
Direct current circuits



Goals for Chapter 26

• Analyze circuits with resistors in series & parallel 

• Apply Kirchhoff’s rules to multiloop circuits

• Use Ammeters & Voltmeters in a circuit 



Goals for Chapter 26

• Analyze “RC” circuits containing capacitors and 
resistors, where time now plays a role.



Goals for Chapter 26

• Analyze “RC” circuits containing capacitors and 
resistors, where time now plays a role.

• Study power distribution in the home



Introduction

• How to apply series/parallel 
combinations of resistors to  
complex circuit board? 

• Learn general methods for 
analyzing complex networks.

• Look at various instruments for 
measuring electrical quantities 
in circuits.



Resistors in series and parallel

• Resistors are in series if they are connected one after the other so the 
current is the same in all of them.

• The equivalent resistance of a series combination is the sum of the 

individual resistances: Req = R1 + R2 + R3 + … 



Resistors in series and parallel

• Resistors are in series if they are connected one after the other so the 
current is the same in all of them.

• The equivalent resistance of a series combination is the sum of the 

individual resistances: Req = R1 + R2 + R3 + … 

Series Resistors have resistance LARGER than the 
largest value present.  



Resistors in series and parallel

• Resistors are in parallel if they are connected so that the potential 
difference must be the same across all of them.

• The equivalent resistance of a parallel combinaton is given by           

1/Req = 1/R1 + 1/R2 + 1/R3 + …



Resistors in series and parallel

• Resistors are in parallel if they are connected so that the potential 
difference must be the same across all of them.

• The equivalent resistance of a parallel combinaton is given by           

1/Req = 1/R1 + 1/R2 + 1/R3 + …

Parallel Resistors have resistance SMALLER than 
the smallest value present.  



Series and parallel combinations

• Resistors can be connected 
in combinations of series 
and parallel



Equivalent resistance

• Consider this ideal circuit 
(internal r of battery = 0)

• How do you analyze its 
equivalent resistance & 
current through each resistor?

• Start by identifying series and 
parallel components.



Equivalent resistance

• Example 26.1



Series versus parallel combinations

• Ex 26.2: Current through each R & Power dissipated?

• Requivalent (series!) = 2 + 2 = 4 Ohms

• I = 8V / 4 2 A

• Power = i2R = 16 Watts total (8 Watts for each bulb)



Series versus parallel combinations

• Ex 26.2: Current through each R & Power dissipated?

• Requivalent (parallel!) = (½  + ½)-1  =1 Ohm

• I = 8V / 1 8 A

• Power = i2R = 64 Watts total (32 Watts for each 
bulb)



Figure 26.5



Circuit Analysis Step 1

• Identify & label currents in 
each segment of a circuit!

• Establish directions for 
those currents!

• No worries if you are 
wrong!  The analysis will 
show “i” as negative!

a

I1 I2

I3



Circuit Analysis Step 2

• Create closed LOOPS 
around the circuit.

• Keep track of 
DIRECTIONS as you 
travel each loop.

• No worries if you are 
wrong!  Algebra will catch 
sign errors! 



Kirchhoff’s Rules 

• A junction is point 
where three or more 
conductors meet.

• A loop is any closed 
conducting path. 

• Loops start & end at 
same point.



Kirchhoff’s Rules I

• A junction is a point where 
three or more conductors 
meet.

• Kirchhoff’s junction rule:

The algebraic sum of the 
currents into or out of any 
junction is zero: 

 I = 0



Kirchoff’s Rules I

• Kirchhoff’s junction rule: The algebraic sum of the currents into 
any junction is zero: I = 0. 

• Conservation of Charge in time (steady state currents)

I1 + I2 = I3

I3



Kirchoff’s Rules I

• Kirchhoff’s junction rule: The algebraic sum of the currents into 
any junction is zero: I = 0. 

• Conservation of Charge in time (steady state currents)

I1 + I2 = I3



Kirchhoff’s Rules I

• Kirchhoff’s junction rule:

The algebraic sum of the 
currents into or out of any 
junction is zero: 

 I = 0  means 

      I1+ I2 - I3 = 0

OR     I1+ I2 = I3 

I3



Reducing the number of unknown currents

• How to use the junction rule to reduce the number of unknown 
currents.



