Direct current circuits

Goals for Chapter 26

- Analyze circuits with resistors in series \& parallel
- Apply Kirchhoff's rules to multiloop circuits
- Use Ammeters \& Voltmeters in a circuit

Goals for Chapter 26

- Analyze "RC" circuits containing capacitors and resistors, where time now plays a role.

Goals for Chapter 26

- Analyze "RC" circuits containing capacitors and resistors, where time now plays a role.

- Study power distribution in the home

Introduction

- How to apply series/parallel combinations of resistors to complex circuit board?
- Learn general methods for analyzing complex networks.

- Look at various instruments for measuring electrical quantities in circuits.

Resistors in series and parallel

- Resistors are in series if they are connected one after the other so the current is the same in all of them.
- The equivalent resistance of a series combination is the sum of the individual resistances: $R_{\mathrm{eq}}=R_{1}+R_{2}+R_{3}+\ldots$

Resistors in series and parallel

- Resistors are in series if they are connected one after the other so the current is the same in all of them.
- The equivalent resistance of a series combination is the sum of the individual resistances: $R_{\mathrm{eq}}=R_{1}+R_{2}+R_{3}+\ldots$

Series Resistors have resistance LARGER than the largest value present.

Resistors in series and parallel

- Resistors are in parallel if they are connected so that the potential difference must be the same across all of them.
- The equivalent resistance of a parallel combinaton is given by

$$
1 / R_{\mathrm{eq}}=1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots
$$

$$
R_{1}, R_{2} \text {, and } R_{3} \text { in parallel }
$$

Resistors in series and parallel

- Resistors are in parallel if they are connected so that the potential difference must be the same across all of them.
- The equivalent resistance of a parallel combinaton is given by

$$
1 / R_{\mathrm{eq}}=1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots
$$

R_{1}, R_{2}, and R_{3} in parallel

Parallel Resistors have resistance SMALLER than the smallest value present.

Series and parallel combinations

- Resistors can be connected in combinations of series and paralle

(d) R_{1} in parallel with series combination of R_{2} and R_{3}

Equivalent resistance

- Consider this ideal circuit (internal r of battery $=0$)
(a)

- How do you analyze its equivalent resistance \& current through each resistor?
- Start by identifying series and parallel components.

Equivalent resistance

- Example 26.1
(b)

(d)

(c)

(e)

(a)

Series versus parallel combinations

- Ex 26.2: Current through each R \& Power dissipated?
(a) Light bulbs in series

- $R_{\text {equivalent (series!) }}=2+2=40 \mathrm{Ohms}$
- $I=8 \mathrm{~V} / 4 \Omega=2 \mathrm{~A}$
- Power $=\mathrm{i}^{2} \mathrm{R}=16$ Watts total (8 Watts for each bulb)

Series versus parallel combinations

- Ex 26.2: Current through each R \& Power dissipated?
(b) Light bulbs in parallel

- $R_{\text {equivalent (paralle!!) }}=(1 / 2+1 / 2)^{-1}=1 \mathrm{Ohm}$
- $\mathrm{I}=8 \mathrm{~V} / 1 \Omega=8 \mathrm{~A}$
- Power $=i^{2} \mathrm{R}=64$ Watts total (32 Watts for each bulb)

Figure 26.5

Circuit Analysis Step 1

- Identify \& label currents in each segment of a circuit!
- Establish directions for those currents!

- No worries if you are wrong! The analysis will show "i" as negative!

Circuit Analysis Step 2

- Create closed LOOPS around the circuit.
- Keep track of DIRECTIONS as you travel each loop.
- No worries if you are wrong! Algebra will catch sign errors!

Kirchhoff's Rules

- A junction is point where three or more conductors meet.
- A loop is any closed conducting path.
- Loops start \& end at same point.

(b)

Kirchhoff's Rules I

- A junction is a point where three or more conductors meet.
- Kirchhoff's junction rule:
(a)

The algebraic sum of the currents into or out of any junction is zero:

$$
\Sigma I=0
$$

Kirchoff's Rules I

- Kirchhoff's junction rule: The algebraic sum of the currents into any junction is zero: $\Sigma I=0$.
- Conservation of Charge in time (steady state currents)
(a) Kirchhoff's junction rule

(b) Water-pipe analogy

The flow rate of water leaving the pipe equals the flow rate entering it.
$I_{1}+I_{2}=I_{3}$

Kirchoff's Rules I

- Kirchhoff's junetion rule: The algebraic sum of the currents into any junction is zero: $\Sigma I=0$.
- Conservation of Charge in time (steady state currents)
(a) Kirchhoff's junction rule

$I_{1}+I_{2}=I_{3}$
(b) Water-pipe analogy

The flow rate of water leaving the pipe equals the flow rate entering it.

