Introduction to Topology Midterm Exam, March 29th, 2016

INSTRUCTIONS: Do all of the problems in PART I. Do only two problems from PART II. Questions in PART I all worth 12 points. Questions in PART II all worth 20 points.

PART I

- 1. Write the definitions of the following terms:
 - (a) $\lim_{n\to\infty} a_n = a$:

Solution: For every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for every $n \ge N$ we have $|a_n - a| < \epsilon$.

(b) $A \subseteq \mathbb{R}$ is a connected set:

Solution: For every $a, b \in A$, and for every $x \in \mathbb{R}$ if $a \leq x \leq b$ then $x \in A$. Or, equivalently, for every $a, b \in A$ we also have $[a, b] \subseteq A$.

(c) $A \subseteq \mathbb{R}$ is an open set:

Solution: For every $a \in A$ there is a positive number $\epsilon > 0$ such that $(a - \epsilon, a + \epsilon) \subseteq A$.

(d) $f : \mathbb{R} \to \mathbb{R}$ is continuous:

Solution: There are 3 equivalent definitions:

- 1. For every sequence (x_n) in \mathbb{R} if there is a real number such that $x = \lim_{n \to \infty} x_n$ then we also have $f(x) = \lim_{n \to \infty} f(x_n)$.
- 2. For every $x \in \mathbb{R}$ and positive real number $\epsilon > 0$ there is a positive real number $\delta > 0$ such that for every $y \in \mathbb{R}$ if $|x y| < \delta$ then $f|(x) f(y)| < \epsilon$.
- 3. For every $O \subseteq \mathbb{R}$, if O is open then so is $f^{-1}(O)$.
- 2. Assume $f: X \to Y$ is a function. Recall that for every $U \subseteq Y$ we define

$$f^{-1}(U) = \{ x \in X | f(x) \in U \}$$

(a) Show that for every $U \subseteq Y$ we have

$$f^{-1}(U)^c = f^{-1}(U^c)$$

where U^c is the complement $U^c := Y \setminus U$.

Solution: For every $x \in \mathbb{R}$, we have $x \in f^{-1}(U^c)$ if and only if (by definition) $f(x) \in U^c$, i.e. $f(x) \notin U$. This is equivalent to saying $x \notin f^{-1}(U)$, which in turn is equivalent to $x \in f^{-1}(U)^c$.

(b) Show that for every family of sets $\{U_i\}_{i \in I}$ in Y we have

$$\bigcup_{i \in I} f^{-1}(U_i) = f^{-1}\left(\bigcup_{i \in I} U_i\right)$$

Solution: An element $x \in \mathbb{R}$ belongs to $\bigcup_{i \in I} f^{-1}(U_i)$ when there is an index $j \in I$ such that $x \in f^{-1}(U_j)$. However, this means that $f(x) \in U_j$ for the same index $j \in I$. Hence $f(x) \in \bigcup_{i \in I} U_i$, i.e. $x \in f^{-1}(\bigcup_{i \in I} U_i)$. This proves $\bigcup_{i \in I} f^{-1}(U_i) \subseteq f^{-1}(\bigcup_{i \in I} U_i)$. For the reverse inclusion, take $x \in f^{-1}(\bigcup_{i \in I} U_i)$. Then $f(x) \in \bigcup_{i \in I} U_i$ which means there is an index $j \in I$ with $f(x) \in U_j$. Thus $x \in f^{-1}(U_j)$ for the same index, i.e. $x \in \bigcup_{i \in I} f^{-1}(U_i)$ proving the reverse inclusion $f^{-1}(\bigcup_{i \in I} U_i) \subseteq \bigcup_{i \in I} f^{-1}(U_i)$.

