. 6(a) to display the time-domain waveforms, 
as depicted in Fig. 7. The time-domain waveforms are P3 bursting, P4 
bursting, P5 bursting, and P5 bursting for Im = 0.5, 0.6, 0.7, 0.8, 
respectively. For better visualization, the time-domain waveforms only 
display in the time-interval [200, 1200]. One can see that the bursting 
rate is basically unchanged since the angular frequency of the external 
stimulus keeps constant, e.g., Ω = 0.03. The amplitude of the external 
stimulus regulates the spikes in each burst, but their inner forming 
mechanism needs to further uncover [45]. These reflect that the mem-
ristive Wilson neuron circuit can effectively produce periodic bursting 
behaviors and bursting frequency adaptation when applying low- 
frequency external stimulus. Note that periodic bursting behavior with 
more different periodicities can be triggered, but we only select four 
values of Im as examples. As we know, the generation of bursting 
behavior are very related to special bifurcation behaviors, e.g., Hopf 
bifurcation and fold bifurcation. This will be concerned in the next 
subsection. 

3.2. Bifurcation mechanism for bursting behavior 

In this subsection, we deduce the fold bifurcation (FB) and Hopf 
bifurcation (HB) sets, and uncover the bifurcation mechanism for 
bursting behavior. It has been declared that the polynomial equation of a 
system has one zero eigenvalue manifesting the occurrence of FB [49], e. 
g., m3 = 0. Therefore, the FB set of the memristive Wilson neuron circuit 
is derived as 

FB :

{
117η3 + 205.94η2 + 117.63η + 21.728 − Imsin(Ωτ) = 0,
m3 = 0. (12) 

The HB occurs when the polynomial equation has a pair of pure 
conjugate imaginary roots [45], e.g., m1m2 − m3 = 0 and m3 > 0. There 
yields 

HB :

⎧
⎨

⎩

117η3 + 205.94η2 + 117.63η + 21.728 − Imsin(Ωτ) = 0,
m1m2 − m3 = 0,
m3 > 0.

(13) 

With references to (12) and (13), the FB and HB sets can be 
numerically calculated and figured out in sin(Ωτ) − Im, as shown in 

Fig. 8(a). Herein, the angular frequency is set to Ω = 0.03 and the period 
is calculated as T = 209.33. One can see that it has one FB for 0.1777 <
Im < 0.2325, two FBs for 0.2325 < Im < 0.5188, and two FBs and one HB 
for Im > 0.5188. Note that the memristive Wilson neuron circuit un-
dergoes two times of each FB and HB in a period of external stimulus as 
the time goes. In order to further display the bifurcation mechanism for 
bursting behavior, two cases are selected, e.g., Case I is Im = 0.5 with 
only two FBs and Case II is Im = 0.8 with two FBs and one HB. The time- 
domain waveform of v and trajectory of η are respectively plotted for Im 
= 0.5 (up) and Im = 0.8 (bottom), as shown in Fig. 8(b). It is worth 
noting that the color settings for the stability of η-trajectory is the same 
as those utilized in Fig. 4. 

Case I. At the beginning, the circuit trajectory is in the lower resting 
state because the η-trajectory is composed of SNPs. When FB 1 occurs, 
the circuit trajectory deviates from the η-trajectory since the appearance 
of USPs. Then FB 2 happens, the circuit trajectory transfers to the up 
spiking state, since the η-trajectory is composed of USFs. When FB 3 
occurs, the circuit trajectory drops and not to the resting state, since the 
appearance of USPs. When FB 4 happens, the circuit trajectory overlaps 
with the η-trajectory. Afterwards, the next cycle of this process goes. 

Case II. At the beginning, the bifurcation mechanism is the same as the 
one in Case I. When HB 3 appears, the circuit trajectory begins to 
oscillate into the upper spiking state, and oscillation amplitude de-
creases because the η-trajectory is composed of SNFs. When HB 4 ap-
pears, oscillation amplitude increases because the η-trajectory is 
composed of USFs. When FB 5 and FB 6 occur, the bifurcation mecha-
nism is the same as the one of FB 3 and FB 4 in Case I. 

Summarily, the periodic bursting behaviors are formed by the Hopf/ 
fold and fold/fold bifurcations in the memristive Wilson neuron circuit. 
The mechanisms are different with respect to the amplitude Im. No 
matter which cases they are, the memristive Wilson neuron circuit can 
trigger abundant bursting behaviors with different periodicities. 