Kirchhoff's Rules I

- Kirchhoff's junction rule:

The algebraic sum of the currents into or out of any junction is zero:

$\Sigma I=0$ means
$I_{1}+I_{2}-I_{3}=0$
OR $\quad I_{1}+I_{2}=I_{3}$

Reducing the number of unknown currents

- How to use the junction rule to reduce the number of unknown currents.
(a) Three unknown currents: I_{1}, I_{2}, I_{3}

(b) Applying the junction rule to point a eliminates I_{3}.

Kirchhoff's Rules II

- A loop is any closed conducting path.
- YOU choose them!
(b)

- You can't be wrong...
- ...yet!

Kirchhoff's Rules II

- Kirchhoff's loop rule:
(b)

The algebraic sum of the potential differences in any loop must equal zero:

$$
\Sigma V=0
$$

- Loop 1: $\mathrm{e}=>\mathrm{f} \Rightarrow \mathrm{a}=>\mathrm{c}=>\mathrm{d}=>\mathrm{e}$
- Loop 2: $e=>f=>a=>b=>d=>e$
- Loop 3: $a=>c=>b=>a$

Loop 4: $d \Rightarrow b \Rightarrow c \Rightarrow d$

Kirchoff's Rules II

- Kirchhoff's loop rule: The algebraic sum of the potential differences in any loop must equal zero: $\Sigma V=0$.
- Conservation of Energy!

Gain PE going through battery (EMF)
(b)

Lose PE going across resistors in direction of + current (Voltage drops)

If you end up where you start in a circuit, you have to be back at the same potential! So $\Delta V=0$

Sign convention for the loop rule

(a) Sign conventions for emfs
$+\mathcal{E}$: Travel direction from - to +:

- Travel \rightarrow

$-\mathcal{E}$: Travel direction from + to -:
\leftarrow Travel -

Lose potential as you move in direction of current across resistor

(b) Sign conventions for resistors

+ IR: Travel opposite to current direction:

Gain potential as you move in direction of EMF
$-I R$: Travel in current direction:

\leftarrow Travel -

A single-loop circuit

- Find Current in circuit, Vab, \& Power of emf in each battery!

Good battery (not much internal

(b)

Dead battery (old, lots of internal
resistance)

A single-loop circuit

- Find Current in circuit, Vab, and Power of emf in each battery!

(b)

Start Loop at point "a": $-4 I$

Voltage drop across $4 \Omega:(\mathrm{V}=\mathrm{IR})$ Current \times Resistance $=$

$$
-(I) \times(4)
$$

A single-loop circuit

- Ex. 26.3: Find Current in circuit, Vab, and Power of emf in each battery!
(a)

(b)

Drop across EMF source:

$$
-4 I-4 V
$$

A single-loop circuit

- Ex. 26.3: Find Current in circuit, Vab, and Power of emf in each battery!

(b)

Drop across 7Ω resistor:

$$
-4 I-4 V-7 I
$$

A single-loop circuit

- Ex. 26.3: Find Current in circuit, Vab, and Power of emf in each battery!

Gain going "upstream" in EMF:

$$
-4 I-4 V-7 I+12 V
$$

A single-loop circuit

- Ex. 26.3: Find Current in circuit, Vab, and Power of emf in each battery!

Drop across 2Ω :

$$
-4 I-4 V-7 I+12 V-2 I
$$

A single-loop circuit

- Ex. 26.3: Find Current in circuit, Vab, and Power of emf in each battery!

(b)

Finish back at "a":

$$
-4 I-4 V-7 I+12 V-2 I-3 I=0
$$

A single-loop circuit

- Ex. 26.3: Find Current in circuit, Vab, and Power of emf in each battery!

(b)

Complete Loop: $-4 I-4 V-7 I+12 V-2 I-3 I=0$

$$
8 V=16 I \text { so } I=0.5 \mathrm{Amps}
$$

A single-loop circuit

- Ex. 26.3: Find Current in circuit, Vab, and Power of emf in each battery!
(a)

(b)

V_{ab} ? Potential of a relative to b ? Start at b , move to a :

A single-loop circuit

- Ex. 26.3: Find Current in circuit, Vab, and Power of emf in each battery!