(c) Using (a) and (b) show that

$$\bigcap_{i \in I} f^{-1}(U_i) = f^{-1}\left(\bigcap_{i \in I} U_i\right)$$

Solution: $\bigcap_{i \in I} f^{-1}(U_i) = \left(\bigcup_{i \in I} f^{-1}(U_i)^c\right)^c = \left(\bigcup_{i \in I} f^{-1}(U_i^c)\right)^c = \left(f^{-1}\left(\bigcup_{i \in I} U_i^c\right)\right)^c$ $= f^{-1}\left(\left(\bigcup_{i \in I} U_i^c\right)^c\right) = f^{-1}\left(\bigcap_{i \in I} U_i\right)$

3. Show that $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$.

Solution: Assume $\epsilon > 0$ is given. We would like to prove that there is an index $N \in \mathbb{N}$ such that for every index with $n \ge N$ we have $\left|\frac{1}{\sqrt{n}}\right| < \epsilon$. Since n > 0, it is enough to prove $\frac{1}{\sqrt{n}} < \epsilon$. So, we need:

$$\frac{1}{\sqrt{n}} < \epsilon \Longleftrightarrow \frac{1}{\epsilon} < \sqrt{n} \Longleftrightarrow \frac{1}{\epsilon^2} < n$$

So, if $N > \left\lceil \frac{1}{\epsilon^2} \right\rceil$ then for every $n \ge N$ we also have $n > \left\lceil \frac{1}{\epsilon^2} \right\rceil$ which gives what we are looking for.

- 4. Recall that given $A \subseteq \mathbb{R}$, we define $d(x, A) = \inf_{a \in A} |x a|$. Calculate the function d(x, A) for the following subsets:
 - (a) $A = (-\infty, -1] \cup [1, \infty)$

Solution:

 $d(x, A) = \begin{cases} 0 & \text{if } x \le -1 \text{ or } x \ge 1\\ x - 1 & \text{if } -1 \le x \le 0\\ 1 - x & \text{if } 0 \le x \le 1 \end{cases}$

(b) $A = \bigcup_{n \in \mathbb{Z}} [2n, 2n+1]$

Solution:

$$d(x,A) = \begin{cases} 0 & \text{if } 2n \le x \le 2n+1 \text{ for some } n \in \mathbb{Z} \\ x-2n+1 & \text{if } 2n-1 \le x \le 2n-\frac{1}{2} \text{ for some } n \in \mathbb{Z} \\ 2n+1-x & \text{if } 2n+\frac{1}{2} \le x \le 2n+1 \text{ for some } n \in \mathbb{Z} \end{cases}$$

[Hint: Sketch the graphs of these functions first, then write an expression.]

- 5. Show only one of the following statements:
 - (a) Let $\{A_i\}_{i \in I}$ be a family of closed sets in \mathbb{R} . Show that $\bigcap_{i \in I} A_i$ is also closed.

Solution: Assume $\{A_i\}_{i \in I}$ is a family of closed sets in \mathbb{R} , and let (x_n) be a sequence in $\bigcap_{i \in I} A_i$ such that there is a real number $x \in \mathbb{R}$ with $x = \lim_{n \to \infty} x_n$. Then for every $n \in \mathbb{N}$ and for every $i \in I$ we have $x_n \in A_i$. Since each A_i is closed, we must have $x \in A_i$ for every $i \in I$. In other words, $\bigcap_{i \in I} A_i$ must be closed.

(b) Let $\{U_i\}_{i \in I}$ be a family of open sets in \mathbb{R} . Show that $\bigcup_{i \in I} U_i$ is also open.

Solution: Assume $\{U_i\}_{i \in I}$ is a family of open sets in \mathbb{R} and let $x \in \bigcup_{i \in I} U_i$. Then there is an index $j \in I$ such that $x \in U_j$. However, U_j is open. This means there a positive number $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subseteq U_j$. Since $U_j \subseteq \bigcup_{i \in I} U_i$ we see that $(x - \epsilon, x + \epsilon) \subseteq \bigcup_{i \in I} U_i$. This proves $\bigcup_{i \in I} U_i$ is open.

PART II

6. Consider the set of all sequences of real numbers

$$\mathcal{S} = \{ (a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R} \}$$

Define a relation $A \colon \mathcal{S} \to \mathcal{S}$ such that

$$A = \left\{ ((a_n), (b_n)) \in \mathcal{S} \times \mathcal{S} : \lim_{n \to \infty} |a_n - b_n| = 0 \right\}$$

In other words, two sequences are related when their difference converges to 0. Verify that this relation is an equivalence relation.