4. Dynamical effect of high-frequency stimulus 

To investigate the dynamical effect of external stimulus with high- 
frequency, we numerically reveal the dynamical distribution and 
bifurcation behaviors with the variation of high-frequency range, e.g., 
0.2 ≤ Ω ≤ 0.7. The simulation settings are identical to the ones utilized 
in Section 3. 

The double-parameter dynamical distributions are numerically 
simulated in the Im − Ω parameter plane with the variations of Im and Ω, 

Fig. 8. Bifurcation sets and bifurcation mechanism: (a) The HB and FB sets in sin(Ωτ) − Im plane and there exist one FB for 0.1777 < Im < 0.2325, two FBs for 0.2325 
< Im < 0.5188, and two FBs and one HB for Im > 0.5188; (b) Phase trajectory and equilibrium states evaluate over the time for Im = 0.5 and Im = 0.8, respectively. 
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e.g., 0.6 ≤ Im ≤ 1 and 0.2 ≤ Ω ≤ 0.7, as shown in Fig. 9. In Fig. 9(a), the 
double-parameter bifurcation diagram demonstrates that the mem-
ristive Wilson neuron circuit can produce chaotic state, periodic states of 
P1 to P8, and MP with its periodicity >8. These dynamical states are 
filled by different colors in the parameter plane, those are, red for CH, 
yellow for MP, and other colors for P1 to P8. One can see that the 
memristive Wilson neuron circuit can run in chaotic state in a relatively 
large parameter range and some periodic states embed in the chaotic 
state range, e.g., P3 colored in blue. Besides, the bifurcation distribution 
emerges ribbon structure and has dynamical transition of P4-P2-P1. 
These predict the trigger of period-doubling bifurcation route and pe-
riodic windows [50] with variation of the high-frequency stimulus. In 
Fig. 9(b), LLE distribution is depicted, in which the yellow parameter 
range has positive LLE and the other parameter ranges colored in purple- 
green-tangerine have negative LLE. It obviously displays that the LLE 
distribution well confirms the dynamical behaviors revealed by the 
double-parameter bifurcation diagram. 

To further disclose the period-doubling bifurcation route and peri-
odic window, we respectively simulate single-parameter bifurcation 
diagram and LLE with the variation of Im and Ω, as shown in Fig. 10. In 
Fig. 10(a), the single-parameter bifurcation behavior for 0.6 ≤ Im ≤ 1 

with Ω = 0.3 is demonstrated. The bifurcation diagram (up) shows that 
the memristive Wilson neuron circuit undergoes reverse period- 
doubling bifurcation routes twice and has periodic states in chaotic 
range, e.g., periodic windows. Besides, chaos crisis scenarios [51] 
happen at Im = 0.6904 and 0.7638 leading to the running trajectory 
transmit from periodic to chaotic suddenly. The LLE across zero line 
from negative to positive with the occurrence of chaos crisis scenario 
and evaluates from negative to zero and to negative for some times with 
the generation of reverse period-doubling bifurcation route. One can see 
that the LLE (bottom) well confirm these bifurcation behaviors with the 
variation of Im. In Fig. 10(b), the bifurcation diagram (up) displays 
forward period-doubling bifurcation routes for two times with the in-
crease of Ω. Specially, tangent bifurcation happens at Ω = 0.4067 
leading to the disappearance of chaos suddenly, for which the LLE across 
zero line from positive to negative. The LLE (bottom) also well verify the 
dynamical behaviors revealed by the single-parameter bifurcation 
diagram. 

Herein, we select four values of Im to plot phase trajectory and time- 
domain waveform to intuitively display firing activities induced by high- 
frequency external stimulus. The phase trajectories in the v − φ2 plane 
and time-domain waveforms of v are figured out in Fig. 11. They are 

Fig. 9. Double-parameter dynamical distribution in the Im − Ω parameter plane: (a) Bifurcation diagram by checking the periodicity of membrane potential v, which 
is painted by different colors to distinguish states with different periodicities; (b) LLE distribution with LLE > 0 for chaotic state and LLE < 0 for periodic states. 

Fig. 10. Bifurcation behaviors with respect to Im and Ω, respectively: (a) Bifurcation diagram (up) described by the maximum value of membrane potential vmax and 
LLE (bottom) for Im changing in 0.6 ≤ Im ≤ 1; (b) Bifurcation diagram (up) and LLE (bottom) for Ω changing in 0.2 ≤ Ω ≤ 0.7. 
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firing activities of chaotic spiking for Im = 0.8, period-4 spiking for Im =

0.83, period-2 spiking for Im = 0.85, and period-1 spiking for Im = 1, as 
respectively shown in Fig. 11(a) to (d). Overall, the firing activities have 
a transition of CH-P4-P2-P1, which further reflects the reverse period- 
doubling bifurcation route with the increase of Im. Besides, these 
spiking activities might hold the promise to offer high energy efficiency 

implementations of spike-based neuromorphic hardware for spiking 
neural networks [3,21]. It is far away from potential applications, but 
deserves further investigations. 

