Physics I (FIZ1	01	E)		Midterm I		Octob	ber	23, 2011
Questions 1-10		This part will be filled by stud	dents.	Surname	:			Booklet Type
Group Number	:			Name	:			
List Number	:			e-mail	:			
Student ID	:			Signature	:			
Your choice for each question from	n 1 to	25 will be marked in the "AN	SWE	R SHEET". Each right choice	is 1 p	oint. Wrong answers do not ca	use po	pint deductions.
1. The length and wid last digits are significa	lth nt. `	of a rectangular area What is the area, in	a is r the 1	neasured to be L=12 unit of m ² , up to the l	.25 last	m and W=2.5123 m significant digit?	resp	ectively where the
a) 30.78	b)	30.77567	c)	30.77568	d)	30.775675	e)	30.7757
2. The speed of surface wavelength of the wave, dimensional analysis).	wav λ. V	es on deep water migh Which one of the follow	nt de ving	pend on the gravitatio could be how this spec	onal ed d	acceleration, g, densit epends on these paran	y of [,] neter	water, ρ, and the rs? (Hint: Use
a) $v = \sqrt{g \lambda}$	b)	$v = \sqrt{\frac{g\lambda}{\rho}}$	c)	$v = \rho \sqrt{g \lambda}$	d)	$v = \sqrt{\rho g \lambda}$	e)	$v = \sqrt{g\rho}$
3. A car travels around a different curve of radi	a cu us 2	rve of radius r at cons r at a constant speed	stant √2v	t speed v. Its accelerat what will its accelerat	tion ion	has a constant magnit be?	ude	"a". "If the car round
a) 2a	b)	4a	c)	$a/\sqrt{2}$	d)	$a\sqrt{2}$	e)	а
4. A car travels from cit 45 km/h. What is the ave	y A erag	to city B. The car take e speed of the car for	es th this j	e first half of the total journey?	dist	tance with speed 30 km	n/h a	and the next half
a) 37.5 km/h	b)	42 km/h	(c)	36 km/h	d)	39 km/h	e)	The question can not be answered without the total distance is given.
5. An object is <u>speeding</u> object?	up a	s it goes around a circ	ele. V	Which statement is nee	cess	arily true about the ne	et for	rce acting on the
(a) None of the statements is true.	s b)	The force on the object acts directly away the center of the circle.	c)	The force on the object acts directly toward the center of the circle.	d)	The net force on the object acts in a direction tangent to the circle at the position of the object.	e)	An object moving on a circular trajectory cannot speed up.
6. Two blocks made of dible begins sliding at a smalle	iffer er sl	ent materials are plac ope of the plane than l	ed o	n a horizontal plane. k B. Which of the follo	Gra owir	dually the plane is lift	ed at	t one end. Block A
 a) Block B is heavier than block A. 	b)	None of statements in choices is true.	c)	The coefficient of kinetic friction of block A is less than that of block B.	d	The coefficient of static friction of block A is les than that of block B.	e) S	Block A is heavier than block B .
7. As Newton's second la	aw s	tates;is that	t pro	perty of an object that	t ca	uses it to resist any cha	ange	in its
(a) mass of the body, velocity	b)	normal force, weight	c)	tension, acceleration	d)	gravity, weight	e)	mass of the body, acceleration
8. An inertial referans fr	ame	e is a frame, relative to	o whi	ich for any objec	t wi	th?		
a) $v = 0$, $a = 0$	b)	$a = 0, F_{net} = 0$	c)	$v = 0, F_{net} = 0$	d)	$F_{net} \neq 0, v = 0$	e)	$v \neq 0, F_{net} \neq 0$
9. Which of the following	g is a	an invalid mathematic	al st	atement?				
a) $\vec{A}X(\vec{B}X\vec{C})$	b	$\overrightarrow{AX}(\overrightarrow{B} \bullet \overrightarrow{C})$	c)	$\vec{A} \bullet (\vec{B}X\vec{C})$	d)	$\overrightarrow{A} \bullet (\overrightarrow{B} - \overrightarrow{C})$	e)	$(\overrightarrow{A} - \overrightarrow{B}) \overrightarrow{X} \overrightarrow{C}$
10 Whot is the	WAA	n the vector $\vec{\Lambda} = 2\hat{i}$	⊦ 3î	$+\hat{k}$ and x-axis?				
(Remember that, $\Phi = \cos^{-1}$	¹ (co	$s\Phi$) = arccos(cos Φ))	5					

