Introduction to Topology Midterm Exam, March 29th, 2016

INSTRUCTIONS: Do all of the problems in PART I. Do only two problems from PART II. Questions in PART I all worth 12 points. Questions in PART II all worth 20 points.

PART I

1. Write the definitions of the following terms:
(a) $\lim _{n \rightarrow \infty} a_{n}=a$:

Solution: For every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that for every $n \geq N$ we have $\left|a_{n}-a\right|<\epsilon$.
(b) $A \subseteq \mathbb{R}$ is a connected set:

Solution: For every $a, b \in A$, and for every $x \in \mathbb{R}$ if $a \leq x \leq b$ then $x \in A$. Or, equivalently, for every $a, b \in A$ we also have $[a, b] \subseteq A$.
(c) $A \subseteq \mathbb{R}$ is an open set:

Solution: For every $a \in A$ there is a positive number $\epsilon>0$ such that $(a-\epsilon, a+\epsilon) \subseteq A$.
(d) $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous:

Solution: There are 3 equivalent definitions:

1. For every sequence $\left(x_{n}\right)$ in \mathbb{R} if there is a real number such that $x=\lim _{n \rightarrow \infty} x_{n}$ then we also have $f(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$.
2. For every $x \in \mathbb{R}$ and positive real number $\epsilon>0$ there is a positive real number $\delta>0$ such that for every $y \in \mathbb{R}$ if $|x-y|<\delta$ then $f|(x)-f(y)|<\epsilon$.
3. For every $O \subseteq \mathbb{R}$, if O is open then so is $f^{-1}(O)$.
4. Assume $f: X \rightarrow Y$ is a function. Recall that for every $U \subseteq Y$ we define

$$
f^{-1}(U)=\{x \in X \mid f(x) \in U\}
$$

(a) Show that for every $U \subseteq Y$ we have

$$
f^{-1}(U)^{c}=f^{-1}\left(U^{c}\right)
$$

where U^{c} is the complement $U^{c}:=Y \backslash U$.

Solution: For every $x \in \mathbb{R}$, we have $x \in f^{-1}\left(U^{c}\right)$ if and only if (by definition) $f(x) \in U^{c}$, i.e. $f(x) \notin U$. This is equivalent to saying $x \notin f^{-1}(U)$, which in turn is equivalent to $x \in f^{-1}(U)^{c}$.
(b) Show that for every family of sets $\left\{U_{i}\right\}_{i \in I}$ in Y we have

$$
\bigcup_{i \in I} f^{-1}\left(U_{i}\right)=f^{-1}\left(\bigcup_{i \in I} U_{i}\right)
$$

Solution: An element $x \in \mathbb{R}$ belongs to $\bigcup_{i \in I} f^{-1}\left(U_{i}\right)$ when there is an index $j \in I$ such that $x \in f^{-1}\left(U_{j}\right)$. However, this means that $f(x) \in U_{j}$ for the same index $j \in I$. Hence $f(x) \in \bigcup_{i \in I} U_{i}$, i.e. $x \in f^{-1}\left(\bigcup_{i \in I} U_{i}\right)$. This proves $\bigcup_{i \in I} f^{-1}\left(U_{i}\right) \subseteq f^{-1}\left(\bigcup_{i \in I} U_{i}\right)$. For the reverse inclusion, take $x \in f^{-1}\left(\bigcup_{i \in I} U_{i}\right)$. Then $f(x) \in \bigcup_{i \in I} U_{i}$ which means there is an index $j \in I$ with $f(x) \in U_{j}$. Thus $x \in f^{-1}\left(U_{j}\right)$ for the same index, i.e. $x \in \bigcup_{i \in I} f^{-1}\left(U_{i}\right)$ proving the reverse inclusion $f^{-1}\left(\bigcup_{i \in I} U_{i}\right) \subseteq \bigcup_{i \in I} f^{-1}\left(U_{i}\right)$.
(c) Using (a) and (b) show that

$$
\bigcap_{i \in I} f^{-1}\left(U_{i}\right)=f^{-1}\left(\bigcap_{i \in I} U_{i}\right)
$$

Solution:

$$
\begin{aligned}
\bigcap_{i \in I} f^{-1}\left(U_{i}\right) & =\left(\bigcup_{i \in I} f^{-1}\left(U_{i}\right)^{c}\right)^{c}=\left(\bigcup_{i \in I} f^{-1}\left(U_{i}^{c}\right)\right)^{c}=\left(f^{-1}\left(\bigcup_{i \in I} U_{i}^{c}\right)^{c}\right. \\
& =f^{-1}\left(\left(\bigcup_{i \in I} U_{i}^{c}\right)^{c}\right)=f^{-1}\left(\bigcap_{i \in I} U_{i}\right)
\end{aligned}
$$

