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Abstract

A two-prey, one-predator model incorporating nonlinear functional response is investigated analytically as well as

numerically. The system appears to exhibit chaos for a range of parametric values when long time behavior studied.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Two-species continuous time models of interacting species have been extensively investigated in literature. Mathe-

matically these models can exhibit only two basic patterns: approach to equilibrium or to a limit cycle [1]. However,

ecological communities in nature are observed to exhibit very complex behaviors. Price et al. [2] argued that community

behavior must be based on three or more trophic levels. Three-species continuous time models are reported to have

more complicated patterns. The research of the last two decades demonstrates that very complex dynamics can arise in

continuous time food chain models with three or more species [3–8], while similar results are obtained for multi-species

food web models [9–11]. Fujii [12] suggests the existence of a limit cycle for two-prey, one-predator Lotka–Volterra

system with linear type of functional response. Vance [13] discovered a quasi-cyclic motion for this system, which was

named spiral chaos [10]. Later, the Klebanoff and Hastings argued for chaotic dynamics in two-prey, one-predator

through bifurcation theory [11].

The effect of nonlinearity often renders a periodic solution unstable for certain parametric choices. While these

conditions do not guarantee chaos, they do make its existence possible. Chaotic dynamics may occur in a continuous

dynamic system with at least three dependent variables, involving a nonlinear term that couples several of the variables.

Another key feature of chaotic dynamics is a sensitive dependence on initial conditions. Even a very small change in

initial conditions can lead to different results in chaotic systems. Indeed, the divergence between results grows expo-

nentially in time for virtually all pairs of starting conditions.

We investigate in this paper a logically consistent, continuous time, food web model, consisting of two competing

preys, and one predator. The model satisfies simple set of criteria for a logically credible food web models [14]. It

incorporates the modified Holling type II functional response in each prey or predator equation. The local stability

conditions for the system have been obtained and analyzed. Numerically simulations have been carried out to study the

complex behavior of the system for biologically reasonable ranges of parameters.

2. The model system

The dynamics of the three-species system consisting of two competing preys and one predator is governed by the

following system of differential equations:
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ð1Þ

where ri, Ki, ei, d and cij (i ¼ 1, 2, j 6¼ i) are model parameters assuming only positive values, and FiðX1;X2Þ represents
the functional response. This system models a simple ecological situation of food web where X1 and X2 are the densities

of two-prey species, while X3 is the density of a predator species that preys upon X1 and X2. The predator consumes the

prey Xi according to the functional response [15]

FiðX1;X2Þ ¼ AiXi=ð1þ B1X1 þ B2X2Þ; i ¼ 1; 2;

where Ai is the maximum harvest rate of predator from prey Xi and ðBiÞ�1
is the half saturation constant. The constants

ei, i ¼ 1, 2 are conversion rates of prey Xi to predator X3.

For a biological food web model to be logically credible, it must satisfy the following criteria:

• Criterion 1: The equations must be invariant under identification of identical species.

• Criterion 2: The system of equations for a food web must separate into independent subsystems if the community

splits into disconnected subwebs.

The interaction of two competing prey and one common predator given by system (1) obey these two criteria. So that, if

X1 and X2 are identical species, then r1 ¼ r2 ¼ r, c12 ¼ c21 ¼ 1, A1 ¼ A2 ¼ A, K1 ¼ K2 ¼ K, B1 ¼ B2 ¼ B, and e1 ¼ e2 ¼ e.
In such a case, the model (1) transfers to the consistent model:

dX
dT

¼ rX 1

�
� X
K

�
� F ðX ÞX3;

dX3

dT
¼ eF ðX ÞX3 � dX3;

ð2Þ

with F ðX Þ ¼ AX=ð1þ BX Þ, X ¼ X1 þ X2.

