
Introduction to Topology Midterm Exam, March 29th, 2016

INSTRUCTIONS: Do all of the problems in PART I. Do only two problems from PART II. Questions in
PART I all worth 12 points. Questions in PART II all worth 20 points.

PART I

1. Write the definitions of the following terms:

(a) limn→∞ an = a:

Solution: For every ε > 0 there exists N ∈ N such that for every n ≥ N we have |an − a| < ε.

(b) A ⊆ R is a connected set:

Solution: For every a, b ∈ A, and for every x ∈ R if a ≤ x ≤ b then x ∈ A. Or, equivalently,
for every a, b ∈ A we also have [a, b] ⊆ A.

(c) A ⊆ R is an open set:

Solution: For every a ∈ A there is a positive number ε > 0 such that (a− ε, a+ ε) ⊆ A.

(d) f : R→ R is continuous:

Solution: There are 3 equivalent definitions:

1. For every sequence (xn) in R if there is a real number such that x = limn→∞ xn then we
also have f(x) = limn→∞ f(xn).

2. For every x ∈ R and positive real number ε > 0 there is a positive real number δ > 0 such
that for every y ∈ R if |x− y| < δ then f |(x)− f(y)| < ε.

3. For every O ⊆ R, if O is open then so is f−1(O).

2. Assume f : X → Y is a function. Recall that for every U ⊆ Y we define

f−1(U) = {x ∈ X| f(x) ∈ U}

(a) Show that for every U ⊆ Y we have

f−1(U)c = f−1(U c)

where U c is the complement U c := Y \ U .

Solution: For every x ∈ R, we have x ∈ f−1(U c) if and only if (by definition) f(x) ∈ U c, i.e.
f(x) /∈ U . This is equivalent to saying x /∈ f−1(U), which in turn is equivalent to x ∈ f−1(U)c.

(b) Show that for every family of sets {Ui}i∈I in Y we have

⋃
i∈I

f−1(Ui) = f−1

(⋃
i∈I

Ui

)
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Solution: An element x ∈ R belongs to
⋃
i∈I f

−1(Ui) when there is an index j ∈ I such
that x ∈ f−1(Uj). However, this means that f(x) ∈ Uj for the same index j ∈ I. Hence
f(x) ∈

⋃
i∈I Ui, i.e. x ∈ f−1

(⋃
i∈I Ui

)
. This proves

⋃
i∈I f

−1(Ui) ⊆ f−1
(⋃

i∈I Ui
)
. For the

reverse inclusion, take x ∈ f−1
(⋃

i∈I Ui
)
. Then f(x) ∈

⋃
i∈I Ui which means there is an index

j ∈ I with f(x) ∈ Uj . Thus x ∈ f−1(Uj) for the same index, i.e. x ∈
⋃
i∈I f

−1(Ui) proving the

reverse inclusion f−1
(⋃

i∈I Ui
)
⊆
⋃
i∈I f

−1(Ui).

(c) Using (a) and (b) show that ⋂
i∈I

f−1(Ui) = f−1

(⋂
i∈I

Ui

)

Solution:

⋂
i∈I

f−1(Ui) =

(⋃
i∈I

f−1(Ui)
c

)c
=

(⋃
i∈I

f−1(U ci )

)c
=

(
f−1

(⋃
i∈I

U ci

))c

=f−1

((⋃
i∈I

U ci

)c)
= f−1

(⋂
i∈I

Ui

)

3. Show that limn→∞
1√
n

= 0.

Solution: Assume ε > 0 is given. We would like to prove that there is an index N ∈ N such that
for every index with n ≥ N we have | 1√

n
| < ε. Since n > 0, it is enough to prove 1√

n
< ε. So, we

need:

1√
n
< ε⇐⇒ 1

ε
<
√
n⇐⇒ 1

ε2
< n

So, if N >
⌈

1
ε2

⌉
then for every n ≥ N we also have n >

⌈
1
ε2

⌉
which gives what we are looking for.

4. Recall that given A ⊆ R, we define d(x,A) = infa∈A |x − a|. Calculate the function d(x,A) for the
following subsets:

(a) A = (−∞,−1] ∪ [1,∞)

Solution:

d(x,A) =


0 if x ≤ −1 or x ≥ 1

x− 1 if − 1 ≤ x ≤ 0

1− x if 0 ≤ x ≤ 1

(b) A =
⋃
n∈Z[2n, 2n+ 1]
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Solution:

d(x,A) =


0 if 2n ≤ x ≤ 2n+ 1 for some n ∈ Z
x− 2n+ 1 if 2n− 1 ≤ x ≤ 2n− 1

2 for some n ∈ Z
2n+ 1− x if 2n+ 1

2 ≤ x ≤ 2n+ 1 for some n ∈ Z

[Hint: Sketch the graphs of these functions first, then write an expression.]

5. Show only one of the following statements:

(a) Let {Ai}i∈I be a family of closed sets in R. Show that
⋂
i∈I Ai is also closed.