Questions-11-15

Time dependent position vector of a car that, travels on a circular path of radius R, with a period of T=16 s, is given by $\vec{r}_{C}=R\left(\hat{i}\cos\frac{2\pi}{T}t+\hat{j}\sin\frac{2\pi}{T}t\right)$. Speed of the train which is traveling in the +x direction with a constant velocity is 30 m/s. Answer the following questions between 11 and 15: 11. If R=160/ π (m) then, what is the velocity of the car at t=8 s in units of (m/s)? a) $-20\hat{i}$ b) $-10\sqrt{2}i$ c) $10\hat{i} - 10\hat{i}$ d) 20 i e) $20\hat{i} - 20\hat{i}$ 12. If R=20 (m) then, what is the average velocity of the car within $12s \le t \le 20$ s interval in units of (m/s)? a) $\frac{20}{1}\hat{i}$ **b**) $-10\pi\hat{i}$ c) $10\hat{i} + 10\hat{j}$ d) 10 i e) 5 i 13. If R=160 $\sqrt{2}/\pi$ (m) then, what is the velocity of the car in (m/s) with respect to the train at t=6 s? a) $-5(2\hat{i}+4\hat{j})$ **b)** $-10\sqrt{2}(\hat{i}+2\hat{j})$ (c) $-10(5\hat{i}+2\hat{j})$ d) $5\sqrt{2}(\hat{i}-2\hat{j})$ e) $-5(\hat{i}+4\hat{j})$ 14. If R=160/ π (m) then, what is the acceleration of the car in (m/s²), at t=12 s? c) $\frac{10\pi}{\sqrt{2}}(\hat{i}+\hat{j})$ d) $\frac{-10\pi}{4}\hat{j}$ b) $\frac{10}{4}\hat{j}$ a) $\frac{\pi}{4}\hat{j}$ 15. If R=160/ π (m) then, what is the average acceleration of the car in (m/s²), within 4s $\leq t \leq 8s$ interval? a) $-5\hat{i}$ (b) $5(\hat{i} - \hat{j})$ c) $5\hat{i}$ d) $5(\hat{i} + \hat{j})$ e) $5\hat{i} - 10\hat{j}$ **Question 16-20** An object of mass m = 1.5 kg is making uniform circular motion with constant gŮ speed of 10 m/s inside a metal cylinder of radius R=5 m in vertical plane, as shown in the figure. (Take g=10 m/s² and π =22/7) Answer the following questions between 16 and 20. IB A 16. What is the value of the centripetal acceleration?a) 15 m/s^2 **b)** 5 m/s^2 **d)** 10 m/s^2 c) 20 m/s^2 e) 25 m/s^2 17. What is the value of the normal force applied by the cylinder at point A? a) 45 N b) 30 N c) 60 N d) 35 N e) 15 N 18. What is the value of the normal force applied by the cylinder at point C? a) 15 N b) 20 N c) 22 N d) 10 N 25 N e) 19. What is the value of the centripetal force at point B? a) 45 N (b) 30 N c) 10 N d) 50 N e) 55 N 20. How many turns do the object make in a second? a) 22/7 turns/second b) 11/7 turns/second c) 5/11 turns/second d) 7/11 turns/second e) 7/22 turns/second **Questions 21-25** 30 60 A 10kg object is hanged to the ceiling of an elevator by three ropes, where the ropes have negligible masses, and rope 'T₁' makes angle 30° as shown in the T figure (Could be used g=10m/s², sin30°=0.5, sin60°=0.9, tan30°=0.6 and m tan60°=1.7 if needed). Answer the following questions: 21. Determine the tension, T, while the elevator moves downward with a constant velocity. a) more than 100 N b) insufficient data c) less than 10 kg d) 100 N e) 10 kg 22. Determine the approximate value of T1 while the elevator moves downward with a constant velocity. a) 87 N (b) 50 N c) 100 N d) -87 N e) None of them 23. Determine the tension, T, while the elevator moves upward with the acceleration $a=2m/s^2$. a) 120 N b) 100 N c) 145 N d) 200 N e) 90 N 24. Determine the tension, T, while the elevator moves downward with the acceleration a= 2m/s². a) 110 N b) 75 N d) 95 N e) 80 N c) -6 N

