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Abstract Recently a new attractor, called hidden
attractor, has been found in the well-known Chua’s cir-
cuit, whose basin of attraction does not contain neigh-
borhood of any equilibrium. This paper will restudy this
circuit, showing that two hidden attractors can coexist
in this circuit for some parameters, and characterizes
the basins of these two attractors by means of computer
method as well. In addition, a computer-assisted proof
of the chaoticity of these attracters is presented by a
topological horseshoe theory.

Keywords Hidden attractor · Topological horseshoe ·
Chua’s circuit · Poincaré map

1 Introduction

In many dynamical systems such as Lorenz [1], Rössler
[2], Chua [3,4] and Chen [5] systems, the attractors
well known in these systems can usually be found by
tracing an unstable manifold from some equilibrium.
For example, since the strange attractors called Chua’s
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attractors was discovered in Chua’s circuit, all the well-
known Chua’s attractors to date have been the attractors
that are excited from some unstable equilibria. From
computational point of view, this allows one to use
numerical methods in identifying attractors through a
trajectory started from a point on a local unstable man-
ifold of some saddle type equilibrium.

Recently Leonov and Kuznetsov [6,7] reported a
remarkable result at plenary lecture in PhysCon 2009:
an interesting phenomenon called as “the hidden attrac-
tor” can take place in the Chua’s circuit. Further devel-
opment of these studies was presented by their group
in a number of papers [8–10] and the review arti-
cle [11]. The so called hidden attractor, according to
Leonov et.al, means an attractor having a basin of
attraction which does not intersect with small neigh-
borhood of any equilibrium. Therefore, hidden attrac-
tors are different from that ones known before [4],
and cannot be localized by standard computational
procedures mentioned previously, thus investigation
of such attractors is a much more difficult prob-
lem.

Motivated by the work [6], the aim of the present
paper is twofold. First we re-investigate the hidden
attractor reported by [6], and show that in fact two hid-
den attractors, hidden twin attractors, as called in the
present paper, can be found in the Chua’s circuit, a little
more interesting phenomenon observed in Chua’s cir-
cuit. Then we study the bifurcations related to the hid-
den twin attractors, and present computer studies on the
attraction basin of these two hidden attractors.Finally,
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Fig. 1 The hidden twin attractors in the Chua’s circuit with different view angles

we give a computer-assisted proof of existence of topo-
logical horseshoe exhibited in these attractors.

2 The hidden attractor and its bifurcation

In this section, we will study the hidden attractors and
related bifurcations.

2.1 Hidden twin attractors

Chua’s circuit can be described by the following dif-
ferential equations in dimensionless coordinates:

ẋ = α(y − x) − α f (x)

ẏ = x − y + z,

ż = −βy − γ z (1)

where the function

f (x) = m1x + 1

2
(m0 − m1)(|x + 1| − |x − 1|), (2)

characterizes the nonlinearity of Chua’s diode;α, β, γ,

m0, and m1 are parameters of the system. Recently,
Leonov et al.’s reported in [6] that there is a hidden
attractor when the parameters take as follows:

α = 8.4562, β = 12.0732, γ = 0.0052,

m0 = −0.1768, m1 = −1.1468. (3)

The initial condition they gave to trace this attractor is

x(0) = 9.4287, y(0) = 0.5945, z(0) = −13.4705.

To reproduce the phase portrait of the hidden attractor
with higher precision, we utilize the fourth–fifth-order

Runge–Kutta method, and compute basin of attraction
carefully with the heterogeneous algorithm proposed
in [12,13], based on the analytical result in [6].

Surprisingly, our computation suggests that there are
two different hidden attractors instead of one, as shown
in Fig. 1. The left subfigure is a side view, and shows a
clear gap between the two attractors, so they are indeed
separated from each other. The right subfigure depicts
the detailed shapes with a front view, and suggests that
they look similar to each other. Since system (1) is
invariant under the transformation

(x, y, z) ↔ (−x, −y, −z), (4)

the two attractors must be symmetric to each other with
respect to the origin. The new initial conditions we used
here are

x(0) = −6.0489, y(0) = 0.0839, z(0) = 8.7739

and

x(0) = 6.0489, y(0) = −0.0839, z(0) = −8.7739,

which lead to hidden attractor 1 (in blue color) and
hidden attractor 2 (in red color), respectively.

Comparing with the simulations in [6], each attractor
in Fig. 1 is clearly different from the one reported in
[6]. In fact two hidden attractors do exist in this circuit.
For convenience we call them hidden twin attractors in
the present paper, since the two attractors look similar
to each other.