Vab? Potential of a relative to b ? Start at b, move to a :
$\mathrm{Vab}=+12$

A single-loop circuit

- Ex. 26.3: Find Current in circuit, Vab, and Power of emf in each battery!

Vab? Potential of a relative to b ? Start at b, move to a :
$\mathrm{Vab}=+12-2 \Omega(0.5 \mathrm{~A})$

A single-loop circuit

- Ex. 26.3: Find Current in circuit, Vab, and Power of emf in each battery!
(a)

(b)

Vab? Potential of a relative to b ? Start at b, move to a :
$\mathrm{Vab}=+12-2 \Omega(0.5 \mathrm{~A})-3 \Omega(0.5 \mathrm{~A})=9.5 \mathrm{~V}$

Charging a battery - Example 26.4

- 12 V power supply with unknown internal resistance " r "

Charging a battery - Example 26.4

- 12 V power supply with unknown internal resistance " r "
- Connect to battery w/ unknown EMF and 1Ω internal resistance

Charging a battery - Example 26.4

- 12 V power supply with unknown internal resistance " r "
- Connect to battery w/ unknown EMF and 1Ω internal resistance
- Connect to indicator light of 3Ω carrying current of 2 A

Charging a battery - Example 26.4

- 12 V power supply with unknown internal resistance " r "
- Connect to battery w/ unknown EMF and 1Ω internal resistance
- Connect to indicator light of 3Ω carrying current of 2 A
- Generate 1A through run-down battery.

Charging a battery - Example 26.4

- 12 V power supply with unknown internal resistance " r "
- Connect to battery w/ unknown EMF and 1Ω internal resistance
- Connect to indicator light of 3Ω carrying current of 2 A
- Generate 1A through run-down battery.
- What are r, EMF, and I through power supply?

Charging a battery - Example 26.4

- Junction rule at "a":
- $2 \mathrm{~A}+1 \mathrm{~A}=\mathrm{I} \quad$ or $\quad+2+1-\mathrm{I}=0$
- $\mathrm{I}=3 \mathrm{Amps}$
- Loop rule starting at "a" around (1)
- $\quad+12 \mathrm{~V}-3 \mathrm{~A}(\mathrm{r})-2 \mathrm{~A}(3 \Omega)=0 \Rightarrow \mathrm{r}=2 \Omega$

Charging a battery - Example 26.4

- Junction rule at "a":
- $2 \mathrm{~A}+1 \mathrm{~A}=\mathrm{I} \quad$ or $\quad+2+1-\mathrm{I}=0$
- $\mathrm{I}=3 \mathrm{Amps}$
- Loop rule starting at "a" around (2)
- $-\mathrm{E}+1 \mathrm{~A}(1 \Omega)-2 \mathrm{~A}(3 \Omega)=0 \Rightarrow \mathrm{EMF}(\mathrm{E})=-5 \mathrm{~V}$
- Negative value for EMF => Battery should be "flipped"

Charging a battery - Example 26.4

- Junction rule at "a":
- $2 \mathrm{~A}+1 \mathrm{~A}=\mathrm{I} \quad$ or $\quad+2+1-\mathrm{I}=0$
- $\mathrm{I}=3 \mathrm{Amps}$
- Loop rule starting at "a" around (3)
- $+12 \mathrm{~V}-3 \mathrm{~A}(2 \Omega)-1 \mathrm{~A}(1)+\mathrm{E}=0 \Rightarrow \mathrm{E}=-5 \mathrm{~V}$ (again!)
- Check your values with third loop!!

Charging a battery (cont.) - Example 26.5

- What is the power delivered by the 12 V power supply, and by the battery being recharged?
- What is power dissipated in each resistor?