25. Determine the <u>approximate value</u> of T_1 while the elevator moves <u>downward</u> with the acceleration $a = 2m/s^2$. a) 120 N b) 60 N c) 108 N d) 72 N (e) 40 N

Physics I (FIZ1	01E)	M	idterm II		Dece	em	ber 3, 2011
Questions 1-10	This part will be filled students	by	Surname	:	THE REPORT OF CONTRACTOR OF THE OWNER	Materia	Booklet Type
Group Number	* •		Name	:	n an		
List Number			e-mail	:			
Student ID			Signature	:			
Your choice for each question fro deductions.	m 1 to 25 will be marked in t	the "A	ANSWER SHEET". Eacl	h rig	ht choice is 1 point. Wron	ng an	swers do not cause point
1. Which of following is	not a unit of energy?			ALLANS ALTONY	SB-P-B-C-B-B-RB-Baltoniches SB-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-	550 (141 (14	
a) W.s	b) dyn.cm	c)	J	d)	N.m	(e)	kg.m ³ /s ²
2. A stone of mass 0.5 kg	g was tightened to a o	ne e	end of a rope of lea	ngtl	h 0.8 meters and r	otat	ed on a circular
path in vertical plane. W	hat is the work done	by	the gravitational i	for	ce exerted on the s	tone	e during its
motion from the bottom	to the top? (g=10m/s	")	1.57		0.07	0	0.7
a) 4j	b) 8J	c)	-15J	d)	-0.8J	(e)	-8J
3. A force of $\vec{F} = 30\hat{t} -$ work done on the car by	• 40 <i>j</i> (N) leads to a dis the force F?	spla	icement $\Delta \vec{r} = -9$	î —	3 <i>j</i> (m) on a car. W	/hat	is the
a) 150J	b) 75J	c)	50J	d)	-75J	e)	-150J
4. A stationary mass is e	xploded into two piec	ces 1	with masses m ₁ an	d n	12. If the kinetic en	erg	y of the m ₁ is two
times the kinetic energy	of m ₂ , then what is th	ne ra	atio of the masses,	m ₁	/m ₂ ?		
a) 1/4	b) 1/2	c)	2	d)	1	e)	1/8
 5. Which of the followin a) If only the conservative forces do work, the mechanic energy is conserved. 	 g is not correct? b) Kinetic energy of a body can be negative. 	c)	If a force is perpendicular to a body's velocity then work is not done on the body.	d)	In uniform circular motion, kinetic energy is conserved but momentum is not conserved.	e)	Total energy of a body is equal to the summation of various energy types.
	an bakan na manana kata kata kata kata kata kata kata		an and an	PRINTING STREET	ananan ar	an carrier of	
Question 6-7 When an electric fan is t rev/min to 200 rev/min i 6. Find the angular acce a) -75	urned off, it slows do n 4 seconds. leration in rev/s ² in th b) -7.5	own ne 4 c)	with a uniformly s interval. -12.5	dec d)	reasing angular ve	eloc	ity from 500
Question 67 When an electric fan is t rev/min to 200 rev/min i 6. Find the angular acce a) -75 7. Find the number of re	urned off, it slows do n 4 seconds. leration in rev/s ² in th b) -7.5 evolutions made by th	own ne 4 c) ne m	with a uniformly s interval. -12.5 otor in the 4 s inte	dec d) erva	reasing angular ve 1.25 el.	eloc e)	-5
Question 67 When an electric fan is t rev/min to 200 rev/min i 6. Find the angular acce a) -75 7. Find the number of re a) 13.3	urned off, it slows do n 4 seconds. leration in rev/s ² in th b) -7.5 evolutions made by th b) 23.3	own ne 4 c) ne m c)	with a uniformly s interval. -12.5 otor in the 4 s inte 43.3	dec d) erva d)	reasing angular ve 1.25 al. 10.0	eloc e) e)	-5 33.3
Question 6-7 When an electric fan is to rev/min to 200 rev/min i 6. Find the angular acce a) -75 7. Find the number of re a) 13.3 Question 8 A thin disk with a radiu inertia I ₀ , about an axis center. What will be the same axis when the disk Find the result in terms	surned off, it slows do n 4 seconds. leration in rev/s ² in th b) -7.5 evolutions made by th b) 23.3 s of R and mass M hap perpendicular to its p moment of inertia w is folded along its dia of I ₀ ?	own he 4 c) he m c) as m bland ith ith	with a uniformly s interval. -12.5 otor in the 4 s inter 43.3 noment of e through its respect to the eter as in figure b.	dec d) d)	reasing angular ve 1.25 el. 10.0 (a)	e)	-5 33.3 (b)
Question 67 When an electric fan is to rev/min to 200 rev/min i 6. Find the angular acce a) -75 7. Find the number of rev a) 13.3 Question 8 A thin disk with a radiu inertia I ₀ , about an axis center. What will be the same axis when the disk Find the result in terms of a) 4 I ₀	surned off, it slows do n 4 seconds. leration in rev/s ² in th b) -7.5 evolutions made by th b) 23.3 s of R and mass M hap perpendicular to its p moment of inertia w is folded along its dis of I ₀ ? b) I ₀ /4	own he 4 c) he m c) aas m land ith ame c)	with a uniformly of s interval. -12.5 otor in the 4 s interval. 43.3 noment of e through its respect to the eter as in figure b. $I_0/2$	dec d) erva d)	reasing angular ve 1.25 el. 10.0 (a) 2 I ₀	e) e) (e)	-5 33.3 (b)