This evidence inspires us three interesting questions:
(i) where do the two hidden attractors come from; (ii)
can the two attractors join together by adjusting a para-
meter; (iii) what do their basins of attraction look like?
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On hidden twin attractors and bifurcation in the Chua’s circuit 257

Fig. 2 The bifurcation
diagram as we adjust α

In what follows, we will study the bifurcation diagram,
basins of attraction, and Lyapunov exponents (LE) with
varying α from 7.0 to 9.0 while the other parameters
take the same values as in (3) so that we can easily
compare our results with [6].

To compute bifurcation diagrams and basins of
attraction, we conveniently study a Poincaré map
defined on a suitable cross section. The cross-section
plane is taken as

P = {(x, y, z) |x = 0, ẋ < 0}
According to (1), P is actually the half yoz-axis plane
with negativey, i.e.,

P = {(x, y, z) |x = 0, y < 0},
since α is always taken a positive number. The rea-
son why we take x = 0 instead of the switching
manifold x = ±1 is because the system is sym-
metric with respect to the origin, so we can easily
extend our results to the full yoz-axis plane. Then the
corresponding Poincaré map is defined as: For each
x = (x, y, z) ∈ P, h(x) is taken to be the first return
point in P under the flow with the initial condition
x. The first accurate numerical method for computing
Poincaré maps of Chua’s circuit was done by Lozi and
Ushiki [14], which leaded to precise numerical analy-
sis of bifurcations and attractors (and coexistence on
attractors).

2.2 Hidden twin attractors by period-doubling
bifurcations

This subsection will show another interesting phenom-
enon in the Poincaré map that the hidden twin attrac-

tors in Fig. 1 actually come from ONE period-1 limit
cycle. First, this limit cycle bifurcates into two differ-
ent period-1 limit cycles, and then the two limit cycles
become two different chaotic attractors via period-
doubling bifurcations, respectively. This fact seems dif-
ferent from the usual route of period-doubling bifurca-
tions to chaos, and will be discussed in detail in Sect. 3
in addition to the following arguments.

To compute a bifurcation diagram, we trace the two
hidden attractors for α ∈ [7.0, 9.0], respectively. The
results are shown in Fig. 2, where the lower branch (in
blue color) is shown in the diagram from hidden attrac-
tor 1, and the upper branch (in red color) depicts numer-
ical output from hidden attractor 2. In order to classify
the complex behaviors in Fig. 2, we compute their LE,
as shown in Fig. 3. This figure not only suggests that
the hidden attractor in Fig. 1 is chaotic, but also shows
more limit cycles and chaotic behaviors, which will
be studied in detail in what follows. It was noted that
positive LE is not always indication of chaos [15,16];
therefore we remain the rigorous study on chaos by
means of the topological horseshoe theory in the next
section.

The global picture of Fig. 2 may give the readers
a false impression that it is simply a reverse period-
doubling route to chaos. However, if we investigate
Fig. 2 very carefully, then we may find an interesting
bifurcation phenomenon not yet reported in the litera-
ture.

For 7.0 ≤ α < 7.907, there are one zero and two
negative LE in Fig. 3, and the system exhibits only one
limit cycle with period-1 in Fig. 2. A typical phase por-
trait is shown in the left-top subfigure in Fig. 4 with
α = 7.8. When α ≈ 7.907, the limit cycle meets a
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Fig. 3 Lyapunov exponents
as we adjust α

Fig. 4 Typical phase portraits as we adjust α

bifurcation point in Fig. 2, and the second LE increases
to zero in Fig. 3. For 7.907 < α < 8.341, we observe
that the period-1 limit cycle bifurcates into two differ-
ent period-1 limit cycles, as shown in different colors
in Fig. 2. Both of the limit cycles have one zero and
two negative LE. According to (4), they are symmetric
to each other with respect to the origin. And a typi-
cal phase portrait at α = 8.2 is shown as the mid-top
subfigure in Fig. 4. When α continuously grows from
8.341, both of the limit cycles become period-2 limit
cycles via a period-doubling bifurcation, as shown in
Figs. 2 and 3. Two typical such cycles are shown in the
right-top subfigure in Fig. 4 at α = 8.4, respectively.