As shown in Fig. 9(a), one can see that the ribbon structure reflects 
the evolutions of P1-P2-P4-P8-CH-P8-P4-P2-P1, P1-P2-P4-P8-P4-P2-P1, 
P1-P2-P4-P2-P1, and P1-P2-P1 for Im = 0.92, 0.93, 0.95, 1 with the 
variation of 0.2 ≤ Ω ≤ 0.7, respectively. This demonstrates the occur-
rence of chaotic and periodic bubbles [52], aka, anti-monotonicity 
phenomenon [53]. To clearly display the anti-monotonicity, we plot 
single-parameter bifurcation diagrams for Im = 0.92, 0.93, 0.95, 1 with 
the variation of 0.2 ≤ Ω ≤ 0.7, as shown in Fig. 12. One can that the 
bubbles possess a transition from chaotic state, to P8 state, to P4 state, to 
P2 state with the increase of Im, as shown in Fig. 12(a) to (d), respec-
tively. For each bubble, its bifurcation route undergoes forward period- 
doubling bifurcations and reverse period-doubling bifurcations with the 
increase of Ω. Thus, these bubbles are Type-I [54]. 

5. Hardware experimental measurement 

Hardware experiment is significant for verifying numerical explo-
rations of neuron circuits [55]. We employ the discrete circuit 
components-based hardware to physically implement the memristive 
Wilson neuron circuit and perform hardware experimental measure-
ment to verify the numerical explorations. 

5.1. Circuit design and implementation 

The emulators of LAM and passive memristor can be equivalently 
realized, and then the memristive Wilson neuron circuit can be imple-
mented with the circuit schematic in Fig. 3. Floating modules realized by 
four current feedback operational amplifiers (CFOAs) should be 
employed since the involvement of two reversal potentials [16]. To solve 
this issue and hit the aim of achieving an optimal design and minimizing 
the number of discrete circuit components, we deduce the mathematical 
model (7) under the typical parameters and rewritten it as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dv
dτ = − φ1v + 0.5φ1 − 26φ2v − 24.7φ2 + Imsin(Ωτ),

dφ1

dτ = − φ1 + 33.8v2 + 47.6v + 17.8,

dφ2

dτ = − 0.2φ2 + 0.64v2 + 0.74v + 0.248.

(14) 

Eq. (14) consists of three first-order differential equations, which can 
be physically implemented by three integrators. The schematic of 
equivalent circuit is drawn in Fig. 13(a). By referring to the circuit 
schematic, we can easily build the circuit state equation as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

RC
dVv

dt
= −

g1R
R1

Vφ1 Vv +
R
R2

Vφ1 −
g2R
R3

Vφ2 Vv −
R
R4

Vφ2 +
R
R5

Vmsin(2πft),

RC
dVφ1

dt
= −

R
R6

Vφ1 +
g3R
R7

V2
v +

R
R8

Vv +
R
R9

V1,

RC
dVφ2

dt
= −

R
R10

Vφ2 +
g3R
R11

V2
v +

R
R12

Vv +
R

R13
V2,

(15)  

where Vv, Vφ1, and Vφ2 are the output voltages corresponding to v, φ1, φ2 
in numerical exploration. V1 and V2 are two DC voltages. g1, g2, and g3 
are the gains of multipliers M1, M2, and M3. R and C are integrating 
resistor and capacitor determining the integrating time constant τ0 =

RC. Vm = ImR5 and f = Ω/(2πτ0) are the parameters of external voltage 
stimulus. R1 to R13 are resistors to regulate the coefficients in Eq. (15). 
By comparing Eq. (14) with Eq. (15), one can get 

Fig. 11. Phase trajectory in the v − φ2 plane (left) and time-domain waveforms 
of v (right) for four different Im with Ω = 0.3: (a) Chaotic spiking for Im = 0.8; 
(b) Period-4 spiking for Im = 0.83; (c) Period-2 spiking for Im = 0.85; (d) Period- 
1 spiking for Im = 1. 

