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Learning Goals

• The nature of capacitors, and how to calculate a quantity

that measures their ability to store charge.

• How to analyze capacitors connected in a network.

• How to calculate the amount of energy stored in a

capacitor.

• What dielectrics are, and how they make capacitors more

effective.

• How a dielectric inside a charged capacitor becomes

polarized.

• How to use Gauss’s laws when dielectrics are present.
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Introduction

• A capacitor is a device that

stores electric potential energy

and electric charge.

• Any two conductors insulated

from each other form a capacitor.

• To store energy in this device,

transfer charge from one

conductor to the other so that

one has a negative charge and the

other has an equal amount of

positive charge.
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Introduction

• Work must be done to move the

charges through the resulting

potential difference between the

conductors.

• The work done is stored as

electric potential energy.
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Introduction

• Capacitors have many practical

applications: electronic flash units

for photography, mobile phones,

airbag sensors for cars, and radio

and television receivers.

• For a particular capacitor, the ratio

of the charge on each conductor (Q)

to the potential difference between

the conductors (V ) is a constant,

called the capacitance (C).

• The capacitance depends on

• the sizes of the conductors

• the shapes of the conductors

• on the insulating material (if any)

between the conductors
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Introduction

• Compared to the case in which there

is only vacuum between the

conductors, the capacitance

increases when an insulating

material (a dielectric) is present.

• This happens because a

redistribution of charge, called

polarization, takes place within the

insulating material. C = KC0, K > 1
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Capacitors and Capacitance

• Any two conductors separated by an

insulator (or a vacuum) form a

capacitor

• In most practical applications, each

conductor initially has zero net

charge and electrons are transferred

from one conductor to the other; this

is called charging the capacitor.

• One common way to charge a

capacitor is to connect these two

wires to opposite terminals of a

battery.

8



Capacitors and Capacitance

• Any two conductors separated by an

insulator (or a vacuum) form a

capacitor

• In most practical applications, each

conductor initially has zero net

charge and electrons are transferred

from one conductor to the other; this

is called charging the capacitor.

• One common way to charge a

capacitor is to connect these two

wires to opposite terminals of a

battery.

8



Capacitors and Capacitance

• Any two conductors separated by an

insulator (or a vacuum) form a

capacitor

• In most practical applications, each

conductor initially has zero net

charge and electrons are transferred

from one conductor to the other; this

is called charging the capacitor.

• One common way to charge a

capacitor is to connect these two

wires to opposite terminals of a

battery.

8



Capacitors and Capacitance

• The two conductors of a charged

capacitor have charges with equal

magnitude and opposite sign, and

the net charge on the capacitor as a

whole remains zero.

• When we say that a capacitor has

charge Q, or that a charge Q is

stored on the capacitor, we mean

that the conductor at higher

potential has charge +Q and the

conductor at lower potential has

charge −Q
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Capacitors and Capacitance

• The prototype of a capacitor is the

conducting parallel plates.

• In circuit diagrams a capacitor is

represented by either of these

symbols:

• In practice cylindirical capacitors are

easier to manufacture.
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Capacitors and Capacitance

• E at any point in the region between

the conductors is proportional to the

magnitude Q of charge on each

conductor.

• It follows that Vab between the

conductors is also proportional to Q.

• If we double the magnitude of charge

on each conductor, E at each point

doubles, and Vab doubles.

• However, Q/Vab does not change and is

called the capacitance of the capacitor:

C =
Q

Vab
11



Capacitors and Capacitance

• Capacitance is a measure of the

ability of a capacitor to store energy.

C =
Q

Vab

• The greater the capacitance C of a

capacitor, the greater the magnitude

Q of charge on either conductor for a

given potential difference Vab and

hence the greater the amount of

stored energy.
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Unit of Capacitance

• The SI unit of capacitance is called

one farad (1 F),

• The definition of capacitance

C =
Q

Vab

implies that

1 F = 1 coulomb/volt

• 1 F is a very large capacitance. In

many applications 1µF or 1 pF is

more convenient.
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Calculating Capacitance: Capacitors in Vacuum

• We can calculate the capacitance C of a given capacitor by

finding the potential difference Vab between the conductors

for a given magnitude of charge Q and then using

C =
Q

Vab

• For now we’ll consider only capacitors in vacuum; that is,

empty space separates the conductors that make up the

capacitor.