Question 6-7 When an electric fan is the rev/min to 200 rev/min is 6. Find the angular accession -75 7. Find the number of rescalar of -75 9. A thin disk with a radius inertia I_0 , about an axis rescalar of -75 9. A friction less pulley has M_p =2.50 kg and radius 2 is attached to a very light of the pulley, and the system of the pulley, and the system of the pulley of -75 for -25	turned off, it slows do n 4 seconds. leration in rev/s ² in th b) -7.5 evolutions made by th b) 23.3 s of R and mass M has perpendicular to its p moment of inertia w is folded along its dis of I ₀ ? b) I ₀ /4 the shape of a uniform 20.0 cm. A stone with t wire that is wrappent tem is released from	own he 4 c) he m c) as m oland ith ame c) m so a m d ar rest	with a uniformly of s interval. -12.5 otor in the 4 s interval. 43.3 moment of through its respect to the eter as in figure b. $I_0/2$ fold disk of mass mass of M _S =1.5 kg round the rim t.	dec d) erva d)	reasing angular velocities 1.25 al. 10.0 (a) $2 I_0$	e) e) e)	ity from 500 -5 33.3 (b) J_0 $M_p=2.5kg$
Question 6-7 When an electric fan is t rev/min to 200 rev/min i 6. Find the angular acce a) -75 7. Find the number of re a) 13.3 Question 8 A thin disk with a radiu inertia I ₀ , about an axis center. What will be the same axis when the disk Find the result in terms a) 4 I ₀ Question 9-10 A frictionless pulley has M _p =2.50 kg and radius 2 is attached to a very ligh of the pulley, and the sys (I _{cm} =0.05 kg.m ² for disk)	turned off, it slows do n 4 seconds. leration in rev/s ² in th b) -7.5 evolutions made by th b) 23.3 s of R and mass M has perpendicular to its p moment of inertia w is folded along its dis of I ₀ ? b) I ₀ /4 the shape of a uniform 20.0 cm. A stone with t wire that is wrappe- item is released from	own he 4 c) he m c) as m land ith ame c) m so a m d ar rest	with a uniformly of s interval. -12.5 otor in the 4 s interval. 43.3 noment of e through its respect to the eter as in figure b. $I_0/2$ olid disk of mass mass of M_s =1.5 kg round the rim t.	dec d) rvz d)	reasing angular vertex 1.25 al. 10.0 (a) $2 I_0$	e) e) e)	(b) $M_p=2.5 \text{ kg}$ $M_s=1.5 \text{ kg}$
Question 6-7 When an electric fan is the rev/min to 200 rev/min is 6. Find the angular accession and the number of rescaled a) -75 7. Find the number of rescaled a) 13.3 Question 8 A thin disk with a radius inertia I_0 , about an axis for the result in terms and a subsect of the result in terms and a subsect of the result in terms and 4 I_0 Question 9-10 A frictionless pulley has M_p =2.50 kg and radius 2 is attached to a very ligh of the pulley, and the system (I_{cm} =0.05 kg.m ² for disk) 9. How far must the store	 curned off, it slows do n 4 seconds. leration in rev/s² in the b) -7.5 evolutions made by the b) 23.3 s of R and mass M has perpendicular to its perpendicular t	own he 4 c) he m c) as m oland ith ame c) m so a m d ar rest	with a uniformly of s interval. -12.5 otor in the 4 s interval. 43.3 noment of e through its respect to the eter as in figure b. $I_0/2$ olid disk of mass hass of M _S =1.5 kg round the rim t. gains kinetic energy	dec d) d)	reasing angular ve 1.25 al. 10.0 (a) 2 I ₀ (b) (c) f 10 J?	e) e) e)	ity from 500 -5 33.3 (b) J_0 $M_p=2.5kg$ $M_s=1.5kg$
Question 6-7 When an electric fan is to rev/min to 200 rev/min is 6. Find the angular acce a) -75 7. Find the number of revision a) 13.3 Question 8 A thin disk with a radiu inertia I_0 , about an axis center. What will be the same axis when the disk Find the result in terms of a) 4 I_0 Question 9-10 A frictionless pulley has $M_p=2.50$ kg and radius 2 is attached to a very light of the pulley, and the system ($I_{cm}=0.05$ kg.m ² for disk) 9. How far must the stor a) 22/15	turned off, it slows do n 4 seconds. leration in rev/s ² in th b) -7.5 evolutions made by th b) 23.3 s of R and mass M has perpendicular to its p moment of inertia w is folded along its dis of I_0 ? b) $I_0/4$ the shape of a uniform 20.0 cm. A stone with t wire that is wrappen- tem is released from the fall so that the pull b) 23/15	own he 4 c) he m c) as m oland ith ame c) m so a m d ar rest ley g c)	with a uniformly of s interval. -12.5 otor in the 4 s interval. 43.3 noment of e through its respect to the eter as in figure b. $I_0/2$ olid disk of mass hass of M _S =1.5 kg round the rim t. gains kinetic energy 25/14	dec d) d) d)	reasing angular ve 1.25 al. 10.0 (a) 2 I ₀ (b) (c) f 10 J? 21/14	e) e) (e) (e) (e)	ity from 500 -5 33.3 (b) J_0 $M_p=2.5 kg$ $M_s=1.5 kg$ 27/14