Also, system (1) separates into two independent subsystems. The first subsystem is obtained by assuming the absence

of the second prey X2:

dX1

dT
¼ r1X1 1

�
� X1

K1

�
� F1ðX1ÞX3;

dX3

dT
¼ e1F1ðX1ÞX3 � dX3:

ð3Þ

The second subsystem is obtained when the first prey X1 is absent:

dX2

dT
¼ r2X2 1

�
� X2

K2

�
� F2ðX2ÞX3;

dX3

dT
¼ e2F2ðX2ÞX3 � dX3;

ð4Þ

with FiðXiÞ ¼ AiXi=ð1þ BiXiÞ, i ¼ 1; 2.
To reduce the number of parameters in system (1), the following nondimensional variables are introduced:

y1 ¼ X1=K1; y2 ¼ X2=K2; y3 ¼ X3=K1; t ¼ r1T :

The nondimensionalised equations are:

dy1
dt

¼ y1ð1� y1 � w1y2Þ �
w2y1

1þ w3y1 þ w4y2

� �
y3;

dy2
dt

¼ w5y2ð1� y2 � w6y1Þ �
w7y2

1þ w3y1 þ w4y2

� �
y3;

dy3
dt

¼ w8y1
1þ w3y1 þ w4y2

� �
y3 þ

w9y2
1þ w3y1 þ w4y2

� �
y3 � w10y3:

ð5Þ
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Here w1 ¼ c12K2=K1, w2 ¼ A1K1=r1, w3 ¼ B1K1, w4 ¼ B2K2, w5 ¼ r2=r1, w6 ¼ c21K1=K2, w7 ¼ A2K1=r1, w8 ¼ e1w2,

w9 ¼ ðe2K2=K1Þw7, and w10 ¼ d=r1, represent the nondimensional parameters. It is observed that the nondimensional

form reduces the number of the parameters from 13 in system (1) to 10 in system (5).

Accordingly, the nondimensional form of subsystems (3) and (4) can be written respectively as follow:

dy1
dt

¼ y1ð1� y1Þ �
w2y1

1þ w3y1

� �
y3;

dy3
dt

¼ w8y1
1þ w3y1

� �
y3 � w10y3;

ð6Þ

and

dy2
dt

¼ w5y2ð1� y2Þ �
w7y2

1þ w4y2

� �
y3;

dy3
dt

¼ w9y2
1þ w4y2

� �
y3 � w10y3:

ð7Þ

3. Analysis

The Kolmogorov theorem assumes the existence of either a stable equilibrium point or stable limit cycle behavior in

the positive quadrant of phase space of a two-dimensional (2D) dynamic system, provided certain conditions are

satisfied [16,17]. An application of the theorem to a given 2D dynamical subsystems may impose constraints

on parametric values. These conditions ensure that the parametric values are biologically relevant. Applying the

Kolmogorov theorem to the two subsystems, it is observed that subsystem (6) is a Kolmogorov system under the

constraint:

w10 <
w8

1þ w3

: ð8Þ

Also, subsystem (7) is a Kolmogorov system when

w10 <
w9

1þ w4

: ð9Þ

Further, linear stability analysis of the first Kolmogorov subsystem (6) gives the following results:

1. The equilibrium point E20 ¼ ð0; 0Þ is a saddle point.

2. The equilibrium point E21 ¼ ð1; 0Þ is a saddle point.

3. The nontrivial positive equilibrium point E22 ¼ ð�yy1; �yy3Þ for system (6) always exists (Kolmogorov system), and is

given by:

�yy1 ¼ w10=ðw8 � w3w10Þ;
�yy3 ¼ ð1� �yy1Þð1þ w3�yy1Þ=w2:

ð10Þ

The necessary condition for linear stability of E22 is:

w10 >
ðw3 � 1Þw8

ðw3 þ 1Þw3

: ð11Þ

Thus E22 is the only stable equilibrium point if

ðw3 � 1Þw8

ðw3 þ 1Þw3

< w10 <
w8

ð1þ w3Þ
; ð12Þ

while subsystem (6) will have a limit cycle for

w10 <
ðw3 � 1Þw8

ðw3 þ 1Þw3

<
w8

ð1þ w3Þ
; w3 > 1: ð13Þ
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Similar results are obtained for a Kolmogorov subsystem (7):