Charging a battery (cont.) - Example 26.5

- What is the power delivered by the 12 V power supply, and by the battery being recharged?
- $\mathrm{P}_{\text {supplied }}=\mathrm{EMF} \times$ Current $=12 \mathrm{~V} \times 3 \mathrm{Amps}=36$ Watts
- $\mathrm{P}_{\text {dissipated in supply }}=\mathrm{i}^{2} \mathrm{r}=(3 \mathrm{Amps})^{2} \times 2 \Omega=18 \mathrm{~W}$
- Net Power $=36-18=18$ Watts

Charging a battery (cont.) - Example 26.5

- What is the power delivered by the 12 V power supply, and by the battery being recharged?
- $\mathrm{P}_{\mathrm{EMF}}=\mathrm{E} \times$ Current $=-5 \mathrm{~V} \times 1 \mathrm{Amps}=-5$ Watts
- Negative $=>$ power not provided - power is being stored!

Charging a battery (cont.) - Example 26.5

-What is power dissipated in each resistor?

- $\mathrm{P}_{\text {dissipated in battery }}=\mathrm{i}^{2} \mathrm{r}=(1 \mathrm{Amps})^{2} \times 1 \Omega=1 \mathrm{~W}$
- $\mathrm{P}_{\text {dissipated in bulb }}=\mathrm{i}^{2} \mathrm{r}=(2 \mathrm{Amps})^{2} \times 3 \Omega=12 \mathrm{~W}$

Charging a battery (cont.) - Example 26.5

- Total Power: +36 W from supply
- -18 W to its internal resistance r
- - 5 W to charge dead battery
- - 1 W to dead battery's internal resistance
- -12 W to indicator light.

A complex network - Example 26.6

- Find Current in each resistor! Find equivalent R!!

A complex network - Example 26.6

- Step 1: Junction Rule!
- Define current directions and labels

A complex network - Example 26.6

- Step 1: Junction Rule!
- Define current directions and labels

- NOTE for Junction Rule! Actual directions of current may differ, but value of current derived is correct!

A complex network - Example 26.6

- Step 1: Junction Rule!
- Define current directions and labels

A complex network - Example 26.6

- Step 1: Junction Rule!
- Define current directions and labels

A complex network - Example 26.6

- Step 1: Junction Rule!
- Define current directions and labels

$\mathrm{I}_{2}-\mathrm{I}_{5}-\mathrm{I}_{4}=0$ or $\mathrm{I}_{2}=\mathrm{I}_{4}+\mathrm{I}_{5}$

A complex network - Example 26.6

- Step 1: Junction Rule!
- Define current directions and labels

A complex network - Example 26.6

- Step 1: Junction Rule!
- Define current directions and labels

A complex network - Example 26.6

- Step 1: Junction Rule!
- Define current directions and labels

- NOTE for Junction Rule! How you divide current doesn't matter, but it can simplify solution steps...

A complex network - Example 26.6

- Step 1: Junction Rule!
- Define current directions and labels

- Lots of ways to do this - none is necessarily better than another.
- Direction WILL affect final signs in your answer.

A complex network - Example 26.6

- Step 2: Loop Rule!
- Define loop directions and labels

A complex network - Example 26.6

- Step 2: Loop Rule!
- Define loop directions and labels

- Note: Loop Rule!
- Loop directions do NOT have to be in any particular direction nor order!

A complex network - Example 26.6

- Step 2: Loop Rule!
- Define loop directions and labels

A complex network - Example 26.6

- Step 2: Loop Rule!
- Define loop directions and labels

Loop 2

A complex network - Example 26.6

- Step 2: Loop Rule!
- Define loop directions and labels

A complex network - Example 26.6

- Step 2: Loop Rule!
- Additional loops available!

A complex network - Example 26.6

- Step 2: Loop Rule!
- Additional loops available!

- Any closed path will work.
- Extra loops good for checking

A complex network - Example 26.6

- Step 3: Make Loop Equations!

A complex network - Example 26.6

- Step 4: Solve equations (substitution or matrix)

- $+13-1 I_{1}-1\left(I_{1}-I_{3}\right)=0$
- $+13-1 I_{2}-2\left(I_{2}+I_{3}\right)=0$
- $-1 I_{1}-1 I_{3}+1 I_{2}=0$

A complex network - Example 26.6

- Step 4: Solve equations (substitution or matrix)

- $\mathrm{I}_{1}=+6 \mathrm{~A}$
- $\mathrm{I}_{2}=5 \mathrm{~A}$
- $\mathrm{I}_{3}=-1 \mathrm{~A}$

So I_{3} is really going from b to c

A complex network - Example 26.6

- Step 5: Check with extra loop equations!

D’Arsonval galvanometer

- A d'Arsonval galvanometer measures the current through it (see Figures below).
- Many electrical instruments, such as ammeters and voltmeters, use a galvanometer in their design.