• We will calculate the capacitance of parallel, spherical and

cylindrical capacitors.
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Parallel-plate capacitor

• E = σ/ε0

• σ = Q/A

• E = Q/Aε0

• Vab = Ed

Vab =
Q

Aε0
d

• Using C = Q/Vab

C = ε0
A

d
, parallel plate capacitor
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Parallel-plate capacitor

• The capacitance

C = ε0
A

d
, parallel plate capacitor

depends on only the geometry of the

capacitor;

• it is directly proportional to the area

A of each plate and

• inversely proportional to their

separation d.

• Recall that

ε0 = 8.85× 10−12 C2/N ·m2. Check

that ε0 = 8.85× 10−12 F/m.
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Exercise: 1.0F capacitor

Question:

The parallel plates of a 1.0 F capacitor are 1.0 mm apart. What

is their area?
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Exercise: 1.0F capacitor

Question:

The parallel plates of a 1.0 F capacitor are 1.0 mm apart. What

is their area?

Solution:

Applying

C = ε0
A

d

one finds that A = 1.1× 108 m2 which correspond to a square of

∼ 10 km. Thus 1.0 F is indeed a large capacitance!
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Exercise: Properties of a parallel-plate capacitor

Question:

The plates of a parallel-plate capacitor in vacuum are 5.00 mm

apart and 2.00 m2 in area. A 10.0 kV potential difference is

applied across the capacitor. Compute (a) the capacitance; (b)

the charge on each plate; and (c) the magnitude of the electric

field between the plates.
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Condenser microphone

Inside a condenser microphone is a

capacitor with one rigid plate and one

flexible plate. The two plates are kept

at a constant potential difference Vab.

Sound waves cause the flexible plate

to move back and forth, varying the

capacitance C and causing charge to

flow to and from the capacitor in

accordance with the relationship

C = Q/Vab. Thus a sound wave is

converted to a charge flow that can be

amplified and recorded digitally.
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Exercise: A spherical capacitor

Question:

Two concentric spherical conducting

shells are separated by vacuum. The

inner shell has total charge +Q and

outer radius ra, and the outer shell

has charge −Q and inner radius rb .

Find the capacitance of this spherical

capacitor.
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Exercise: A spherical capacitor

Solution:

• The potential at any point

between the spheres is

V = Q/4πε0r.

• Hence the potential of the inner

(+) conductor at r = ra wrt that

of the outer (−) conductor at

r = rb is

Vab = Va − Vb =
Q

4πε0ra
− Q

4πε0rb

=
Q

4πε0

(
1

ra
− 1

rb

)

20



Exercise: A spherical capacitor

Solution:

•

Vab = Va − Vb =
Q

4πε0ra
− Q

4πε0rb

=
Q

4πε0

(
1

ra
− 1

rb

)

• Using C = Q/Vab gives

C =
4πε0

1
ra
− 1

rb

= 4πε0
rarb
rb − ra

20



Exercise

How is this result

C = 4πε0
rarb
rb − ra

related to

C = ε0
A

d

for the parallel plate capacitor?

Consider a spherical capacitor with inner sphere close to the

outer sphere: ra ' rb while rb − ra = d.

The area of the sphere is A ' 4πr2
b and we get C ' ε0Ad !
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Capacitance of an isolated sphere

• Capacitance of an isolated

sphere can be found by

considering rb →∞ in

C =
4πε0

1
ra
−

�
���
0

1
rb

which gives

C = 4πε0ra

• The result is independent

of whether this is a

spherical shell or a solid

sphere.
22



Capacitance of the Earth

• The radius of the Earth is

6300 km. This gives

C = 4πε0ra

= ra/k =
6.3× 106 m

9× 109 m/F

∼ 10−3 F

• 1 F is indeed a large capacitance!
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Exercise: charged balls

Question:

Two charged balls of charges q1 = 4Q and q2 = −Q with radii

r1 = a and r2 = 2a touch each other and seperated afterwards.

What are the final charges?

24



Exercise: charged balls

Question:

Two charged balls of charges q1 = 4Q and q2 = −Q with radii

r1 = a and r2 = 2a touch each other and seperated afterwards.

What are the final charges?

Question:

The total charge is 3Q. The balls will share the charges in

proportion to their capacitance which is proportional to their

radii. Thus q′1 = Q and q′2 = 2Q.

24



Exercise: A cylindrical capacitor

Question:

Two long, coaxial cylindrical

conductors are separated by vacuum.

