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• Many problems can be formulated in simple mathematical 
equations
This does not mean, that they are solved easily!

• For any application, you need numbers
⇒  Numerical Methods!

• Needed for most basic things: 
exp(3),sqrt(7),sin(42°), log(5) , π

• Often, modeling and numerical calculations can help in 
design, construction, safety

• Note: many everyday’s problems are so complicated that 
they cannot be solved yet
 ⇒ Efficiency is crucial



• Numerical methods: Numerical approximation of 
solutions to understood problems

• Numerical representation of real numbers has far-
reaching consequences

• Two main objectives
– quantify errors

Approximation without error estimation is useless
– increase efficiency

Solutions which take years or need more resources that 
you have are useless

• Nowadays, many fields depend on numerics



Partial Differential Equations in Conservation Form to Solve 
for the Non-Reacting Compressible Flow of an Ideal Gas

Mass :
∂ ρ
∂ t

 div ρ u = 0

x−momentum:
∂ρu 

∂ t
 div ρuu =−

∂p
∂ x

 div μ grad u  SMx

y−momentum:
∂ρv 

∂ t
 div ρvu =−

∂ p
∂ y

 div μ grad v  SMy

z−momentum:
∂ ρw 

∂ t
 div ρwu = −

∂p
∂z

 div μ grad w  SMz

Internal energy :
∂ρi 
∂t

 div ρiu  =−p div u  div k grad T  Φ  Si

Equations of state : p = p ρ ,T  and i = i ρ ,T 
e .g . for perfect gas: p = ρ RT and i = Cv T



Errors!



• Round-off Error: Finite precision
numerical calculations are almost always approximations

• Truncation error: a calculation has to stop
Examples:

– Approximation (e.g. finite Taylor series)
– Discretization

It is crucial to know when to stop (i.e. when a calculations is  
converged!). To check this, change parameters (e.g. step size, number 
of basis states) and check result.

• Modelling error



• Truncation errors are problem specific

• Often, every step involves an approximation,
e.g. a finite Taylor series

• The truncation errors accumulate

• Often, truncation errors can be calculated



Example: Logistic Map
xi+1=r * xi * (1­xi)

x0= 0.7 ;  r=4
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• Precision of representation of numbers is finite
   - Errors accumulate!
• a real number x can be represented as
     fl(x) = x∙(1+ε)  :       floating point computer representation 

      |fl(x)­x|   = εx   absolute error (often also ∆x)

     |fl(x)­x|/x = ε   relative error



Digital Representation 

of 

Numbers



• Real numbers: floating point representation 
double (64 bit)       standard! 

single  (32 bit) less precision, half memory

• Integer: signed and unsigned (8,16,32 bit)
a=uint8(255), b=int16(32767), c=int32(231-1)
Integers use less space, calculations are precise!

• Complex:
w=2+3i;  v=complex(x,y) x,y can be matrices!

• Boolean: true (=1) or false (=0) 
Strings: s='Hello World'

• special values:
+inf, -inf, NaN Infinity, Not-a-Number
check with isinf(x), isnan(x)



Floating Point Standard IEEE 754
• Normalized:

N=1.f · 2p

Denormalized:
N=0.f · 2p

• Limits of double precision (64bit) FP numbers
realmax (10308), realmin (10-308)    largest, smallest real number

eps (10-16) accuracy 
• strictly speaking, FP numbers are

not associative and not distributive,  but they are to a 
very good approximation if used reasonably

• mathematically floating point numbers are not a field!
Many fundamental theorems of analysis and algebra have to 
be used with care!

Significant f51 – 0

Exponent p62 – 52

sign63

usebit (double)



• not all real numbers can be represented as FP
0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1-1   -1E-16    

• Floating point  calculations are not precise!
sin(pi) is not 0,  1E20+1-1E20   is not 1

• never compare two floats (a==b) directly
try   100*(1/3)/100 == 1/3  FALSE!!! 
use abs(a-b)<eps     (eps=2.2E-16)

• be careful with mixing integer and FP
i=int32(1);
i/2  produces 1 as i/2 stays integer!
i/3 produces 0

 !  This is much more dangerous in C and FORTRAN etc.

 Solution: explicit type conversion
 

   double(i)/2 produces 0.5



What can be solved
numerically?