1. The equilibrium point E10 ¼ ð0; 0Þ is a saddle point.

2. The equilibrium point E11 ¼ ð1; 0Þ is saddle point.

3. The nontrivial positive equilibrium point E12 ¼ ð�yy2; �yy3Þ for system (7) is given by:

�yy2 ¼ w10=ðw9 � w4w10Þ;

�yy3 ¼ w5ð1� �yy2Þð1þ w4�yy2Þ=w7:
ð14Þ

The necessary condition for linear stability of E12 is:

w10 >
ðw4 � 1Þw9

ðw4 þ 1Þw4

: ð15Þ

Thus E12 is the only stable equilibrium point if:

ðw4 � 1Þw9

ðw4 þ 1Þw4

< w10 <
w9

ð1þ w4Þ
: ð16Þ

While subsystem (7) will have limit cycle for:

w10 <
ðw4 � 1Þw9

ðw4 þ 1Þw4

<
w9

ð1þ w4Þ
; w4 > 1: ð17Þ

Therefore, if we select our parametric values in such a way that conditions (13) and (17) are fulfilled, then we would

expect the subsystems (6) and (7) to display a stable limit cycle in the positive quadrant of phase space.

Table 1 shows the behavior of the equilibrium point of subsystems (6) and (7) in the positive quadrant for a range of

parameter values. The results in column 3 are based on theoretical considerations, and the results in column 4 are

obtained by solving the subsystems (6) and (7) numerically using 6th order Runge–Kutta method/predictor–corrector

method. The presence of a limit cycle is shown in Fig. 1(a) and (b) for w2 ¼ 6:001, w3 ¼ 4:0, w8 ¼ 3:0005, w10 ¼ 0:2.
Similar results are presented for subsystem (7) in Fig. 2(a) and (b) a limit cycle is obtained for subsystem (7) when

w4 ¼ 4:0, w5 ¼ 1:0001, w7 ¼ 6:0, w9 ¼ 3:0, and w10 ¼ 0:2.
For the complete three-dimensional (3D) dynamical system, the following conjecture is made: ‘‘If two 2D subsystems

of a 3D system separately are in oscillatory mode then the complete 3D system would exhibit either a stable limit cycle or

chaotic dynamics’’.

4. Analysis of the 3D dynamic system

In this section we shall study the dynamic behavior of the solution of the nondimensional three-species food web

model (5). Consider the general form of system (5) as:

dyi
dt

¼ Giðy1; y2; y3Þ; yið0ÞP 0; i ¼ 1; 2; 3: ð18Þ

Table 1

Behavior of subsystems (6) and (7) for a range of parameters

Parameters kept constant Parameter varied Analytical behavior Numerical behavior

For subsystem (6)

w2 ¼ 6:001 0 < w10 < 0:450075 Unstable Limit cycle

w3 ¼ 4:0 0:4500756w10 < 0:6001 Stable Stable

w8 ¼ 3:0005

For subsystem (7)

w4 ¼ 4:0 0 < w10 < 0:45 Unstable Limit cycle

w5 ¼ 1:0001 0:456w10 < 0:6 Stable Stable

w7 ¼ 6:0, w9 ¼ 3:0
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Obviously, these functions are continuous on the positive octant R3
þ ¼ fðy1; y2; y3Þ; yi P 0; i ¼ 1; 2; 3g. Moreover, they

are Lipschizian on R3
þ. Therefore, solution of system (18) with nonnegative initial condition exists and unique. Indeed, if

y1ð0Þ > 0, then uniqueness of solution of initial value problems keeps the trajectory in R3
þ, y1ðtÞ > 0 for all t > 0. Same is

true for yiðtÞ, i ¼ 2; 3. Hence, the interior of R3
þ is invariant for model (18). In the following lemma we prove the

boundedness of the solution of the system (5).