3. Show that $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$.

Solution: Assume $\epsilon>0$ is given. We would like to prove that there is an index $N \in \mathbb{N}$ such that for every index with $n \geq N$ we have $\left|\frac{1}{\sqrt{n}}\right|<\epsilon$. Since $n>0$, it is enough to prove $\frac{1}{\sqrt{n}}<\epsilon$. So, we need:

$$
\frac{1}{\sqrt{n}}<\epsilon \Longleftrightarrow \frac{1}{\epsilon}<\sqrt{n} \Longleftrightarrow \frac{1}{\epsilon^{2}}<n
$$

So, if $N>\left\lceil\frac{1}{\epsilon^{2}}\right\rceil$ then for every $n \geq N$ we also have $n>\left\lceil\frac{1}{\epsilon^{2}}\right\rceil$ which gives what we are looking for.
4. Recall that given $A \subseteq \mathbb{R}$, we define $d(x, A)=\inf _{a \in A}|x-a|$. Calculate the function $d(x, A)$ for the following subsets:
(a) $A=(-\infty,-1] \cup[1, \infty)$

Solution:

$$
d(x, A)= \begin{cases}0 & \text { if } x \leq-1 \text { or } x \geq 1 \\ x-1 & \text { if }-1 \leq x \leq 0 \\ 1-x & \text { if } 0 \leq x \leq 1\end{cases}
$$

(b) $A=\bigcup_{n \in \mathbb{Z}}[2 n, 2 n+1]$

Introduction to Topology Midterm Exam, March 29th, 2016

Solution:

$$
d(x, A)= \begin{cases}0 & \text { if } 2 n \leq x \leq 2 n+1 \text { for some } n \in \mathbb{Z} \\ x-2 n+1 & \text { if } 2 n-1 \leq x \leq 2 n-\frac{1}{2} \text { for some } n \in \mathbb{Z} \\ 2 n+1-x & \text { if } 2 n+\frac{1}{2} \leq x \leq 2 n+1 \text { for some } n \in \mathbb{Z}\end{cases}
$$

[Hint: Sketch the graphs of these functions first, then write an expression.]
5. Show only one of the following statements:
(a) Let $\left\{A_{i}\right\}_{i \in I}$ be a family of closed sets in \mathbb{R}. Show that $\bigcap_{i \in I} A_{i}$ is also closed.

Solution: Assume $\left\{A_{i}\right\}_{i \in I}$ is a family of closed sets in \mathbb{R}, and let $\left(x_{n}\right)$ be a sequence in $\bigcap_{i \in I} A_{i}$ such that there is a real number $x \in \mathbb{R}$ with $x=\lim _{n \rightarrow \infty} x_{n}$. Then for every $n \in \mathbb{N}$ and for every $i \in I$ we have $x_{n} \in A_{i}$. Since each A_{i} is closed, we must have $x \in A_{i}$ for every $i \in I$. In other words, $\bigcap_{i \in I} A_{i}$ must be closed.
(b) Let $\left\{U_{i}\right\}_{i \in I}$ be a family of open sets in \mathbb{R}. Show that $\bigcup_{i \in I} U_{i}$ is also open.

Solution: Assume $\left\{U_{i}\right\}_{i \in I}$ is a family of open sets in \mathbb{R} and let $x \in \bigcup_{i \in I} U_{i}$. Then there is an index $j \in I$ such that $x \in U_{j}$. However, U_{j} is open. This means there a positive number $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subseteq U_{j}$. Since $U_{j} \subseteq \bigcup_{i \in I} U_{i}$ we see that $(x-\epsilon, x+\epsilon) \subseteq \bigcup_{i \in I} U_{i}$. This proves $\bigcup_{i \in I} U_{i}$ is open.

PART II

6. Consider the set of all sequences of real numbers

$$
\mathcal{S}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{R}\right\}
$$

Define a relation $A: \mathcal{S} \rightarrow \mathcal{S}$ such that

$$
A=\left\{\left(\left(a_{n}\right),\left(b_{n}\right)\right) \in \mathcal{S} \times \mathcal{S}: \lim _{n \rightarrow \infty}\left|a_{n}-b_{n}\right|=0\right\}
$$

In other words, two sequences are related when their difference converges to 0 . Verify that this relation is an equivalence relation.