The bifurcation at is quite different from the com-
mon period-doubling bifurcation at α = 8.341. To find
what kind of bifurcations takes place, we compute the
eigenvalues of the Jacobian matrix of the Poincaré map
h along the limit cycles. The eigenvalues for the bifur-
cation at α = 7.907 is illustrated in Fig. 5, where the
(blue) thin dot line indicates the period-1 orbit after
the bifurcation, and the (green) bold solid and dot lines
indicate the absolute eigenvalues before and after the
bifurcation, respectively. The result for the bifurcation
at α = 8.341 is illustrated in Fig. 6 in the same way.
The two figures suggest both of the bifurcations are the
Pitchfork bifurcation, i.e., one of the two eigenvalues
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Fig. 5 Bifurcation at
α = 7.907 and the
eigenvalues

Fig. 6 Bifurcation at
α = 8.341 and the
eigenvalues

crosses the unit circuit from inside to outside while the
limit cycles become unstable after the bifurcation.

Since these bifurcations start with the stable single-
loop limit cycle, it is necessary to find where it is from.
This kind of stable limit cycles usually arise at a super-
critical Hopf bifurcation, e.g., the systems discussed in
[17,18]. However, when we trace it from α = 7.0 via
continuation method used in [19], we find a cyclic-fold
bifurcation [20]. As shown in Fig. 5, when α decreases,
there is also one absolute eigenvalue crossing the line
|λ| = 1. At the crossing point α ≈ 6.470, the limit
cycle just loses its stability without bearing new peri-
odic orbits. Meanwhile, this unstable cycle turns back.

When α continuously increases from 8.2, after a
sequence of period-doubling bifurcations as depicted
in Fig. 2, the two limit cycles lead to two different
hidden chaotic attractors, respectively. A typical phase
portrait of the attractors are shown in Fig. 1 and the
left-bottom subfigure in Fig. 4, where α = 8.4562.
The three LE are 0.1124, 0.0000, and −1.1358, respec-

tively. It is interesting that a symmetric pair of stable
single-loop limit cycles bifurcate into a symmetric pair
of twin attractors in the three dimensional Chua’s cir-
cuit. Similar bifurcation phenomenon has been found
in seven dimensional systems [21,22].

When α continuously increases from 8.4562, Fig. 2
shows that the system exhibits abundant complex
dynamics, and then becomes non-attractive when α >

8.87. According to Fig. 2, the red dots and the blue dots
are mixed together for α > 8.486, which means that
the two hidden attractors join together and become sin-
gle hidden attractor as we expected. The single hidden
attractor at α = 8.56 is illustrated in the mid-bottom
subfigure in Fig. 4. It is also chaotic since the three LE
are 0.2396, 0.0000, and −1.2753, respectively.

Further simulation suggests that when α = 8.8 the
hidden attractor become an attractor that can be traced
from the unstable manifold of the origin (the origin
is now unstable at the given parameter). The normal
attractor is shown in the right bottom subfigure in Fig. 4.
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Fig. 7 Basin of attraction at
α = 8.2

The attractor looks very complicated, but the three LE
are 0.0078, −0.0089, and −1.2422, respectively, which
is hard to tell whether the attractor is chaotic or not.
So we will study the chaocity in the next section by a
topological horseshoe too.

2.3 Attraction basins of attractors

With the parameters used in the bifurcation diagram
Fig. 2, system (1) has three equilibria: the origin and
two symmetric saddles with respect to the origin. Sim-
ilar to Leonov et al.’s computation in [6], each saddle
has only one eigenvalue with a positive real part, and
the attractors mentioned above cannot be traced from
the corresponding unstable manifold. In order to check
whether these attractors are hidden in the sense of [6],
we need to study the stability of the origin with varying
α from 7.0 to 9.0, as well as their basins of attraction.

The Jacobian matrix of system (1) at the origin is

J =
⎛
⎜⎝

−α(1 + m0) α 0

1 −1 1

0 −β −γ

⎞
⎟⎠

The characteristic equation corresponding to this matrix
is

λ3 + (α + γ + αm0 + 1)λ2 + (β + γ + αγ

+ αm0 + αγ m0)λ + α(β + βm0 + γ m0) = 0

The Routh-Hurwitz conditions for cubic polynomial in
the form

λ3 + a1λ
2 + a2λ + a3 = 0

are given by

a1 > 0, a3 > 0 and a1a2 > a3.

However, the coefficients here are

a1 = α + γ + αm0 + 1, a2 = β + γ + αγ + αm0

+ αγ m0 and a3 = α(β + βm0 + γ m0),

For α ∈ [7.0, 9.0], the first two conditions, i.e., a1 >

0 and a3 > 0, are satisfied. With the equation, it is not
hard to find A critical value αc ≈ 8.673 by numerically
solving equation a1a2 = a3.