The inner cylinder has outer radius ra

and linear charge density +λ. The

outer cylinder has inner radius rb and

linear charge density −λ. Find the

capacitance per unit length for this

capacitor.
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Exercise: A cylindrical capacitor

Solution:

• The potential in the space

between the cylinders is:

V =
λ

2πε0
ln
r0

r

• Then the potential difference

between the cylinders is

Vab =
λ

2πε0
ln
rb
ra

25



Exercise: A cylindrical capacitor

Solution:

•
Vab =

λ

2πε0
ln
rb
ra

• The total charge Q in a length L

is Q = λL and so

C =
Q

Vab
=

2πε0L

ln(rb/ra)

25



Exercise

How is this result

C =
2πε0L

ln(rb/ra)

related to

C = ε0
A

d
for the parallel plate capacitor?

Consider a cylindirical capacitor with inner scylinder close to

the outer cylinder: ra ' rb while rb − ra = d� rb.

C =
2πε0L

ln ra+d
ra

=
2πε0L

ln
(

1 + d
ra

) ' 2πε0L
d
ra

where we used Taylor expansion ln(1 + x) = x if x� 1.

The area of the cylinder is A ' 2πraL and we get C ' ε0Ad !
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Check your understanding

A capacitor has vacuum in the space between the conductors. If

you double the amount of charge on each conductor, what

happens to the capacitance?

(i) It increases;

(ii) it decreases;

(iii) it remains the same;

(iv) the answer depends on the size or shape of the conductors.
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Capacitors in series and parallel

• Capacitors are manufactured with

certain standard capacitances and

working voltages

• However, these standard values may

not be the ones you actually need in

a particular application.

• You can obtain the values you need

by combining capacitors; many

combinations are possible, but the

simplest combinations are a series

connection and a parallel connection.
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Capacitors in series

• In a series connection the magnitude

of charge on all plates is the same.

• Vab = Vac + Vcb or V = V1 + V2

• Vac = V1 = Q/C1 &

Vcb = V2 = Q/C2

• Vab = V = Q( 1
C1

+ 1
C2

)

V

Q
=

1

C1
+

1

C2

30



Capacitors in series

• The equivalent capacitance Ceq of

the series combination is defined as

the capacitance of a single capacitor

for which the charge Q is the same

as for the combination, when the

potential difference V is the same.

• The combination can be replaced by

an equivalent capacitor of

capacitance Ceq = Q/V .
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Capacitors in series

•

V

Q
=

1

C1
+

1

C2
, Ceq =

Q

V

implies

1

Ceq
=

1

C1
+

1

C2

• The reciprocal of the equivalent

capacitance of a series combination

equals the sum of the reciprocals of

the individual capacitances.
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Capacitors in series

• If there are N capacitors in series

1

Ceq
=

1

C1
+

1

C2
+ · · · 1

CN

• If capacitors all have equal

capacitances (C = C1 = C2 = · · · = CN )

1

Ceq
=

1

C
+

1

C
+ · · · 1

C
=
N

C

and so Ceq = C/N .

• In a series connection the equivalent

capacitance is always less than any

individual capacitance.

Example:

4 capacitors of 2µF

connected in series

has the equivalent

capacitance of 0.5µF.
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Capacitors in Parallel

• In a parallel connection the potential

difference for all individual

capacitors is the same and is equal

to Vab = V .

• Q1 = C1V & Q2 = C2V

• The total charge Q of the

combination, and thus the total

charge on the equivalent capacitor, is

Q = Q1 +Q2 = (C1 + C2)V

Q

V
= C1 + C2
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Capacitors in Parallel

• The parallel combination is

equivalent to a single capacitor with

the same total charge Q = Q1 +Q2

and potential difference V as the

combination

Ceq =
Q

V

• Thus

Ceq = C1 + C2

31



Capacitors in Parallel

• In the same way we can show that

for N capacitors in parallel

Ceq = C1 + C2 + · · ·+ CN

The equivalent capacitance of a

parallel combination equals the sum

of the individual capacitances.

• If capacitors all have equal

capacitances (C = C1 = C2 = · · · = CN )

Ceq = NC

• In a parallel connection the

equivalent capacitance is always

greater than any individual

capacitance. 31



Exercise:

Let C1 = 6.0µF, C2 = 3.0µF, and

Vab = 18 V. Find the equivalent capacitance

and the charge and potential difference for

each capacitor when the capacitors are

connected

• (a) in series

• (b) in parallel

32
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Solution:

• For a series combination

1

Ceq
=

1

C1
+

1

C2
=

1

6.0µF
+

1

3.0µF

⇒ Ceq = 2.0µF

• The charge Q on each capacitor in

series is the same as that on the

equivalent capacitor:

Q = CeqV = (2.0µF)(18 V) = 36µC

• The potential difference across each

capacitor is inversely proportional to its

capacitance:

Vac = V1 = Q
C1

= 36µC
6.0µF = 6 V and

similarly Vcb = Q
C2

= 36µC
3.0µF = 12 V

33



Solution:

• For a parallel combination

Ceq = C1+C2 = 6.0µF+3.0µF = 9.0µF

• The potential difference across each of

the capacitors is the same as that across

the equivalent capacitor, 18 V.