Kirchhoff’s Rules II

• A loop is any closed 
conducting path. 

• YOU choose them!  

• You can’t be wrong…

• …yet!



Kirchhoff’s Rules II

• Kirchhoff’s loop rule: 

The algebraic sum of the 
potential differences in any 
loop must equal zero:

  V = 0

• Loop 1: e => f=> a=> c=> d=> e
• Loop 2: e => f=> a=> b=> d=> e
• Loop 3: a=> c=> b=> a
• Loop 4: d=> b=> c=> d



Kirchoff’s Rules II

• Kirchhoff’s loop rule: The algebraic sum of the potential 
differences in any loop must equal zero: V = 0.

• Conservation of Energy!

Gain PE 
going 

through 
battery 
(EMF)

Lose PE going 
across resistors 
in direction of + 
current (Voltage 
drops)

If you end up where you start in a circuit, you have 
to be back at the same potential!  So V = 0



Sign convention for the loop rule

Gain potential as you 
move in direction of EMF

Lose potential as you 
move in direction of current 

across resistor



A single-loop circuit

• Find Current in circuit, Vab, & Power of emf in each battery!

Dead battery 
(old, lots of 

internal 
resistance)

Good battery (not 
much internal 

resistance



A single-loop circuit

• Find Current in circuit, Vab, and Power of emf in each battery!

Start Loop at point “a”: -4I

Voltage drop across 4: (V = IR) Current x Resistance = 
- (I) x (4) 



A single-loop circuit

• Ex. 26.3:  Find Current in circuit, Vab, and Power of emf in each 
battery!

Drop across EMF source:  

-4I – 4V



A single-loop circuit

• Ex. 26.3:  Find Current in circuit, Vab, and Power of emf in each 
battery!

Drop across 7 resistor: 

-4I – 4V -7I



A single-loop circuit

• Ex. 26.3:  Find Current in circuit, Vab, and Power of emf in each 
battery!

Gain going “upstream” in EMF: 

-4I – 4V -7I +12V



A single-loop circuit

• Ex. 26.3:  Find Current in circuit, Vab, and Power of emf in each 
battery!

Drop across 2: 

-4I – 4V -7I +12V -2I



A single-loop circuit

• Ex. 26.3:  Find Current in circuit, Vab, and Power of emf in each 
battery!

Finish back at “a”: 

-4I – 4V -7I +12V -2I – 3I = 0



A single-loop circuit

• Ex. 26.3:  Find Current in circuit, Vab, and Power of emf in each 
battery!

Complete Loop: -4I – 4V -7I +12V -2I – 3I = 0

8 V = 16 I  so I = 0.5 Amps



A single-loop circuit

• Ex. 26.3:  Find Current in circuit, Vab, and Power of emf in each 
battery!

Vab?  Potential of a relative to b?  Start at b, move to a:



A single-loop circuit

• Ex. 26.3:  Find Current in circuit, Vab, and Power of emf in each 
battery!

Vab?  Potential of a relative to b?  Start at b, move to a:

Vab = +12



A single-loop circuit

• Ex. 26.3:  Find Current in circuit, Vab, and Power of emf in each 
battery!

Vab?  Potential of a relative to b?  Start at b, move to a:

Vab = +12 – 2(0.5 A)



A single-loop circuit

• Ex. 26.3:  Find Current in circuit, Vab, and Power of emf in each 
battery!

Vab?  Potential of a relative to b?  Start at b, move to a:

Vab = +12 – 2(0.5 A) - 3(0.5 A)  = 9.5 V



Charging a battery – Example 26.4

• 12V power supply with unknown internal resistance “r”



Charging a battery – Example 26.4

• 12V power supply with unknown internal resistance “r”

• Connect to battery w/ unknown EMF and 1 internal resistance



Charging a battery – Example 26.4

• 12V power supply with unknown internal resistance “r”

• Connect to battery w/ unknown EMF and 1 internal resistance

• Connect to indicator light of 3 carrying current of 2A



Charging a battery – Example 26.4

• 12V power supply with unknown internal resistance “r”

• Connect to battery w/ unknown EMF and 1 internal resistance

• Connect to indicator light of 3 carrying current of 2A

• Generate 1A through run-down battery.