Lemma 1. The solution y1ðtÞ, y2ðtÞ, y3ðtÞ of system (5) is bounded for all tP 0.

Proof. Since dy1=dt6 y1ð1� y1Þ and dy2=dt6w5y2ð1� y2Þ, then
lim
t!1

sup yiðtÞ6 1; i ¼ 1; 2: ð19Þ

Consider

z ¼ w8

w2

y1 þ
w9

w7

y2 þ y3

then from system (5), we get

Fig. 1. For subsystem (6): (a) converge to a limit cycle from inside; (b) converge to the same limit cycle from outside.

Fig. 2. For subsystem (7): (a) converge to a limit cycle from inside; (b) converge to the same limit cycle from outside.
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dz
dt

6
w8

w2

y1 þ
w5w9

w7

y2 � w10y3:

Further simplifications yield

dz
dt

6
w8

w2

y1 �minð1;w10Þ
w9

w7

y2

�
þ y3

�
þ w9

w7

y2ð1þ w5Þ:

Using (19), we get

dz
dt

6 a � bz;

where

a ¼ w8

w2

½1þminð1;w10Þ� þ
w9

w7

½1þ w5� and b ¼ minð1;w10Þ:

Hence zðtÞ6 ða=bÞ þ ce�bt, c is the constant of integration.

Thus for t sufficiently large, there is a small positive number e so that:

zðtÞ6 a
b
þ e:

Since y1 and y2 are bounded, this implies that there exists a bound for y3 in R3
þ . That is: y3ðtÞ6B for some positive

number B, and hence the solution is bounded. �

The following theorem provides necessary condition for survival of the common predator for system (5).

Theorem 1. A necessary condition for predator species y3 to survive is

w10 <
w8

1þ w3

þ w9

1þ w4

: ð20Þ

Proof. Consider

dy3
dt

¼ y3
w8y1

1þ w3y1 þ w4y2

�
þ w9y2
1þ w3y1 þ w4y2

� w10

�
;

6 y3
w8y1

1þ w3y1

�
þ w9y2
1þ w4y2

� w10

�
;

6 y3
w8

1þ w3

�
þ w9

1þ w4

� w10

�
; using ð19Þ:

This yield y3ðtÞ6 y3ð0ÞeAt, where

A ¼ w8

1þ w3

�
þ w9

1þ w4

� w10

�
:

Clearly, if A < 0, then limt!1 y3ðtÞ ¼ 0.

Hence, A should be positive and (20) is the necessary condition for survival of the predator. Moreover, according to

Lemma 1, there is a positive number B and T so that for all t > T , y3ðtÞ6B < y3ð0ÞeAt. �

It is concluded that the predator faces extinction if condition (20) not satisfied. According to the criterion 2, model

(5) is logically correct if it can be reduced to two independent subsystems in the absence of other prey. Further these two

subsystems have to be Kolmogorov if they are biologically feasible. Accordingly, for the food web under consideration,

the condition (20) will always be satisfied.

At most, seven nonnegative equilibrium points are possible for system (5). The existence and local stability con-

ditions of these equilibrium points are given below:

(1) The equilibrium points E0 ¼ ð0; 0; 0Þ, E1 ¼ ð1; 0; 0Þ, and E2 ¼ ð0; 1; 0Þ always exist for system (5), and they are sad-

dle points. However, the point ð0; 0; aÞ with a > 0 does not exist.
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(2) The point E32 ¼ ð�yy1; 0; �yy3Þ, where �yy1 and �yy3 are given by Eq. (10). This point always exists for the Kolmogorov sys-

tem (5). The variational matrix J ¼ faijg is

a11 ¼ �yy1

"
� 1þ w3ð1� �yy1Þ

ð1þ w3�yy1Þ

#
; a12 ¼ �yy1

"
� w1 þ

w4ð1� �yy1Þ
ð1þ w3�yy1Þ

#
; a13 ¼ �w2w10

w8

; a21 ¼ 0;

a22 ¼ w5ð1� w6�yy1Þ �
w7

w2

ð1� �yy1Þ; a23 ¼ 0; a31 ¼
w8ð1� �yy1Þ

w2ð1þ w3�yy1Þ
;

a32 ¼
½w9 þ ðw3w9 � w4w8Þ�yy1�

w2ð1þ w3�yy1Þ
ð1� �yy1Þ; a33 ¼ 0:

The coefficients of the characteristic equation jJ � kIj ¼ k3 þ A1k
2 þ A2k þ A3 ¼ 0 are:

A1 ¼ �ða11 þ a22Þ;
A2 ¼ a11a22 � a13a31;

A3 ¼ a13a22a31:

Thus, A4 ¼ A1A2 � A3 ¼ �ða11Þ2a22 þ a11a13a31 � a11ða22Þ2.
According to Routh–Hurwitz criterion, the necessary and sufficient conditions for local asymptotic stability of

the equilibrium point are Ai > 0; i ¼ 1; 3; 4 [16]. Hence, E32 is locally asymptotically stable if a11 as well as a22 are

negative. This gives

ðw3 � 1Þw8

ðw3 þ 1Þw3

< w10; ½w7 � w2w5w6 þ w3ðw7 � w2w5Þ�w10 < w8ðw7 � w2w5Þ: ð21Þ

Observe that, if E22 ¼ ð�yy1; �yy3Þ is unstable, then E32 ¼ ð�yy1; 0;�yy3Þ is also unstable. Further, if E22 stable E32 may become

unstable for a suitable choice of parametric values.

(3) The point E31 ¼ ð0; �yy2; �yy3Þ, where �yy2 and �yy3 are given by Eq. (14), exists for a Kolmogorov system (5), and the co-

efficients of variational matrix are

a11 ¼ ð1� w1�yy2Þ �
w2w5

w7

ð1� �yy2Þ; a12 ¼ 0; a13 ¼ 0;

a21 ¼ �yy2

"
� w2w6 þ

w3w5ð1� �yy2Þ
ð1þ w4�yy2Þ

#
; a22 ¼ �yy2

"
� w5 þ

w4w5ð1� �yy2Þ
ð1þ w4�yy2Þ

#
; a23 ¼ �w7w10

w9

;

a31 ¼
w5 w8 þ ðw4w8 � w3w9Þ�yy2

h i
w7ð1þ w4�yy2Þ

ð1� �yy2Þ; a32 ¼
w5w9ð1� �yy2Þ
w7ð1þ w4�yy2Þ

; a33 ¼ 0:

The coefficients of the characteristic equation are:

A1 ¼ �ða11 þ a22Þ;
A2 ¼ a11a22 � a23a32;

A3 ¼ a11a23a32:

Therefore,

A4 ¼ �ða11Þ2a22 þ a11a23a32 � a11ða22Þ2:

Hence, according to Routh–Hurwitz criterion, E31 is locally asymptotically stable if a11 as well as a22 are negative,
which give:

½w2w5 � w1w7 þ w4ðw2w5 � w7Þ�w10 < w9ðw2w5 � w7Þ;
ðw4 � 1Þw9

ðw4 þ 1Þw4

< w10; ð22Þ

respectively. Clearly, if E12 ¼ ð�yy2;�yy3Þ is unstable then E31 ¼ ð0;�yy2; �yy3Þ is also unstable. However, for a suitable choice

of parametric values E31 may be unstable even when E12 is a stable point.