Fig. 12. Single-parameter bifurcation diagrams for different Im: (a) Chaotic 
bubble for Im = 0.92; (b) Periodic bubble for Im = 0.93; (c) Periodic bubble for 
Im = 0.95; (d) Periodic bubble for Im = 1. 
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R1 = g1R,R2 =
R

0.5
,R3 =

g2R
26

,R4 = −
R

24.7
,R5 = R,

R6 = R,R7 =
g3R
33.8

,R8 =
R

47.6
,R9 = RV1,

R10 =
R

0.2
,R11 =

g3R
0.64

,R12 =
R

0.74
,R13 = RV2.

(16) 

Note that U4 to U7 are utilized to realize two voltage inverters and 
two voltage followers. The two voltage inverters are employed to ach-
ieve inverse outputs of Vv and Vφ1, respectively. The two voltage fol-
lowers can insulate the DC power supplies with the main circuit. Besides, 
four capacitors are employed to reduce the effect of DC power supply 
fluctuation. 

Referring to the circuit schematic in Fig. 13(a), a discrete circuit 
component-based PCB circuit is made and hardware experimental 
platform is set up, as shown in Fig. 13(b). In the hardware circuit, active 
circuit components of operational amplifier OP07 and analog multiplier 
AD633JN, as well as passive circuit components of potentiometer, 
electrolytic capacitor, and monolithic capacitor are utilized. Those are, 
OP07 for U1 to U7, AD633JN for M1 to M3, potentiometer for R1 to R26, 
electrolytic capacitor for C1, C3, and monolithic capacitor for C, C2, C4. 
Note that capacitors C1 and C3 are used to filter low and medium fre-
quency noise and hardly filter high frequency noise, since it contains 
distribution inductance. Thus, capacitors C2 and C4 with small capaci-
tance are used to filter high-frequency noise. A DC power supply, a 
function generator, and a digital phosphor oscilloscope are employed in 
setting up the hardware experimental platform. 

5.2. Experimental measurement 

We select integrating time constant τ0 = 0.1 ms, e.g., R = 10 kΩ and 
C = 10 nF, g1 = g2 = = g3 = 1 V− 1, V1 = − 1.78 V, and V2 = − 0.248 V for 
hardware circuit. The other resistances can be calculated as R1 = R5 =

R6 = R13 = 10 kΩ, R2 = 20 kΩ, R3 = 384.62 Ω, R4 = 404.86 Ω, R7 =

295.86 Ω, R8 = 210.08 Ω, R9 = 1 kΩ, R10 = 50 kΩ, R11 = 15.625 kΩ, R12 
= 13.514 kΩ, R14 ~ R17 = 10 kΩ, R24 = 248 Ω, R25 = 1.532 kΩ, R26 =

13.22 kΩ. Note that R18 ~ R23 are utilized to control the gains of the 
three analog multipliers to 1 V− 1, which are not plotted in the circuit 
schematic. Besides, the four filter capacitors are selected as C1 = C3 =

Fig. 13. Circuit design and experimental platform: (a) Circuit schematic of the memristive Wilson neuron circuit; (b) Snapshot of hardware experimental platform 
involving the discrete circuit component-based PCB circuit, a DC power supply, a function generator, and a digital phosphor oscilloscope. 

Table I 
Theo. values and Exp. values of stimulus parameters for low-frequency case.  

Figure Vm, V f, Hz 

Theo. value Exp. value Theo. value Exp. value 

Fig. 14 (a)  0.5  0.521  47.77  47.913 
Fig. 14 (b)  0.6  0.635  47.77  45.826 
Fig. 14 (c)  0.7  0.743  47.77  48.325 
Fig. 14 (d)  0.8  0.834  47.77  48.676  

Fig. 14. Hardware measurements of time-domain waveforms of the capacitor 
voltage Vv for different Vm-related bursting activities: (a) P3 bursting activity; 
(b) P4 bursting activity; (c) P5 bursting activity; (d) P6 bursting activity. 
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100 μF and C2 = C4 = 56 nF. Herein, the parameters Vm and f are 
regulated to correspond the employment of Im and Ω in the numerical 
simulations and they are finely adjusted to make up the inevitable 
parasitic circuit parameters and temperature effects of the discrete cir-
cuit components [56,57]. 

For the low-frequency case, the theoretical (Theo.) values in nu-
merical simulations and experimental (Exp.) values in experimental 
measurement of stimulus parameters Vm and f are listed in Table I. The 
time-domain waveforms of capacitor voltage Vv are acquired, as dis-
played in Fig. 14. The experimentally measured results demonstrate well 
consistence with the numerically simulated ones in Fig. 7. It is worth 
noting that the time-domain waveforms are moved up with 500 mV for 
better displaying the visualization of experimental results. 