Charging a battery – Example 26.4

• 12V power supply with unknown internal resistance “r”

• Connect to battery w/ unknown EMF and 1 internal resistance

• Connect to indicator light of 3 carrying current of 2A

• Generate 1A through run-down battery.

• What are r, EMF, and I through power supply?



Charging a battery – Example 26.4

• Junction rule at “a”:

• 2A + 1A = I or        +2 + 1 – I = 0

• I = 3 Amps

• Loop rule starting at “a” around (1)

• +12 V – 3A(r) – 2A(3) = 0 => r = 2 



Charging a battery – Example 26.4

• Junction rule at “a”:

• 2A + 1A = I or        +2 + 1 – I = 0

• I = 3 Amps

• Loop rule starting at “a” around (2)

• -E + 1A(1)  – 2A(3) = 0 => EMF (E ) = -5V

• Negative value for EMF => Battery should be “flipped”



Charging a battery – Example 26.4

• Junction rule at “a”:

• 2A + 1A = I or        +2 + 1 – I = 0

• I = 3 Amps

• Loop rule starting at “a” around (3)

• +12 V  – 3A(2) – 1A(1) +E  = 0 =>    E  = -5V  (again!)

• Check your values with third loop!!



Charging a battery (cont.) – Example 26.5

• What is the power delivered by the 12V power supply, and by 
the battery being recharged? 

• What is power dissipated in each resistor?



Charging a battery (cont.) – Example 26.5

• What is the power delivered by the 12V power supply, and by 
the battery being recharged? 

• Psupplied = EMF x Current = 12 V x 3 Amps = 36 Watts

• Pdissipated in supply  = i2r  = (3Amps)2 x 2 = 18W 

• Net Power = 36 – 18 = 18 Watts



Charging a battery (cont.) – Example 26.5

• What is the power delivered by the 12V power supply, and by 
the battery being recharged? 

• PEMF = E x Current = -5 V x 1 Amps = -5 Watts

• Negative => power not provided – power is being stored!



Charging a battery (cont.) – Example 26.5

• What is power dissipated in each resistor?

• Pdissipated in battery  = i2r  = (1Amps)2 x 1 = 1W 

• Pdissipated in bulb     = i2r  = (2Amps)2 x 3 = 12W 



Charging a battery (cont.) – Example 26.5

• Total Power: +36W from supply 

• - 18 W to its internal resistance r

• -  5 W to charge dead battery

• -  1 W to dead battery’s internal resistance

• - 12 W to indicator light.



A complex network – Example 26.6

• Find Current in each resistor!  Find equivalent R!!

1

1

1

2

1

1V
+



A complex network – Example 26.6

• Step 1: Junction Rule!  

• Define current directions and labels

1

1

1

2

1

1V
+



A complex network – Example 26.6

• Step 1: Junction Rule!  

• Define current directions and labels

1

1

1

2

1

1V
+

• NOTE for Junction Rule! Actual directions of current 
may differ, but value of current derived is correct!  



A complex network – Example 26.6

• Step 1: Junction Rule!  

• Define current directions and labels

I2

1V
+

I3

I4

 I5 I6

I1



A complex network – Example 26.6

• Step 1: Junction Rule!  

• Define current directions and labels

I2

1V
+

I3

I4

 I5 I6

I1

I1 - I2 -  I3 = 0 or I1 = I2 +  I3 



A complex network – Example 26.6

• Step 1: Junction Rule!  

• Define current directions and labels

I2

1V
+

I3

I4

 I5 I6

I1

I2 – I5 – I4  = 0 or I2 = I4 +  I5 



A complex network – Example 26.6

• Step 1: Junction Rule!  

• Define current directions and labels

I2

1V
+

I3

I4

 I5 I6

I1

I4 + I3 – I6  = 0 or I6 = I4 +  I3 



A complex network – Example 26.6

• Step 1: Junction Rule!  