(4) The point E33 ¼ ðŷy1; ŷy2; 0Þ, where:
ŷy1 ¼ ð1� w1Þ=ð1� w1w6Þ; ŷy2 ¼ ð1� w6Þ=ð1� w1w6Þ; ð23Þ

exists for system (5) in the positive plane ðy1; y2Þ provided
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wi > 1; or wi < 1; i ¼ 1; 6: ð24Þ

The coefficients of the variational matrix are:

a11 ¼ �ŷy1; a12 ¼ �w1ŷy1; a13 ¼ �w2ŷy1=ð1þ w3ŷy1 þ w4ŷy2Þ;
a21 ¼ �w5w6ŷy2; a22 ¼ �w5ŷy2; a23 ¼ �w7ŷy2=ð1þ w3ŷy1 þ w4ŷy2Þ;

a31 ¼ 0; a32 ¼ 0; a33 ¼
w8ŷy1

1þ w3ŷy1 þ w4ŷy2
þ w9ŷy2
1þ w3ŷy1 þ w4ŷy2

� w10:

The coefficients of the characteristic equation are

A1 ¼ �ða11 þ a22 þ a33Þ;
A2 ¼ a11a33 þ a22a33 þ a11a22 � a21a12;

A3 ¼ a11a22a33 � a21a12a33:

Therefore,

A4 ¼ �ða11Þ2ða22 þ a33Þ � ða22Þ2ða11 þ a33Þ � ða33Þ2ða11 þ a22Þ � 4a11a22a33 þ ða11 þ a22 þ 2a33Þa21a12:

Hence, according to Routh–Hurwitz criterion, E33 is locally asymptotically stable if the following conditions are

satisfied:

a33 < 0; wi > 1; i ¼ 1; 6;

ða11 þ a22 þ 2a33Þa21a12 > ða11Þ2ða22 þ a33Þ þ ða22Þ2ða11 þ a33Þ þ ða33Þ2ða11 þ a22Þ þ 4a11a22a33: ð25Þ

Observe that, for Kolmogorov systems the coefficient a33, at the equilibrium point E33, is always positive. Hence E33

is unstable point whenever it exists.

(5) The positive equilibrium point E� ¼ ðy�1 ; y�2 ; y�3Þ exists if and only if there is a positive solution to the following set of

nonlinear equations:

ð1� y1 � w1y2Þ �
w2y3

1þ w3y1 þ w4y2
¼ 0;

w5ð1� y2 � w6y1Þ �
w7y3

1þ w3y1 þ w4y2
¼ 0;

w8y1
1þ w3y1 þ w4y2

þ w9y2
1þ w3y1 þ w4y2

� w10 ¼ 0:

ð26Þ

The existence and uniqueness of the positive equilibrium point E� is established in the following theorem.

Theorem 2. The positive equilibrium point E� ¼ ðy�1 ; y�2 ; y�3Þ exists and is unique for system (5) if and only if one of the
following sets of conditions is satisfied.

m11m22 > m21m12; m22b11 > m12b21; and m11b21 > m21b11; ð27Þ

m11m22 < m21m12; m22b11 < m12b21; and m11b21 < m21b11; ð28Þ

where, m11 ¼ w2w5w6 � w7, m12 ¼ w2w5 � w1w7, b11 ¼ w2w5 � w7, m21 ¼ w8 � w3w10, m22 ¼ w9 � w4w10, b21 ¼ w10.

Proof. The first two equations in system (26) yield:

y3
1þ w3y1 þ w4y2

¼ 1

w2

ð1� y1 � w1y2Þ ¼
w5

w7

ð1� y2 � w6y1Þ: ð29Þ

Then system (26) reduced to the following 2� 2 linear system, for y3 6¼ 0

m11y1 þ m12y2 ¼ b11;

m21y1 þ m22y2 ¼ b21:
ð30Þ

Clearly, system (30) has a unique solution if and only if

m11m22 6¼ m12m21:
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And, the solution is

y�1 ¼ ðm22b11 � m12b21Þ=ðm11m22 � m12m21Þ;

y�2 ¼ ðm11b21 � m21b11Þ=ðm11m22 � m12m21Þ:
ð31Þ

Substituting (31) into (29) yields the value of y�3 . Moreover, y�1 and y�2 are positive if and only if one of the conditions (27)

and (28) is satisfied, and y�3 is positive due to the positivity of logistic terms in (29). Hence the proof is complete. �

Although the coefficients of variational matrix and then the coefficients of characteristic equation, for the equi-

librium point E� have been obtained similarly, but applications of Routh–Hurwitz criterion give rise to complex

set of mathematical conditions for stability. No biologically meaningful conclusion could be drawn from these.