• Suppose we want to evaluate f(x) with perfect algorithm
• we have FP number x+∆x with error ∆x

∆f(x)  =  f(x+∆x)­f(x)  ≈  f’(x)∆x  (if f differentiable)

Relative error:
 

Definition: condition number 

•  γ >>1  : problem ill-conditioned

•  γ small: problem well-conditioned

Δf  x 

f  x 
≈

xf' x 

f  x 

Δx
x

γ  x =∣
xf' x 

f  x 
∣



• Let’s try a simple calculation: 
99-70*sqrt(2)    (≈0.00505)

• Suppose we have 1.4 as approximation for √2

• We have 2 mathematically equivalent methods:

f1: 99-70*√2              f1(1.4) = 1

f2: 1/(99+70*√2)     f2(1.4) ≈ 0.0051

Condition numbers: 
f1(x)= 99­70 x  γ1(√2) ≈ 20000
f1(x)= 1/(99+70 x)  γ2(√2) ≈ 0.5



f1: 99-70*√2        

f2: 1/(99+70*√2)

• Condition number of subtraction, addition:

f(x)=x-a γ−= |-x/(x-a)| ill-conditioned for x-a≈0

f(x)=x+a γ+= |x/(x+a)|    ill-conditioned for x+a≈0

• Condition number for multiplication, division:

f(x)=ax γ= |xa/(ax)|   =1  
f(x)=1/x γ= |xx-2/(x-1)| =1    well-conditioned  

 



NUMERICAL DISASTERS
• Patriot system hit by SCUD missile

– position predicted from time and velocity
– the system up-time in 1/10 of a second

was converted to seconds using 24bit precision 
(by multiplying with 1/10)

– 1/10 has non-terminating binary expansion
– after 100h, the error accumulated to 0.34s
– the SCUD travels 1600 m/s so it travels >500m 

in this time (28 soldiers DEAD!)

• Ariane 5
– A 64bit FP number containing the horizontal 

velocity was converted to 16bit signed integer
– Range overflow followed (Rocket LOST!)

from
http://ta.twi.tudelft.nl/nw/users/vuik/wi211/disasters.html



The sinking of the Sleipner A offshore platform
The Sleipner A platform produces oil and gas in the North Sea and is supported on the seabed at a water depth of 82 m. It is a Condeep type 
platform with a concrete gravity base structure consisting of 24 cells and with a total base area of 16 000 m2. 
Four cells are elongated to shafts supporting the platform deck. The first concrete base structure for Sleipner A sprang a leak and sank under a 
controlled ballasting operation during preparation for deck mating in Gandsfjorden outside Stavanger, Norway on 23 August 1991. 
Immediately after the accident, the owner of the platform, Statoil, a Norwegian oil company appointed an investigation group, and SINTEF was 
contracted to be the technical advisor for this group. 
The investigation into the accident is described in 16 reports... 
The conclusion of the investigation was that the loss was caused by a failure in a cell wall, resulting in a serious crack and a leakage that the 
pumps  were not able to cope with.
 The wall failed as a result of a combination of a serious error in the finite element analysis and insufficient anchorage of the reinforcement in a 
critical zone. 
A better idea of what was involved can be obtained from this photo and sketch of the platform.  
 The top deck weighs 57,000 tons, and provides accommodation for about 200 people and support for drilling equipment 
weighing about 40,000 tons. When the first model sank in August 1991, the crash caused a seismic event registering 3.0 on the Richter scale, 
and left nothing but a pile of debris at 220m of depth. The failure involved a total economic loss of about $700 million. 

The 24 cells and 4 shafts referred to above are shown to the left while at the sea surface.       
The cells are 12m in diameter. The cell wall failure was traced to a tricell, a triangular concrete 
frame placed where the cells meet. At right one is pictured undergoing failure testing. The post 
accident investigation traced the error to inaccurate finite element 
approximation of the linear elastic model of the tricell (using the popular finite element program NASTRAN). 
The shear stresses were underestimated by 47%, leading to insufficient design. 
In particular, certain concrete walls were not thick enough. More careful finite element analysis, made after the accident, 
predicted that failure would occur with this design at a depth of 62m, which matches well with the actual occurrence at 65m. 