Solution:

- 1. A is reflexive because for every $(x_n) \in S$ we have $0 = \lim_{n \to \infty} |x_n x_n|$.
- 2. A is symmetric because if $((x_n), (y_n)) \in A$ then $0 = \lim_{n \to \infty} |x_n y_n| = \lim_{n \to \infty} |y_n x_n|$ which implies $((y_n), (x_n)) \in A$.
- 3. A is transitive: Notice that $\lim_{n\to\infty} |x_n y_n| = 0$ means $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$. So, if we have $((x_n), (y_n)) \in A$ and $((y_n), (z_n)) \in A$, then

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n \quad \text{and} \quad \lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n$$

Then we can conclude that $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_n$, i.e. $((x_n), (z_n)) \in A$.

Introduction to Topology Midterm Exam, March 29th, 2016

7. Assume $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, and that there is a number $a \in \mathbb{R}$ such that f(a) > 0. Show that there is a $\delta > 0$ such that for every $x \in (a - \delta, a + \delta)$ we also have f(x) > 0.

Solution: The set $(0, \infty)$ is an open subset and $a \in f^{-1}(0, \infty)$ since f(a) > 0. The continuity of f says that $f^{-1}(0, \infty)$ is also an open set. Then there is a $\delta > 0$ such that $(a - \delta, a + \delta) \subseteq f^{-1}(0, \infty)$. Then for every $x \in (a - \delta, a + \delta)$ we have f(x) > 0.

8. Assume (a_n) is a sequence of real numbers. One defines the sequence of partial sums as

$$S_N := \sum_{n=0}^N a_n$$

and we say that the series $\sum_{n=0}^{\infty} a_n$ is convergent when the sequence $(S_N)_{N \in \mathbb{N}}$ is convergent. Show that the series $\sum_{n=0}^{\infty} a$ is divergent for any a > 0. [Hint: Write the sequence of partial sums first, and then show that that series diverges to ∞ .]

Solution: First, recall that we say that a sequence (a_n) diverges to ∞ when for every $\epsilon > 0$ there is an index N > 0 such such that for every $n \ge N$ we have $a_n > \epsilon$. The sequence of partial sums for the series $\sum_{n=0}^{\infty} a$ is

$$S_N = \sum_{n=0}^N a = (N+1)a$$

Then for every $\epsilon > 0$ there is an index N > 0 such that $(n+1)a > \epsilon$ for every $n \ge N$ if we choose $N = \left\lfloor \frac{\epsilon}{a} - 1 \right\rfloor$. This is because if $N = \left\lfloor \frac{\epsilon}{a} - 1 \right\rfloor$ then

$$n \ge N = \left\lceil \frac{\epsilon}{a} - 1 \right\rceil \ge \frac{\epsilon}{a} - 1 \Longrightarrow (n+1)a > \epsilon$$

as we wanted to show.

9. Assume $x \in \mathbb{R}$ is an arbitrary real number. Let \mathcal{O}_x the set of all open subsets containing this element x. Show that

$$\bigcap_{U \in \mathcal{O}_x} U = \{x\}$$

[**Hint**: Use "proof by contradiction." What would happen if there is a real number $y \neq x$ inside $\bigcap_{U \in \mathcal{O}_x} U$? Construct an open set which contains x but not y. How would this contradict your assumption?]

Solution: First, notice that for every $U \in \mathcal{O}_x$ we have $x \in U$. So, $\{x\} \subseteq U$ for every $U \in \mathcal{O}_x$ which means

$$\{x\} \subseteq \bigcap_{U \in \mathcal{O}_x} U$$

Assume now that there is another element $y \in \bigcap_{U \in \mathcal{O}_x} U$ such that $y \neq x$. If we define $\delta = \frac{|x-y|}{2}$ we see that $\delta > 0$. Then $(x - \delta, x + \delta) \in \mathcal{O}_x$ is an open set containing x but not y. Now notice that $y \in \bigcap_{U \in \mathcal{O}_x} U \subseteq (x - \delta, x + \delta)$ because the intersection $\bigcap_{U \in \mathcal{O}_x} U$ is contained in every $U \in \mathcal{O}_x$. We got a contradition: on one hand we started with $x \neq y \in \bigcap_{U \in \mathcal{O}_x} U$ and now we concluded $y \in (x - \delta, x + \delta)$ which does not contain y. So, our assumption that "there is a $y \in \bigcap_{U \in \mathcal{O}_x}$ with $y \neq x$ " was false. Therefore the set $\bigcap_{U \in \mathcal{O}_x} c$ contains only x.