a) 0%

b) 60.60%

(c) 45.45% d) 55.55%

e) 30.30%

Physics I (FIZ101E)

Final Exam

	Surname	Type
Group Number	Name	ЛГ
List Number	e-mail	N/I
Student ID	Signature	

1. A certain physical quantity, R, is calculated using the formula: $R = 4a^2(b-c)$ where a is a speed, b and c are distances. What is the SI unit of R?

(b) cm^2/s (c) m^2/h (d) m^2/s (e) cm/h(a) m^3/s^2

2. A cannon directed straight upward launches a ball with an initial speed v. The ball reaches a maximum height h in a time t. Then, the same cannon is used to launch a second ball straight upward at a speed 2v. In terms of h and t, what is the maximum height the second ball reaches and how long does it take to reach that height? (a) 4h, 2t (b) 2h, t (c) 2h, 4t (d) 2h, 2t(e) h, t

3. A cylinder, a solid sphere, a hollow sphere, and a ring with the same mass and the same radius roll down without slipping from the top of an inclined plane that has a height of h. Which one of the objects reaches the bottom first? $I_{CM}(\text{cylinder}) = (1/2)MR^2, I_{CM}(\text{solid sphere}) = (2/5)MR^2, I_{CM}(\text{ring}) = MR^2, I_{CM}(\text{hollow sphere}) = (2/3)MR^2.$ (a) The solid sphere (b) The cylinder (c) The ring (d) They arrive at the bottom at the same time (e) The hollow sphere

- 4. A particle moves along the x-axis under the force of $\vec{F}(x) = -k/x^3 \hat{i}$ (k is a constant). If U(x = 2C) = 0, which of the following (a) $U(x) = -k/2x^2 + k/8C^2$ (b) $U(x) = k/2x^2 + k/8C^2$ (c) $U(x) = -k/2x^2 - k/8C^2$ (d) $U(x) = -k/2x^2 + k/4C^2$ (e) $U(x) = -k/2x^2 + k/16C^2$
- 5. Given M_1 and M_2 with a distance R_{12} between them, find the work done by an external force to bring a third mass M_3 slowly with a constant velocity from infinity to a point close to the other masses as shown in the figure.