• Define current directions and labels

I2

1V
+

I3

I4

 I5 I6

I1

I5 + I6 – I1  = 0 or I1 = I5 +  I6 

I1



A complex network – Example 26.6

• Step 1: Junction Rule!  

• Define current directions and labels

I1

1V
+

I2

I3

I1 – I3 I2 + I3

I1 + I2

• NOTE for Junction Rule! How you divide current 
doesn’t matter, but it can simplify solution steps…



A complex network – Example 26.6

• Step 1: Junction Rule!  

• Define current directions and labels

1V

I1

+

I2

I3

I1 – I3 I2 + I3

I1 + I2

• Lots of ways to do this – none is necessarily better than 
another.  

• Direction WILL affect final signs in your answer.



A complex network – Example 26.6

• Step 2: Loop Rule!

• Define loop directions and labels

1

1

1

2

1

1V
+



A complex network – Example 26.6

• Step 2: Loop Rule!

• Define loop directions and labels

1

1

1

2

1

1V
+

• Note: Loop Rule!

• Loop directions do NOT have to be in any particular 
direction nor order!



A complex network – Example 26.6

• Step 2: Loop Rule!  

• Define loop directions and labels

1

1

1

2

1

1V
+

Loop 1



A complex network – Example 26.6

• Step 2: Loop Rule!  

• Define loop directions and labels

1

1

1

2

1

1V
+

Loop 2



A complex network – Example 26.6

• Step 2: Loop Rule!  

• Define loop directions and labels

1

1

1

2

1

1V
+

Loop 3



A complex network – Example 26.6

• Step 2: Loop Rule!  

• Additional loops available!

1

1

1

2

1

1V
+

Loop 4



A complex network – Example 26.6

• Step 2: Loop Rule!  

• Additional loops available!

1

1

1

2

1

1V
+

Loop 5

• Any closed path will work.
• Extra loops good for checking



A complex network – Example 26.6

• Step 3: Make Loop Equations!



A complex network – Example 26.6

• Step 4: Solve equations (substitution or matrix)

• +13 – 1I1 - 1(I1-I3) = 0

• +13 – 1I2 – 2(I2 + I3) = 0

• -1I1 - 1I3 + 1I2 = 0



A complex network – Example 26.6

• Step 4: Solve equations (substitution or matrix)

• I1 = +6 A

• I2 = 5 A

• I3 = -1 A

So I3 is really going from b to c



A complex network – Example 26.6

• Step 5: Check with extra loop equations!

1

1

1

2

1

1V
+

Loop 5



D’Arsonval galvanometer

• A d’Arsonval galvanometer measures the current through it 
(see Figures below).

• Many electrical instruments, such as ammeters and voltmeters, 
use a galvanometer in their design.



Ohmmeters and potentiometers

• An ohmmeter is designed to measure resistance. 

• A potentiometer measures the emf of a source without drawing 
any current from the source. 



Adding Capacitors to DC circuits!

• RC circuits include 

• Batteries (Voltage sources!)

• Resistors

• Capacitors 

• … and switches!

• RC circuits will involve TIMING considerations 

• Time to fill up a capacitor with charge

• Time to drain a capacitor that is already charged



Charging a capacitor

• Start with uncharged capacitor!  What happens??



Adding Capacitors to DC circuits!

• In charging RC circuits the time constant is  

•  increases with R

• Larger resistors decrease current

• Less charge/time arrives at capacitor

• It takes longer to fill up capacitor

•   increases with  C

• Larger capacitors have more capacity!

• They take longer to fill up!



Charging a capacitor

• The time constant is  = RC.

• In ONE time constant:

• Current drops to 1/e of initial value (about 36%)

• Charge on capacitor plates rises to ~64% of maximum value



Charging a Capacitor

• Vab = iR

• C = q/Vbc so Vbc = q/C

• E – iR – q/C = 0

• Current is a function of time

• i = dq/dt

• E – (dq/dt)R – q(t)/C = 0

• A differential equation involving charge q

 



Charging a Capacitor

• E – (dq/dt)R – q/C = 0

• Boundary conditions relate q and t at key 
times: 

• q(t) on capacitor = 0 @ t=0

• q= Qmax, i(t) = 0 @ t = 
(when capacitor is full) 

 



Charging a Capacitor

• E – iR – q/C = 0

• General Solution

• q(t) = Qmax (1 - e-t/RC)

• Check?

