## Introduction to Topology Quiz 3, April 19th, 2016

Name: $\qquad$
Number: $\qquad$

1. Consider the following graph for this question:


|  | a | b | c | d | e | f |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | 0 | 2 | 1 | 1 | 1 | 1 |
| b | 2 | 0 | 3 | 1 | 2 | 3 |
| c | 1 | 3 | 0 | 2 | 1 | 2 |
| d | 1 | 1 | 2 | 0 | 1 | 2 |
| e | 1 | 2 | 1 | 1 | 0 | 2 |
| f | 1 | 3 | 2 | 2 | 2 | 0 |


|  | a | b | c | d | e | f |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Eccentricity | 2 | 3 | 3 | 2 | 2 | 3 |

(a) Fill in the distance matrix above.
(b) Calculate the eccentricities of the vertices:
(c) Calculate the radius and the diameter of the graph.

Solution: Radius is 2, and the diameter is 3 .
2. If we have two different metrics $d(x, y)$ and $f(x, y)$ on a set $X$, we said $d$ and $f$ are metrically equivalent $d \underset{M E}{\sim} f$ if there are positive real numbers $m, M \in(0, \infty)$ such that

$$
m \cdot f(x, y) \leq d(x, y) \leq M \cdot f(x, y)
$$

for all $x, y \in X$. Show that this relation is symmetric.

Solution: Since $m \cdot f(x, y) \leq d(x, y)$ we must have $f(x, y) \leq \frac{1}{m} \cdot d(x, y)$. But we also have $d(x, y) \leq M \cdot f(x, y)$ which also implies $\frac{1}{M} \cdot d(x, y) \leq f(x, y)$. Combining these two we get

$$
\frac{1}{M} \cdot d(x, y) \leq f(x, y) \leq \frac{1}{m} \cdot d(x, y)
$$

In other words, $f \underset{M E}{\sim} d$.

## Introduction to Topology Quiz 3, April 19th, 2016

3. Let $\mathbb{Z}$ be the set of integers $\{0, \pm 1, \pm 2, \ldots\}$.
(a) Sketch a graph of the function

$$
f(x)=d(x, \mathbb{Z})=\inf _{z \in \mathbb{Z}}|x-z|
$$


(b) Consider the region $\Omega$ between the graph of the function $f(x)=d(x, \mathbb{Z})$ and the $x$-axis. Write a description of the geodesic distance function $g((a, b),(c, d))$ for every $(a, b),(c, d) \in \Omega$.

Solution: Assume $(a, b),(c, d) \in \Omega$ and WLOG $a<c$. If $\lfloor a\rfloor=\lfloor c\rfloor$ then

$$
d((a, b),(c, d))=\sqrt{(a-c)^{2}+(b-d)^{2}}
$$

If $\lfloor a\rfloor \neq\lfloor c\rfloor$, then

$$
d((a, b),(c, d))=\sqrt{(a-\lceil a\rceil)^{2}+b^{2}}+\lfloor c\rfloor-\lceil a\rceil+\sqrt{(c-\lfloor c\rfloor)^{2}+d^{2}}
$$