(a) $W = -G[(M_3M_2/R_{32}) + (M_1M_3/R_{13})]$ (b) $W = -G[(M_1M_2/R_{12}) - (M_3M_2/R_{32})]$ (c) $W = -G[(M_1M_2/R_{12}) - (M_3M_2/R_{32}) - (M_1M_3/R_{13})]$ (d) $W = -G[(M_1M_2/R_{12}) + (M_3M_2/R_{32}) + (M_1M_3/R_{13})]$ (e) $W = +G[(M_1M_2/R_{12}) + (M_3M_2/R_{32}) + (M_1M_3/R_{13})]$

6. A cylinder of mass M and radius R rotates about a stationary horizontal axis. We tie the free end of the massless cable to a block of mass M and release the object without initial velocity at a distance h above the floor. As the block falls, the cable unwinds without stretching or slipping but turning the cylinder. Which of the following statements will be true at the moment the block reaches the floor? $I_{CM} = (1/2)MR^2$.

(a) The block has more kinetic energy than the cylinder.

(b) The cylinder's angular speed is $\omega = \sqrt{3gh/4R}$.

- (c) The speed of block is $v = \sqrt{3h/4}$.
- (d) The cylinder has more kinetic energy than the block.
- (e) The block and the cylinder have same kinetic energy.
- 7. A satellite moves in a circular orbit radius R around a star of mass m with period T. If this satellite rotates around another
- star of mass 3m, at the same radius of R, then what is the new period in terms of T? (a) $T/\sqrt{3}$ (b) $T\sqrt{3}$ (c) T (d) 3T (e) T/3
- 8. The gravitational acceleration on the surface of a planet is g. What will be the gravitational acceleration on the surface of the planet if the mass of the planet is doubled while keeping the volume constant? (b) Same (c) 4g (d) g/2 (e) 3g/4(a) 2g
- 9. An ice skater is spinning with her arms held tightly to her body about her axis as shown in the figure. When she extends her arms, which of the following statements is not true? (There is no friction.) (a) Her moment of inertia remains constant. (b) She increases her moment of inertia. (c) She decreases her angular speed. (d) Her total angular momentum remains constant. (e) Total torque acting on her is zero.
- 10. A small block on a frictionless, horizontal surface has mass of M(kg). It is attached to a massless cord passing through a hole in the surface. The block is originally revolving at a distance of $r_i(m)$ from the hole with an angular speed of $\omega_1(rad/s)$. The cord is then pulled with carefully from below, shortening the radius of the circle in which the block revolves to $r_i/2(m)$ at an angular speed of ω_2 (rad/s). Taking the block as a point particle what is the ratio of the block's final and initial angular momenta (L_f/L_i) ? (a) 1 (b) 2 (c) 4 (d) 0.5 (e) $\sqrt{2}$

Questions 11-15

A reel of mass m, whose inner and outer radii are r and R, respectively, is tied by means of the string wound on it, to a vertical wall as shown in the figure.

Coefficient of static friction between the wall and the reel is μ_S . $(q=10 \text{ m/s}^2)$.

If the system is in equilibrium, then:

- 11. If R = 10 cm, r = 4 cm, m = 3 kg, $\sin \theta = 0.6$, $\cos \theta = 0.8$, $\mu_S = 0.7$, which of the followings is the tension T, on the string? (c) 21 N (d) 18 N (e) 64 N (a) **25** N (b) 24 N
- 12. If R = 10 cm, r = 4 cm, m = 3 kg, $\sin \theta = 0.6$, $\cos \theta = 0.8$, $\mu_S = 0.7$, which of the followings is the frictional force between the wall and the reel? (a) 10 N (b) 22.5 N (c) 16.8 N(d) 18 N (e) 24 N
- 13. If R = 10 cm, r = 4 cm, m = 3 kg, $\sin \theta = 0.6$, $\cos \theta = 0.8$, $\mu_S = 0.7$, which of the followings is the horizontal force that, the wall exerts onto the reel? (c) 18 N (d) 24 N (e) 7.2 N (a) **15** N (b) 9.6 N
- 14. If R = 0.4 m, r = 0.1 m, $\mu_S = 0.5$, m = 3 kg, the static frictional force between the wall and the reel is f, the tension on the string is T then, which of the expressions is/are correct? III) T < 24 N I) $\sin \theta \ge 1/2$, II) f = 6 N, (c) III (d) I, II, III (e) I and II (a) I (b) II
- **15.** For R = r and $\sin \theta = 1/2$, which of the followings is the minimum value of μ_S that can hold the reel in equilibrium? (a) 2 (b) 0.5 (c) 0.25 (d) any positive real number (e) none of them

Questions 16-20

A solid bowling ball with mass M and radius R starts moving at t = 0 without any rotation but with an initial linear velocity v_0 along a horizontal surface. The coefficient of kinetic friction between the surface and the ball is μ . It both slips and rolls and finally at t = Trolling without slipping starts. $I_{CM}(\text{ball}) = (2/5) \text{MR}^2$.

