Introduction to Topology Quiz 3, April 19th, 2016

Name:______ Number:______

1. Consider the following graph for this question:

	a	b	с	d	е	f
a	0	2	1	1	1	1
b	2	0	3	1	2	3
с	1	3	0	2	1	2
d	1	1	2	0	1	2
е	1	2	1	1	0	2
f	1	3	2	2	2	0

	a	b	с	d	е	f
Eccentricity	2	3	3	2	2	3

- (a) Fill in the distance matrix above.
- (b) Calculate the eccentricities of the vertices:
- (c) Calculate the radius and the diameter of the graph.

Solution: Radius is 2, and the diameter is 3.

2. If we have two different metrics d(x, y) and f(x, y) on a set X, we said d and f are *metrically equivalent* $d \underset{ME}{\sim} f$ if there are positive real numbers $m, M \in (0, \infty)$ such that

$$m \cdot f(x, y) \le d(x, y) \le M \cdot f(x, y)$$

for all $x, y \in X$. Show that this relation is symmetric.

Solution: Since $m \cdot f(x, y) \leq d(x, y)$ we must have $f(x, y) \leq \frac{1}{m} \cdot d(x, y)$. But we also have $d(x, y) \leq M \cdot f(x, y)$ which also implies $\frac{1}{M} \cdot d(x, y) \leq f(x, y)$. Combining these two we get

$$\frac{1}{M} \cdot d(x, y) \le f(x, y) \le \frac{1}{m} \cdot d(x, y)$$

In other words, $f \underset{ME}{\sim} d$.

Introduction to Topology Quiz 3, April 19th, 2016

- 3. Let \mathbb{Z} be the set of integers $\{0, \pm 1, \pm 2, \ldots\}$.
 - (a) Sketch a graph of the function

$$f(x) = d(x, \mathbb{Z}) = \inf_{z \in \mathbb{Z}} |x - z|$$

(b) Consider the region Ω between the graph of the function $f(x) = d(x, \mathbb{Z})$ and the *x*-axis. Write a description of the geodesic distance function g((a, b), (c, d)) for every $(a, b), (c, d) \in \Omega$.

Solution: Assume $(a, b), (c, d) \in \Omega$ and WLOG a < c. If $\lfloor a \rfloor = \lfloor c \rfloor$ then $d((a, b), (c, d)) = \sqrt{(a - c)^2 + (b - d)^2}$ If $\lfloor a \rfloor \neq \lfloor c \rfloor$, then $d((a, b), (c, d)) = \sqrt{(a - \lceil a \rceil)^2 + b^2} + \lfloor c \rfloor - \lceil a \rceil + \sqrt{(c - \lfloor c \rfloor)^2 + d^2}$