Ohmmeters and potentiometers

- An ohmmeter is designed to measure resistance.
- A potentiometer measures the emf of a source without drawing any current from the source.

(a) Potentiometer circuit

(b) Circuit symbol for potentiometer (variable resistor)

Adding Capacitors to DC circuits!

- RC circuits include
- Batteries (Voltage sources!)
- Resistors
- Capacitors

- ... and switches!
- RC circuits will involve TIMING considerations
- Time to fill up a capacitor with charge
- Time to drain a capacitor that is already charged

Charging a capacitor

- Start with uncharged capacitor! What happens??

(a) Capacitor initially uncharged

(b) Charging the capacitor

(b) Graph of capacitor charge versus time for a charging capacitor

(a) Graph of current versus time for a charging capacitor

Adding Capacitors to DC circuits!

- In charging RC circuits the time constant is $\boldsymbol{\tau}$
- τ increases with R
- Larger resistors decrease current
- Less charge/time arrives at capacitor
- It takes longer to fill up capacitor
- \quad increases with C

- Larger capacitors have more capacity!
- They take longer to fill up!

Charging a capacitor

- The time constant is $\tau=R C$.
- In ONE time constant:
- Current drops to $1 / \mathrm{e}$ of initial value (about 36%)
- Charge on capacitor plates rises to $\sim 64 \%$ of maximum value

(b) Charging the capacitor

(b) Graph of capacitor charge versus time for a (b) Graph of capa
charging capacitor

Charging a Capacitor

$$
\text { - } V_{a b}=i R
$$

- $C=q / V_{b c}$ so $V_{b c}=q / C$
- $E-i R-q / C=0$

- Current is a function of time
- $i=d q / d t$
- $\mathrm{E}-(d q / d t) \mathrm{R}-\mathrm{q}(\mathrm{t}) / \mathrm{C}=0$
- A differential equation involving charge q

Charging a Capacitor

$E-(d q / d t) R-q / C=0$

- Boundary conditions relate q and t at key times:
- $\mathrm{q}(\mathrm{t})$ on capacitor $=0 @ \mathrm{t}=0$
- $\mathrm{q}=\mathrm{Qmax}, \mathrm{i}(\mathrm{t})=0$ @ $\mathrm{t}=\infty$
(when capacitor is full)
(b) Charging the capacitor

Charging a Capacitor

- $E-i R-q / C=0$
(b) Charging the capacitor

- Check?
- $\mathrm{q}(\mathrm{t})$ on capacitor $=0 @ \mathrm{t}=0$
- $\mathrm{i}(\mathrm{t})=\mathrm{dq} / \mathrm{dt}=\left(\mathrm{Q}_{\max } / \mathrm{RC}\right) \mathrm{e}^{-t \mathrm{RC}}$
- $\mathrm{i}(0)$ is maximum current, $\mathrm{Qmax} / \mathrm{RC}=\mathrm{E} / \mathrm{R}=\mathrm{I}_{0}$
- $\mathrm{i}(\mathrm{t})=0$ when capacitor is full, $@, \mathrm{t}=\infty$

Charging a capacitor

- $10 \mathrm{M} \Omega$ resistor connected in series with $1.0 \mu \mathrm{~F}$ un-charged capacitor and a battery with Emf of 12.0 V .
- What is the time constant?
- What fraction of final charge is on capacitor after 46 seconds?
- What fraction of initial current I_{0} is flowing then?

Charging a capacitor

- $10 \mathrm{M} \Omega$ resistor connected in series with $1.0 \mu \mathrm{~F}$ un-charged capacitor and a battery with emf of 12.0 V .
- What is time constant?
- What fraction of final charge is on capacitor after 46 seconds?
-What fraction of initial current I_{0} is flowing then?
- $\tau=\mathrm{RC}=10$ seconds
- $Q(t)=Q_{\max }\left(1-e^{-t / R C}\right)$ so $Q(46$ seconds $) / Q \max =99 \%$
- $I(t)=I_{0} e^{-t / R C} \quad$ so $I(46$ seconds $) / I_{0}=1 \%$

Discharging a capacitor

- Disconnect Battery - let Capacitor "drain"

(a) Capacitor initially charged

(b) Discharging the capacitor

(a) Graph of current versus time for a discharging capacitor

(b) Graph of capacitor charge versus time for a discharging capacitor

Adding Capacitors to DC circuits!