Obviously, when α is less then αc, the origin is
stable, so the attractors shown in the bifurcation dia-
gram (Fig. 3) are all hidden; otherwise the attractors
in the diagram are not hidden, which can be easily
verified by standard simulation procedures mentioned
previously.

Now we study the basin of attraction of the Poincaré
map to show the relationship of the hidden twin attrac-
tors. For clarity, we first investigate the basin of the
two periodic limit cycles at α = 8.2, and then study
the basins of other attractors.

Figure 7 shows the basin on the negative half yoz
plane. In this figure, o, o1 and o2 indicate the ori-
gin and the two period-1 orbits, respectively, and their
basins of attraction are illustrated in green, blue, and
red color, respectively. Clearly, the basins of o1 and
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Fig. 8 The whole basin on
x = 0 at α = 8.2

o2 is spiraled together, and their boundaries have self-
similar patterns, i.e., fractal structures. The basins on
the full yoz plane is shown in Fig. 8, which suggests
that their combination is a multiply connected region,
whose inner side is filled by the basin of o, and whose
outer side is surrounded by the basin of o.

To visualize the basins of attraction and study how
they changes, we compute them as we vary α by the het-
erogeneous algorithm proposed in [12,13]. The basic
concept is similar to the trapping method used in [23].
For each attractor, we first define a small trapping disk,
and discretize a rectangle domain of H with 1024*1024
grid points. Then, we compute the basin of the attrac-
tor by checking whether the grid points after a certain
times of iteration are inside the disk.

The results are shown in Fig. 9. When α = 7.8, there
is only one period-1 limit cycle, i.e., o1 = o2, which has
a large basin surrounded by the basin of o. According
to Figs. 7 and 8, this basin splits into two basins since
the period-1 orbit bifurcates into two different period-
1 orbits. And then, the two basins continuously exist
during the period-doubling route to chaos. The basins
of the two hidden attractor at α = 8.4562 are shown
in right-top subfigure in Fig. 9, which looks similar to
Fig. 7. When the two hidden attractors become single
hidden attractor for someα > 8.486, their basins merge
back together as shown in the bottom-left subfigure in
Fig. 9. Since the basin of o become smaller and smaller
as α increases, it finally disappear at α = αc. Then, the
system has only a normal chaotic attractor, a typical
basin at α = 8.8 is illustrated in the bottom-right sub-

figure in Fig. 9. Numerical study also shows when α

continuously increases, the normal attractor becomes
closer and closer to the boundary of its basin, and then
disappears when they meet each other at α ≈ 8.87.

3 Computer-assisted proof of chaoticity of the
hidden attractors

To show that the twin attractors at the parameter α =
8.4562 are not higher periodic orbits as exhibited in
the bifurcation process of the usual period doubling
bifurcation, we will prove in this section that they are
indeed chaotic attractors by means of the topological
horseshoe theory.

The topological horseshoe theory, based on the geo-
metric relationship of maps on some subsets of interest
in state space, provides a powerful tool in many rig-
orous studies of chaos, such as estimating topological
entropy, proving existence of chaos, showing fractional
structure of chaotic invariant sets, revealing mechanism
of chaotic attractors and so on. In this section, we first
recall a theorem on topological horseshoes, and then
present rigorous verification of chaoticity of the three
kind of strange attractors illustrated in Fig. 9.

3.1 A result of topological horseshoe

Let D be a compact connected region of Rn , and
Di , i = 1, 2, . . . , m be disjoint compact connected
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Fig. 9 The attractors and their basins with adjusting α

subsets (usually quadrangles) of D homeomorphic to
the unit square. Let f : D → Rn be a piecewise contin-
uous map which is continuous on each compact set Di ,
and introduce some concepts and notations as follows.

Definition 1 [24]. For each Di , 1 ≤ i ≤ m, let D1
i

and D2
i be two fixed disjoint compact subsets of Di

contained in the boundary ∂ Di . A connected subset l
of Di is said to connect D1

i and D2
i if l ∩ D1

i �= ∅ and
l ∩ D2

i �= ∅.

Definition 2 [24]. Let l ⊂ Di be a connection of D1
i

and D2
i . We say that f (l) is acrossing D j , if l contains

a connected subset l ′ such that f (l ′) ⊂ D j is a con-
nection of D1

j and D2
j . In this case, we denote it by

f (l) �→ D j . Furthermore, if f (l) �→ D j holds true for
every connection l of D1

i and D2
i then f (Di ) is said

to be acrossing D j and denoted by f (Di ) �→ D j with
respect to two pairs (D1

i , D2
i ) and (D1

j , D2
j ).