• q(t) on capacitor = 0 @ t=0

• i(t) = dq/dt = (Qmax/RC) e-t/RC

• i(0) is maximum current, Qmax/RC = E /R = I0

• i(t) = 0 when capacitor is full, @ t = 

 



Charging a capacitor

• 10 M resistor connected in series with 1.0 F un-charged 
capacitor and a battery with Emf of 12.0 V.  

• What is the time constant?  

• What fraction of final charge is on capacitor after 46 
seconds?

• What fraction of initial current I0 is flowing then?



Charging a capacitor
• 10 M resistor connected in series with 1.0 F un-charged 

capacitor and a battery with emf of 12.0 V.  

• What is time constant?  

• What fraction of final charge is on capacitor after 46 seconds?

• What fraction of initial current I0 is flowing then?

•  = RC  = 10 seconds

• Q(t) = Qmax (1 – e-t/RC)   so Q(46 seconds)/Qmax = 99%

• I(t) = I0 e-t/RC      so I(46 seconds)/I0 = 1% 



Discharging a capacitor

• Disconnect Battery – let Capacitor “drain”



Adding Capacitors to DC circuits!

• In discharging RC circuits the time constant is still  

•  increases with R

• Larger resistors decrease current

• Less charge/time leaves capacitor

• It takes longer to drain capacitor

•   increases with  C

• Larger capacitors have more capacity!

• They take longer to drain!



Discharging a capacitor

• Time constant is still RC!

• In one time time constant:

• Charge on plates DROPS by 64%

• Current through resistor DROPS by 64%  (“negative”)



Charging a Capacitor

• Vab = iR

• Vbc = q/C

•  iR + q/C = 0

• Another differential equation involving charge

• i = dq/dt

• (dq/dt)R + q(t)/C = 0

 



Disharging a Capacitor

• iR + q/C = 0

• (dq/dt)R + q(t)/C = 0

• Boundary conditions: 

• q(t) on capacitor = Qmax 
@ t=0

• q= 0, i(t) = 0 
@ t = 
when capacitor is empty

 



Disharging a Capacitor

• iR + q/C = 0

• General Solution

• q(t) = Qmax e-t/RC

• i = dq/dt = - I0e-t/RC  
(sign changes because direction changes

• Check

• q(t) on capacitor = Qmax @ t=0

• q= 0, i(t) = 0 when capacitor is empty, 
@ t = 

 



Discharging a capacitor

• Same circuit as before; 10 M resistor connected in series 
with 1.0 F capacitor; battery with emf of 12.0 V is 
disconnected.  

• Assume at t = 0, Q(0) = 5.0 C.

• When will charge = 0.50 C?

• What is current then?



Discharging a capacitor
• Same circuit as before; 10 M resistor connected in series with 

1.0 F capacitor; battery with emf of 12.0 V is disconnected.  

• Assume at t = 0, Q(0) = 5.0 C.

• When will charge = 0.50 C?

• What is current then?

•  = RC  = 10 seconds  (still!)

• Q max (initially at t = 0) = 5.0 C.

• Q(t) = Qmax e-t/RC   so Q(t) = 0.5C = 1/10th Q max => 
t = RC ln(Q/Qmax) = 23 seconds  (2.3 )

• I(t) = -Q0/RC (e-t/RC)    so I(2.3 ) = -5.0 x 10-8 Amps 



Power distribution systems

Circuits, lines, loads, and fuses…



Household wiring

• Why it is safer to use a three-prong plug for electrical 
appliances…



Ammeters and voltmeters 

• An ammeter measures the 
current passing through it.

• A voltmeter measures the 
potential difference between 
two points.

• Figure 26.15 at the right 
shows how to use a 
galvanometer to make an 
ammeter and a voltmeter.



Ammeters and voltmeters in combination
• An ammeter and a voltmeter may be used together to measure 

resistance and power. 
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