Solution:

1. A is reflexive because for every $\left(x_{n}\right) \in \mathcal{S}$ we have $0=\lim _{n \rightarrow \infty}\left|x_{n}-x_{n}\right|$.
2. A is symmetric because if $\left(\left(x_{n}\right),\left(y_{n}\right)\right) \in A$ then $0=\lim _{n \rightarrow \infty}\left|x_{n}-y_{n}\right|=\lim _{n \rightarrow \infty}\left|y_{n}-x_{n}\right|$ which implies $\left(\left(y_{n}\right),\left(x_{n}\right)\right) \in A$.
3. A is transitive: Notice that $\lim _{n \rightarrow \infty}\left|x_{n}-y_{n}\right|=0$ means $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$. So, if we have $\left(\left(x_{n}\right),\left(y_{n}\right)\right) \in A$ and $\left(\left(y_{n}\right),\left(z_{n}\right)\right) \in A$, then

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n} \quad \text { and } \quad \lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} z_{n}
$$

Then we can conclude that $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n}$, i.e. $\left(\left(x_{n}\right),\left(z_{n}\right)\right) \in A$.

Introduction to Topology Midterm Exam, March 29th, 2016

7. Assume $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and that there is a number $a \in \mathbb{R}$ such that $f(a)>0$. Show that there is a $\delta>0$ such that for every $x \in(a-\delta, a+\delta)$ we also have $f(x)>0$.

Solution: The set $(0, \infty)$ is an open subset and $a \in f^{-1}(0, \infty)$ since $f(a)>0$. The continuity of f says that $f^{-1}(0, \infty)$ is also an open set. Then there is a $\delta>0$ such that $(a-\delta, a+\delta) \subseteq f^{-1}(0, \infty)$. Then for every $x \in(a-\delta, a+\delta)$ we have $f(x)>0$.
8. Assume $\left(a_{n}\right)$ is a sequence of real numbers. One defines the sequence of partial sums as

$$
S_{N}:=\sum_{n=0}^{N} a_{n}
$$

and we say that the series $\sum_{n=0}^{\infty} a_{n}$ is convergent when the sequence $\left(S_{N}\right)_{N \in \mathbb{N}}$ is convergent. Show that the series $\sum_{n=0}^{\infty} a$ is divergent for any $a>0$. [Hint: Write the sequence of partial sums first, and then show that that series diverges to ∞.]

Solution: First, recall that we say that a sequence $\left(a_{n}\right)$ diverges to ∞ when for every $\epsilon>0$ there is an index $N>0$ such such that for every $n \geq N$ we have $a_{n}>\epsilon$. The sequence of partial sums for the series $\sum_{n=0}^{\infty} a$ is

$$
S_{N}=\sum_{n=0}^{N} a=(N+1) a
$$

Then for every $\epsilon>0$ there is an index $N>0$ such that $(n+1) a>\epsilon$ for every $n \geq N$ if we choose $N=\left\lceil\frac{\epsilon}{a}-1\right\rceil$. This is because if $N=\left\lceil\frac{\epsilon}{a}-1\right\rceil$ then

$$
n \geq N=\left\lceil\frac{\epsilon}{a}-1\right\rceil \geq \frac{\epsilon}{a}-1 \Longrightarrow(n+1) a>\epsilon
$$

as we wanted to show.
9. Assume $x \in \mathbb{R}$ is an arbitrary real number. Let \mathcal{O}_{x} the set of all open subsets containing this element x. Show that

$$
\bigcap_{U \in \mathcal{O}_{x}} U=\{x\}
$$

[Hint: Use "proof by contradiction." What would happen if there is a real number $y \neq x$ inside $\bigcap_{U \in \mathcal{O}_{x}} U$? Construct an open set which contains x but not y. How would this contradict your assumption?]

Solution: First, notice that for every $U \in \mathcal{O}_{x}$ we have $x \in U$. So, $\{x\} \subseteq U$ for every $U \in \mathcal{O}_{x}$ which means

$$
\{x\} \subseteq \bigcap_{U \in \mathcal{O}_{x}} U
$$

Assume now that there is another element $y \in \bigcap_{U \in \mathcal{O}_{x}} U$ such that $y \neq x$. If we define $\delta=\frac{|x-y|}{2}$ we see that $\delta>0$. Then $(x-\delta, x+\delta) \in \mathcal{O}_{x}$ is an open set containing x but not y. Now notice that $y \in \bigcap_{U \in \mathcal{O}_{x}} U \subseteq(x-\delta, x+\delta)$ because the intersection $\bigcap_{U \in \mathcal{O}_{x}} U$ is contained in every $U \in \mathcal{O}_{x}$. We got a contradition: on one hand we started with $x \neq y \in \bigcap_{U \in \mathcal{O}_{x}} U$ and now we concluded $y \in(x-\delta, x+\delta)$ which does not contain y. So, our assumption that "there is a $y \in \bigcap_{U \in \mathcal{O}_{x}}$ with $y \neq x$ " was false. Therefore the set $\bigcap_{U \in \mathcal{O}_{x}}$ contains only x.