Start or end of the program

Computational steps or 
processing function of a 
program

Input or output operation

Decision making and 
branching

Connector or joining of two 
parts of program

Magnetic Tape 

Magnetic Disk

Off-page connector 

Flow line 

Annotation

Display

FLOWCHARTING SYMBOLS





CODE COMPILATION SEQUENCE



 C (gcc command)
 C++ (g++ command)
 Objective-C / Objective-C++ (gcc command)
 Fortran (g77 command)
 Java (gcj command)
 Ada (gnat command)
 Assembly language of every supported 

processor (as command)
 Other languages are supported with “front-end” 

interfaces that are not built-in to GCC.  User 
must obtain these front-ends from other 
sources.
Pascal
Mercury
COBOL

List of Languages Supported by GCC Compiler



Compiler Front-End
(gcc / g++ Commands)

 Wrapper that coordinates compile sequence

 Provides single (language dependent) command to 
interface to all the compile steps

 Reduces complexity to one command

 Chooses correct compile steps based on input file 
extension

 Checks file extensions for non-default output filenames

 Layered user interface approach allows simple usage as 
well as more powerful complex usage

 Example below compiles source file into an executable 
and warns of any major issues.

gcc -Wall hello.c -o hello.exe



VIRTUES OF MODULAR 
CODING



/* 
   This is a demonstration program for the 
   rootfinding subroutine 'bisect'
   */ 
 
#include <stdio.h> 
#include <math.h> 
 
 
float fcn(float); 
float sign(float, float); 
void bisect(float(*f)(float), float, float, float, float 
*, int *); 
  



main() 
{ 
 
   float a, b, epsilon, root; 
   int ier; 
  
 
   while (1)  { 
    
      /*  Input problem parameters  */ 
 
      printf("\n\n What are a,b,epsilon"); 
      printf("\n to stop, let epsilon=0 : \n"); 
      scanf("%f %f %f", &a, &b, &epsilon); 
      if (epsilon == 0.0) 
         return 0; 
       
      /*  Calculate root  */ 
 
      bisect(fcn, a ,b ,epsilon, &root, &ier); 
 
      /*  Print answers  */ 
 
      printf("\n\n a = %11.4e     b = %11.4e     epsilon = 
%9.3e", 
               a, b, epsilon); 
      printf("\n root = %14.7e     ier = %1d", root, ier); 
   } 
   system ("pause"); 
    return 0; 
} 



float fcn(float x) 
{ 
   float result; 
 
   result = x - exp(-x); 
   return(result); 
} 
 
 
float sign(float a, float b) 
{ 
   if (b < 0.0) 
      return(-fabs(a)); 
   else 
      return(fabs(a)); 
} 



void bisect(float(*f)(float), float a, float b, float eps, 
            float *root, int *ier) 
{ 
/* 
   The program uses the bisection method to solve 
   the equation 
      f(x) = 0. 
   The solution is to be in [a,b] and it is assumed 
   that 
      f(a)*f(b) <= 0. 
   The solution is returned in root, and it is to 
   be in error by at most eps. 
    
   ier is an error indicator. 
   If ier=0 on completion of the routine, then the 
   solution has been computed satisfactorily. 
   If ier=1, then f(a)*f(b) was greater than 0, 
   contrary to assumption. 
*/ 
 
   const float zero = 0.0, one = 1.0, two = 2.0; 
   float c, fa, fb, fc, sfa, sfb, sfc; 
 
 
   /* Initialize  */ 
 
   fa = (*f)(a); 
   fb = (*f)(b); 
   sfa = sign(one, fa); 
   sfb = sign(one, fb); 
   if (sfa*sfb > 0.0)  
   { 
 
      /*  The choice of a and b is in error  */ 
 
      *ier = 1; 
      return; 
   } 
 



   /* Create a new value of c, the midpoint of [a,b]  */ 
 
   while (1)  { 
      c = (a + b)/two; 
      if (fabs(b-c) <= eps)  
      { 
          
         /* c is an acceptable solution of f(x)=0  */ 
          
         *root = c; 
         *ier = 0; 
         return; 
      } 
       
      /* The value of c was not sufficiently accurate. 
         Begin a new iteration  */ 
 
      fc = (*f)(c); 
      if (fc == zero)  
      { 
          
         /* c is an acceptable solution of f(x)=0  */ 
          
         *root = c; 
         *ier = 0; 
         return; 
      } 
 
      sfc = sign(one, fc); 
      if (sfb*sfc > zero)  
      { 
          
         /*  The solution is in [a,c]  */ 
 
         b = c; 
         sfb = sfc; 
      } 
      else  
      { 
 
         /*  The solution is in [c,b]  */ 
          
         a = c; 
         sfa = sfc; 
      } 
   } 
}