- In discharging RC circuits the time constant is still τ
- τ increases with R
- Larger resistors decrease current
- Less charge/time leaves capacitor
- It takes longer to drain capacitor
- tincreases with C
- Larger capacitors have more capacity!
- They take longer to drain!
(b) Graph of capacitor charge versus time for a discharging capacitor

Discharging a capacitor

- Time constant is still RC!

- In one time time constant:
- Charge on plates DROPS by 64%
- Current through resistor DROPS by 64% ("negative")
(a) Capacitor initially charged

(b) Discharging the capacitor

(a) Graph of current versus time for a discharging capacitor

(b) Graph of capacitor charge versus time for a discharging capacitor

Charging a Capacitor

- $\mathrm{V}_{\mathrm{ab}}=\mathrm{iR}$
- $V_{b c}=q / C$
- $i R+q / C=0$
(b) Discharging the capacitor

- Another differential equation involving charge
- $i=d q / d t$
- $(d q / d t) R+q(t) / C=0$

Disharging a Capacitor

- $i R+q / C=0$
- $(d q / d t) R+q(t) / C=0$
- Boundary conditions:
- $\mathrm{q}(\mathrm{t})$ on capacitor $=\mathrm{Qmax}$ (a) $\mathrm{t}=0$
- $\mathrm{q}=0, \mathrm{i}(\mathrm{t})=0$

@ $\mathrm{t}=\infty$
when capacitor is empty

Disharging a Capacitor

- $i R+q / C=0$

General Solution

- $\mathrm{q}(\mathrm{t})=\mathrm{Q}_{\text {max }} \mathrm{e}^{-\mathrm{tRC}}$
(b) Discharging the capacitor

Switch

When the switch is closed, the charge on the capacitor and the current both decrease over time.

- $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=-\mathrm{I}_{0} \mathrm{e}^{-t \mathrm{RC}}$
(sign changes because direction changes
- Check
- $\mathrm{q}(\mathrm{t})$ on capacitor = $\mathrm{Qmax} @ \mathrm{t}=0$
- $\mathrm{q}=0, \mathrm{i}(\mathrm{t})=0$ when capacitor is empty,
(a) $\mathrm{t}=\infty$

Discharging a capacitor

- Same circuit as before; $10 \mathrm{M} \Omega$ resistor connected in series with $1.0 \mu \mathrm{~F}$ capacitor; battery with emf of 12.0 V is disconnected.
- Assume at $\mathrm{t}=0, \mathrm{Q}(0)=5.0 \mu \mathrm{C}$.
- When will charge $=0.50 \mu \mathrm{C}$?
- What is current then?

Discharging a capacitor

- Same circuit as before; $10 \mathrm{M} \Omega$ resistor connected in series with $1.0 \mu \mathrm{~F}$ capacitor; battery with emf of 12.0 V is disconnected.
- Assume at $\mathrm{t}=0, \mathrm{Q}(0)=5.0 \mu \mathrm{C}$.
- When will charge $=0.50 \mu \mathrm{C}$?
- What is current then?
- $\tau=\mathrm{RC}=10$ seconds (still!)
- $Q \max$ (initially at $t=0)=5.0 \mu \mathrm{C}$.
- $Q(t)=Q_{\text {max }} \mathrm{e}^{-t R C}$ so $Q(t)=0.5 \mu C=1 / 10^{\text {th }} Q \max =>$ $t=R C \ln (Q / Q \max)=23$ seconds (2.3 $\tau)$
- $I(t)=-Q_{0} / R C\left(e^{-t / R C}\right)$ so $I(2.3 \tau)=-5.0 \times 10^{-8} \mathrm{Amps}$

Power distribution systems

Circuits, lines, loads, and fuses...

Household wiring

- Why it is safer to use a three-prong plug for electrical appliances...
(a) Two-prong plug

(b) Three-prong plug

Ammeters and voltmeters

(a) Moving-coil ammeter

- Figure 26.15 at the right shows how to use a galvanometer to make an ammeter and a voltmeter.
- An ammeter measures the current passing through it.
- A voltmeter measures the potential difference between two points.
(b) Moving-coil voltmeter

Ammeters and voltmeters in combination

- An ammeter and a voltmeter may be used together to measure resistance and power.
(a)

(b)