For the high-frequency case, the Theo. values in numerical simula-
tions and Exp. values in experimental measurement of stimulus pa-
rameters Vm and f are listed in Table II. The phase trajectories in the Vv 
− Vφ2 plane are captured, as displayed in Fig. 15, they are corresponding 
to the numerical simulations in Fig. 11. It can be seen that the experi-
mental measurements are consistent with the numerical simulations 
well. Note that the phase trajectories are moved down with 250 mV and 
right with 500 mV for better displaying the visualization of experimental 
results. 

The Mean Absolute Percentage Error (MAPE) method was employed 
to display the deviations between the measured and desired resistance 
[16]. The expression of MAPE is written as 

MAPE =
1
N

∑N

k=1

|Pdesiredk − Pmeasuredk|

Pdesiredk
× 100%, (17)  

where Pdesiredk is the expected parameters in numerical simulation and 
Pmeasuredk is the measured parameters in hardware experiment. N is the 
number of fine-regulated parameters. For the time-domain waveforms 
and phase trajectories in Fig. 14 and Fig. 15, the MAPEs are calculated 
with N = 2. Those are 2.25 %, 4.95 %, 3.65 %, 3.07 % for Fig. 14(a) to 
Fig. 14(d) and 2.05 %, 1.58 %, 2.71 %, 3.33 % for Fig. 15(a) to Fig. 15 
(d), respectively. The calculated results display that the MAPEs are all 
smaller than 10 %. This is acceptable in analog hardware experiment. 

On the whole, the discrete circuit component-based hardware of the 
memristive Wilson neuron circuit can reproduce periodic bursting ac-
tivities with different periodicities and chaotic/periodic spiking activ-
ities. This indicates the effectiveness of the hardware circuit in 
generating these firing activities. Besides, this further manifests the 
availability of employing a LAM and a passive memristor to characterize 
the electrophysiological properties of sodium and potassium ion chan-
nels in building a Wilson neuron circuit. 

6. Conclusion 

A memristive Wilson neuron circuit was firstly built in this paper, 
which employs a LAM and a passive memristor to respectively charac-
terize the electrophysiological properties of sodium and potassium ion 
channels of a Wilson neuron model. Numerical explorations and discrete 
circuit component-based hardware experiments were executed, which 
show feasibility of the memristive Wilson neuron circuit in effectively 

Table II 
Theo. values and Exp. values of stimulus parameters for high-frequency case.  

Figure Vm, V f, Hz 

Theo. value Exp. value Theo. value Exp. value 

Fig. 15 (a)  0.80  0.782  477.71  486.513 
Fig. 15 (b)  0.83  0.825  477.71  489.952 
Fig. 15 (b)  0.85  0.846  477.71  501.362 
Fig. 15 (b)  0.1  0.983  477.71  501.362  

Fig. 15. Hardware measurements of phase trajectories in the Vv − Vφ2 plane for different Vm-related spiking activities: (a) Chaotic spiking activity with 100 mV/div 
for Ch1 and 50 mV/div for Ch2; (b) P4 spiking activity with 100 mV/div for Ch1 and 40 mV/div for Ch2; (c) P2 spiking activity with 100 mV/div for Ch1 and 40 mV/ 
div for Ch2; (d) P1 spiking activity with 100 mV/div for Ch1 and 30 mV/div for Ch2. 
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producing periodic bursting and chaotic/periodic spiking activities and 
availability of the discrete circuit component-based analog hardware 
implementation. It is of great significance that the bifurcation mecha-
nism for generating the periodic bursting behavior were uncovered, they 
are Hopf/fold and fold/fold bifurcations. Besides, the memristive Wilson 
neuron circuit can generate chaotic and periodic bubbles with Type-I. 

It has been declared that the Hodgkin-Huxley circuit is made of 
LAMs, in which LAMs are employed to restrict the sodium ion and po-
tassium ion channels [13]. Different from the memristive Hodgkin- 
Huxley circuit, we firstly deduced that the potassium ion channel is a 
passive memristor in the marvelous Wilson neuron model and built a 
memristive Wilson neuron circuit. The done work let us know that the 
circuit topology is feasible to construct memristive Wilson neuron cir-
cuits with a LAM and a passive memristor to respectively characterize 
sodium and potassium ion channels. It is an open topic to develop LAM 
and passive memristor with simpler mathematical models to build a new 
memristive Wilson neuron circuit by referring to the circuit topology 
and uncover the unknown features of the memristive Wilson neuron 
circuit. Besides, the method for constructing the memristive potassium 
ion channel can be extended to build other memristive neuron models, e. 
g., constructing a memristor to characterize the cubic nonlinear term in 
FitzHugh-Nagumo neuron model. These deserve more concern. 
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