- **16.** What is the acceleration of the center of mass before rolling without slipping starts? (a) $-\mu g$ (b) $-\mu g v_0$ (c) $+m\mu g$ (d) $-m\mu$ (e) $-m\mu g$
- 17. What is the linear speed (m/s) of the object at the instant rolling without slipping starts? (a) $v = v_0 - \mu gT$ (b) $v = -v_0 - \mu gT$ (c) $v = v_0 + \mu gT$ (d) $v = -\mu gT$ (e) $v = v_0 gT$
- 18. What is the angular acceleration α (rad/s²) of the object before rolling without slipping starts? (a) $\alpha = 5\mu q/2R$ (b) $\alpha = 2\mu q/5R$ (c) $\alpha = 5\mu/2$ (d) $\alpha = 5\mu/2R$ (e) $\alpha = 2\mu/5R$
- **19.** What is the angular speed (rad/s) as a function of time before rolling without slipping starts, (t < T)? (a) $\omega = 5\mu gt/2R$ (b) $\omega = 5gt/2R$ (c) $\omega = 5\mu t/2R$ (d) $\omega = 5\mu g/2R$ (e) $\omega = 2\mu gt/5R$
- **20.** Find T, the time (s) at which rolling without slipping starts. (a) $2v_0/7\mu g$ (b) $7v_0/2\mu g$ (c) $2v_0/7g$ (d) $v_0/7\mu g$ (e) $2v_0/\mu g$

Questions 21-25

Two stars with masses M_1 and M_2 are in circular orbits around their center of mass. The star with mass M_1 has an orbit of radius R_1 and the star with mass M_2 has an orbit of radius R_2 . Please consider, the stars and center of mass shall always be kept on the same line.

- **21.** What is the ratio of the orbital radii of the two stars, (R_1/R_2) ? (a) M_2/M_1 (b) $(M_2/M_1)^2$ (c) $(M_2/M_1)^{(1/2)}$ (d) $(M_2/M_1)^3$ (e) $(M_2/M_1)^{(1/3)}$
- 22. What is the relationship between the accelerations of the stars. (a) $M_1\vec{a}_1 = -M_2\vec{a}_2$ (b) $M_1\vec{a}_1 = M_2\vec{a}_2$ (c) $M_1\vec{a}_2 = M_2\vec{a}_1$ (d) $M_1\vec{a}_2 = -M_2\vec{a}_1$ (e) None of them
- 23. If their orbital velocities are such that $\vec{V}_1 = -3\vec{V}_2$, what is the ratio of their orbital radii, (R_1/R_2) ? (a) 3 (b) $\sqrt{3}$ (c) 1/3 (d) 9 (e) $\sqrt{3}/3$
- 24. If their orbital velocities are such that $\vec{V}_1 = -3\vec{V}_2$, which of the following would give the period of the second star in terms of

its distance from the center of mass (R_2) and mass (M_2) ? (a) $T = 8\pi\sqrt{3}R_2^{3/2}/\sqrt{GM_2}$ (b) $T = 16\pi\sqrt{3}R_2^{3/2}/\sqrt{GM_2}$ (c) $T = 8\pi\sqrt{3}R_2^{3/2}/\sqrt{GM_1}$ (d) $T = 4\pi\sqrt{3}R_2^{3/2}/\sqrt{GM_2}$ (e) $T = 8\pi\sqrt{3}R_2^{3/2}/\sqrt{2GM_2}$

25. Assuming the masses are the same $(M_1 = M_2 = M)$, what is the binding energy of the system? $(R_1 = R_2 = R)$ (a) $-GM^2/2R$ (b) $2GM^2/R$ (c) $-2GM^2/R$ (d) $GM^2/2R$ (e) GM^2/R