Therefore, in the following section, numerical simulations are used to study the dynamic behavior of the system in

positive octant. The analytical results obtained in this section are used to fix the parameters in biologically feasible

range. Thus, if the parameters satisfy conditions (13) and (17) then all the boundary equilibrium points of 3D system

will be unstable. If the interior equilibrium point is also linearly unstable, then the system may have a limit cycle or

chaos.

5. Numerical simulation

Numerical integration of system (5) was used to investigate the global dynamic behavior of the system. The objective

was to explore the possibility of chaotic behavior. Extensive numerical simulations were carried out for various pa-

rameter values and for different sets of initial conditions. Our choice of parameters was guided by two factors: First, the

system had to be biologically feasible, and second, the two subsystems had to have limit cycles. One such set of pa-

rameter values that led to cycling in each of subsystems (6) and (7), is presented here:

w1 ¼ 1:0; w2 ¼ 6:001; w3 ¼ 4:0; w4 ¼ 4:0; w5 ¼ 1:0001; w6 ¼ 1:004; w7 ¼ 6:0;

w8 ¼ 3:0005; w9 ¼ 3:0; w10 ¼ 0:2: ð32Þ

We observed that all possible equilibrium states except the nontrivial positive state E� were saddle points/unstable for

the above set of values.

The Fig. 3 shows the dynamic behavior of the three species after eliminating the transient effect. The figure clearly

suggests the irregular chaotic behavior. The 3D phase plot in Fig. 4, obtained after letting system (5) run for 100,000

time steps and examining only the last 50,000 time steps to eliminate the transient effect, also suggests the presence of a

chaotic attractor.

Fig. 3. (a) y1 vs. time; (b) y2 vs. time; (c) y3 vs. time.
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The unique character of chaotic dynamics may be seen most clearly by sensitivity to initial conditions. That is, a

small change in initial conditions may lead to different dynamic behavior. We have illustrated this behavior by com-

paring the trajectories generated by changing the initial conditions slightly for the set of parameter values that led to the

chaotic dynamics illustrated previously in Fig. 4. One set of initial conditions was on the attractor, and in the other set

y1 was increased by 0.01, keeping y2 and y3 fixed. The trajectories are shown in Fig. 5(a), which demonstrates the

sensitive dependence of the trajectories on initial condition. A similar result is obtained for y2 Fig. 5(b) (keeping y1 and
y3 fixed).

Another set of parametric values that led to cycling in each of subsystems (6) and (7) is chosen as:

w1 ¼ 1:001; w2 ¼ 3:0; w3 ¼ 1:5; w4 ¼ 2:0; w5 ¼ 1:167; w6 ¼ 1:006; w7 ¼ 3:5; w8 ¼ 1:35;

w9 ¼ 1:925; w10 ¼ 0:06:
ð33Þ

Fig. 4. Three-dimensional phase plot for system (5) at the parametric values given by (32).

Fig. 5. Sensitive dependence on initial conditions. ––: Initial conditions same as attractor in Fig. 4. (a) � � �: Initial y1 is increased by

0.01, y2, y3 unchanged. (b) � � �: Initial y2 is increased by 0.01, y1, y3 unchanged.

Fig. 6. Three-dimensional phase plot for system (5) at the parametric values given by (33).
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Clearly, the parametric values for subsystem (6) are completely different than those for subsystem (7). Moreover, all the

nonnegative equilibrium states of system (5) were saddle point/unstable for this set of values. The presence of chaotic

attractor is shown in Fig. 6, for the above set of parametric values, after eliminating the transient effect. Sensitivity to

initial values was observed for the trajectories given in Fig. 6.
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