Solution: Assume {Ai}i∈I is a family of closed sets in R, and let (xn) be a sequence in
⋂
i∈I Ai

such that there is a real number x ∈ R with x = limn→∞ xn. Then for every n ∈ N and for
every i ∈ I we have xn ∈ Ai. Since each Ai is closed, we must have x ∈ Ai for every i ∈ I. In
other words,

⋂
i∈I Ai must be closed.

(b) Let {Ui}i∈I be a family of open sets in R. Show that
⋃
i∈I Ui is also open.

Solution: Assume {Ui}i∈I is a family of open sets in R and let x ∈
⋃
i∈I Ui. Then there is an

index j ∈ I such that x ∈ Uj . However, Uj is open. This means there a positive number ε > 0
such that (x − ε, x + ε) ⊆ Uj . Since Uj ⊆

⋃
i∈I Ui we see that (x − ε, x + ε) ⊆

⋃
i∈I Ui. This

proves
⋃
i∈I Ui is open.

PART II

6. Consider the set of all sequences of real numbers

S = {(an)n∈N : an ∈ R}

Define a relation A : S → S such that

A =
{

((an), (bn)) ∈ S × S : lim
n→∞

|an − bn| = 0
}

In other words, two sequences are related when their difference converges to 0. Verify that this relation
is an equivalence relation.

Solution:

1. A is reflexive because for every (xn) ∈ S we have 0 = limn→∞ |xn − xn|.

2. A is symmetric because if ((xn), (yn)) ∈ A then 0 = limn→∞ |xn − yn| = limn→∞ |yn − xn|
which implies ((yn), (xn)) ∈ A.

3. A is transitive: Notice that limn→∞ |xn − yn| = 0 means limn→∞ xn = limn→∞ yn. So, if we
have ((xn), (yn)) ∈ A and ((yn), (zn)) ∈ A, then

lim
n→∞

xn = lim
n→∞

yn and lim
n→∞

yn = lim
n→∞

zn

Then we can conclude that limn→∞ xn = limn→∞ xn, i.e. ((xn), (zn)) ∈ A.
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7. Assume f : R→ R is a continuous function, and that there is a number a ∈ R such that f(a) > 0. Show
that there is a δ > 0 such that for every x ∈ (a− δ, a+ δ) we also have f(x) > 0.

Solution: The set (0,∞) is an open subset and a ∈ f−1(0,∞) since f(a) > 0. The continuity of f
says that f−1(0,∞) is also an open set. Then there is a δ > 0 such that (a− δ, a+ δ) ⊆ f−1(0,∞).
Then for every x ∈ (a− δ, a+ δ) we have f(x) > 0.

8. Assume (an) is a sequence of real numbers. One defines the sequence of partial sums as

SN :=

N∑
n=0

an

and we say that the series
∑∞
n=0 an is convergent when the sequence (SN )N∈N is convergent. Show that

the series
∑∞
n=0 a is divergent for any a > 0. [Hint: Write the sequence of partial sums first, and then

show that that series diverges to ∞.]

Solution: First, recall that we say that a sequence (an) diverges to ∞ when for every ε > 0 there
is an index N > 0 such such that for every n ≥ N we have an > ε. The sequence of partial sums for
the series

∑∞
n=0 a is

SN =

N∑
n=0

a = (N + 1)a

Then for every ε > 0 there is an index N > 0 such that (n + 1)a > ε for every n ≥ N if we choose
N =

⌈
ε
a − 1

⌉
. This is because if N =

⌈
ε
a − 1

⌉
then

n ≥ N =
⌈ ε
a
− 1
⌉
≥ ε

a
− 1 =⇒ (n+ 1)a > ε

as we wanted to show.

9. Assume x ∈ R is an arbitrary real number. Let Ox the set of all open subsets containing this element x.
Show that ⋂

U∈Ox

U = {x}

[Hint: Use “proof by contradiction.” What would happen if there is a real number y 6= x inside⋂
U∈Ox

U? Construct an open set which contains x but not y. How would this contradict your assump-
tion?]

Solution: First, notice that for every U ∈ Ox we have x ∈ U . So, {x} ⊆ U for every U ∈ Ox which
means

{x} ⊆
⋂

U∈Ox

U

Assume now that there is another element y ∈
⋂
U∈Ox

U such that y 6= x. If we define δ = |x−y|
2

we see that δ > 0. Then (x − δ, x + δ) ∈ Ox is an open set containing x but not y. Now notice
that y ∈

⋂
U∈Ox

U ⊆ (x− δ, x+ δ) because the intersection
⋂
U∈Ox

U is contained in every U ∈ Ox.
We got a contradition: on one hand we started with x 6= y ∈

⋂
U∈Ox

U and now we concluded
y ∈ (x − δ, x + δ) which does not contain y. So, our assumption that “there is a y ∈

⋂
U∈Ox

with
y 6= x” was false. Therefore the set

⋂
U∈Ox

contains only x.
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