Theorem 1 [25]. If the relation f (Di ) �→ D j holds
for every pair with i, j taken from 1 ≤ i, j ≤ m,
then there exists a compact invariant set K ⊂ D, such
that f |K is semiconjugate to the full m-shift dynamics
σ | ∑m, and ent( f ) ≥ log m.

Remark the m-shift is also called the Bernoulli m-shift.
The symbolic series space �m is the collection of all
bi-infinite sequences

s = {. . . , s−n, . . . , s−1; s0, s1, . . . , sn, . . .},
where si ∈ {0, 1, . . . , m−1}. The shift map σ is defined
as

σ(s) = {. . . , s−n+1, . . . , s0; s1, s2, . . . , sn+1, . . .}.
It is well known that �m is a Cantor set, which is com-
pact, totally disconnected, and perfect. As a dynamical
system defined on �m, σ has: a countable infinity of
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periodic orbits consisting of orbits of all periods, an
uncountable infinity of aperiodic orbits and a dense
orbit. A direct consequence of these three properties is
that the dynamics generated by the shift map is sen-
sitive to initial conditions. Mathematically, the topo-
logical entropy ent( f ) measures its complexity, which
roughly means the exponential growth rate of the num-
ber of distinguishable orbits as time advances. When
m > 1, ent ( f ) > 0; therefore, the system is chaotic.
For more details of the above symbolic dynamics and
horseshoe theory, we refer the reader to [24–27].

3.2 Another Poincaré map

In order to study chaos with the above theorem, we
will utilize the technique of cross section and the corre-
sponding Poincaré map. For the convenience of numer-
ical computation, we take the switching manifold

	 = {(x, y, z)|x = 1, ẋ < 0}
as a new Poincaré section plane. The Poincaré map
H : 	 → 	 is chosen as follows: For each x =
(y, z)


=(1, y, z) ∈ 	, H(x)is taken to be the first
return point in 	 under the flow with the initial condi-
tion x. Since f (x) is a piecewise linear function, i.e.,

f (x) =
⎧⎨
⎩

m1x + m1 − m0 1 < x
m0x −1 ≤ x ≤ 1
m1x − m1 + m0 x < −1

,

system (1) is a switching system consisted of three lin-
ear subsystems: S− for x < −1, So for −1 ≤ x ≤ 1,
and S+ for 1 < x . Clearly, each subsystem has an
analytical solution. So it is not hard to compute the
image of x with reliable bounds of numerical errors by
applying interval arithmetic. It is also easy to verify
whether 	 is continuous on a subset numerically by
checking whether the flow of (1) passes through (not
tangentially) the switching manifolds x = ±1.

3.3 The chaoticity of the twin attractors

To find horseshoes, we need to detect two subsets, e.g.,
D1 and D2, such that the relations

f (D1) �→ D1, f (D1) �→ D2, f (D2) �→ D1,

f (D2) �→ D2 (5)

holds true with respect to two subsets of D1, i.e. D1
1 and

D2
1, and two subsets of D2, i.e. D1

2 and D2
2. Although

this sounds hard, we can use an efficient method pro-
posed in [26], which was realized as a powerful toolbox
in MATLAB (available from: http://www.mathworks.
com/matlabcentral/fileexchange/14075) and has been
successfully applied in many planar maps [28,29] and
three-dimensional maps [30,31].

First, we prove the twin hidden attractors in Fig. 1
is chaotic indeed. Since they are symmetric to each
other with respect to the origin, we only prove hidden
attractor 1. We numerically find a polygon D with its
ten vertices in term of (y, z) as follows

a1 = (−0.765271572,−5.526663609),

a2 = (−0.725104636,−5.527666464),

a3 = (−0.683240505,−5.523081981),

a4 = (−0.661176977,−5.518210968),

a5 = (−0.614221262,−5.504600784),

a6 = (−0.584803224,−5.490560805),

a7 = (−0.592723465,−5.489128154),

a8 = (−0.673057338,−5.511907304),

a9 = (−0.693989404,−5.514629341),

a10 = (−0.782243517,−5.512766895).

The polygon and its image under H2 
= H ◦ H depict in
Fig. 10, where image is so thin that it looks like a line,
which passes through the polygon between its top and
bottom boundaries, i.e., the piecewise lines a10a9a8a7

and a1a2a3a4a5a6, and transversely intersects both the
left and right boundaries, i.e., the segments a6a7 and
a1a10, twice . The images of a6a7 and a1a10 are both
outside of the polygon. This evidence suggests H2|D
is a Smale horseshoe map. For a detailed study of the
horseshoe map with Theorem 1, we can easily take two
subsets of D as shown in Fig. 10, where the first one D1

is the pentagon a10a1a2a3a9, and the two fixed disjoint
subsets of D1 are D1

1 and D2
1, which are the segments

a10a1 and a3a9, respectively; the second one D2 is the
pentagon a8a4a5a6a7, and D1

2 and D2
2 are the segments

a8a4 and a6a7, respectively. The geometrical relation-
ships among D1, D2 and their images are shown in
Fig. 11, from which it is not hard to have the following
theorem.

Theorem 2 When α = 8.4562, there exists a compact
invariant set � ⊂ D, such that H2|� is semiconjugate
to 2-shift dynamics, and the topological entropy of H
is ent

(
H2

) ≥ log 2.
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Fig. 10 Horseshoe map at
α = 8.4562

Fig. 11 Two subset D1 and
D2 at α = 8.4562

Proof According to Theorem 1, we let f be H2, and
then we only need to show that the relations (5) hold
true.

For the first two relations, it is easy to see from
Fig. 11 that H2(D1) passes through D1 and D2 between
their top and bottom sides, and transversely intersects
D1 with D1

1 and D2
1, intersects D2 with D1

2and D2
2. So

each connected subset of D1, if it is connection of D1
1

and D2
1, then it images under H2 must be acrossing

D1 with respect to D1
1 and D2

1, and acrossing D2 with
respect to D1

2 and D2
2. Then we have H2(D1) �→ D1

and H2(D1) �→ D2.

Similarly, we can prove H2(D2) �→ D1 and
H2(D2) �→ D2 from Fig. 11 too. ��
Remark According to the topological horseshoe theory
[13], the entropy of the iterated map ent

(
H2

) = 2 ·
ent (H), so the entropy of the original Poincaré map H
is not less than 1

2 log 2.

3.4 The chaoticity of the single hidden attractor

Now, we prove that the single hidden attractor in Fig. 9
is chaotic indeed with the same way above. The two
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Fig. 12 Topological horseshoes for the single hidden attractor and the normal attractor

subsets D1 and D2 found by us are shown as the left
subfigure in Fig. 12, where D1 is a quadrilateral, whose
four vertices in term of (y, z) are
(−1.201194634,−3.531045668),

(−1.173710992,−3.598955096)
(−1.214778503,−4.207053154),

(−1.258689150,−4.028019208)
And D2 is also a quadrilateral, whose the four ver-

tices are
(−1.261532285,−4.352132387),

(−1.214462599,−4.284222959)
(−1.108950686,−4.910841771),

(−1.240998530,−4.762675746)
From this figure, we can easily see the following

relations

H(D1) �→ D1, H(D1) �→ D2,

H(D2) �→ D1 and H(D2) �→ D2. (6)

which obviously satisfy Theorem 1 if we let f be H ,
so ent (H) ≥ log 2, which indicates the map is also
chaotic indeed when α = 8.56.

3.5 The chaoticity of the normal attractor

At last, we prove that the normal attractor in in Fig. 9 is
chaotic too. As shown in the right subfigure in Fig. 12,
we find two subsets D1 and D2, which also satisfy the
relations (5), where the coordinate of four vertices of
D1 are

(−1.159042221,−3.418983312),
(−1.118775145,−3.513511022),

(−1.174873721,−3.937255930),
(−1.228218992,−3.810132458);
and the coordinate of four vertices of D2 are

(−1.253496117,−4.419168660),
(−1.171594743,−4.513765235)

(−1.092740861,−4.917619842),
(−1.233687413,−4.757533331).
According to Theorem 1, the entropy of H at α =

8.8 is also not less than log 2, so the normal attractor is
chaotic indeed.

4 Conclusions

In this paper we have shown that the so called hid-
den twin attractors can be observed in the well-known
Chua’s circuit motivated by the recent remarkable find-
ing of Leonov et al. [6] in the Chua’s circuit. To
show the chaoticity of the twin attractors we have
presented a computer- assisted proof based on the
topological horseshoe theory. In addition, we have
numerically demonstrated a route from one limit cycle
to hidden twin attractors by period-doubling bifur-
cations. The results of the present paper, together
with the previous studies on the Chua’s circuit, indi-
cate how rich the dynamics in the Chua’s circuit
is.
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