• The charge on each capacitor is directly

proportional to its capacitance:

Q1 = C1V = (6.0µF)(18 V) = 108µC

Q2 = C2V = (2.0µF)(18 V) = 54µC

33



Exercise: A capacitor network

• Find the equivalent

capacitance of the

five-capacitor network

shown.

• 12µF and 6µF series

combination yields

C ′ = 4µF.

• 3µF, 11µF & 4µF

paralllel combination yields

C ′′ = 18µF.

• Finally, the 18µF and 9µF

capacitors in series gives

6µF

34
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Energy storage in capacitors and

electric-field energy



Energy storage in capacitors and electric-field energy

energy stored in capacitor = work required to charge it.

discharge: stored energy is recovered as electrical work.

During charging, at the moment when the charge is q and the

potential difference is v = q/C, the work dW required to

transfer an additional charge dq is

dW = vdq =
qdq

C
The total work W needed to increase q from zero to Q is

W =

∫ W

0
dW =

1

C

∫ Q

0
qdq =

Q2

2C

Potential energy stored in a capacitor

U =
Q2

2C
=

1

2
CV 2 =

1

2
QV
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Energy in capacitor - analogy with strechted spring

Potential energy stored in a capacitor

U =
Q2

2C
=

1

2
CV 2 =

1

2
QV

• Capacitance measures the ability of a capacitor to store

both energy and charge.

• At fixed V , increasing C gives a greater charge Q and

greater stored energy U = 1
2CV

2.

• To transfer fixed Q, W is inversely proportional to C, i.e.

the greater C, the easier it is to charge Q

Recall: elastic potential energy U = 1
2kx

2

Identify: Q⇔ x and 1/C ⇔ k
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Applications of Capacitors: Energy Storage

The Z machine has a large number of

capacitors in parallel. Arcs are

produced during discharge into a

spool of thread. Heats the target to

T > 2× 109K. For a brief space of

time: 80 times the power output of all

the electric power plants on earth

combined!

In other applications, the energy is released more slowly:

Similar to springs in the suspension of an automobile a

capacitor in an electronic circuit can smooth out unwanted

variations in voltage due to power surges.
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Electric-Field Energy

Think of the energy as being stored in the field in the region

between the capacitor plates.

The energy density in a vacuum

u =
1
2CV

2

Ad
=

1
2(ε0A/d)(Ed)2

Ad
=

1

2
ε0E

2

Valid for any electric-field configuration in vacuum.

Remember: Electric-field energy is electric potential energy.

energy as being a shared property of all the charges

OR

energy as being a property of the E-field that the charges create
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Example: Transferring charge/energy between capacitors

Question:

We connect a capacitor

C1 = 8.0µF to a power supply,

charge it to a potential

difference V0 = 120 V, and

disconnect the power supply.

Switch S is open.

(a) What is the charge Q0 on C1?

(b) What is the energy stored in C1?

(c) Capacitor C2 = 4.0µF is initially uncharged. We close

switch S. After charge no longer flows, what is the potential

difference across each capacitor, and what is the charge on each

capacitor?

(d) What is the final energy of the system?
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Example: Transferring charge/energy between capacitors

Question:

We connect a capacitor

C1 = 8.0µF to a power supply,

charge it to a potential

difference V0 = 120 V, and

disconnect the power supply.

Switch S is open.

(a) What is the charge Q0 on

C1?

Solution a:

The initial charge Q0 on C1 is

Q0 = C1V0 = (8.0µF)(120 V) = 960µC
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Example: Transferring charge/energy between capacitors

Question:

We connect a capacitor

C1 = 8.0µF to a power supply,

charge it to a potential

difference V0 = 120 V, and

disconnect the power supply.

Switch S is open.

(b) What is the energy stored

in C1?

Solution b:

The energy initially stored in C1 is

Uinitial = 1
2Q0V0 = 1

2(960× 10−6 C)(120 V) = 0.058 J
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Example: Transferring charge/energy between capacitors

Question:

We connect a capacitor C1 = 8.0µF to a

power supply, charge it to a potential

difference V0 = 120 V, and disconnect the

power supply. Switch S is open.

(c) Capacitor C2 = 4.0µF is initially uncharged. We close

switch S. After charge no longer flows, what is the potential

difference across each capacitor, and what is the charge on each

capacitor?

Solution c: 1 st step

When we close the switch, the positive charge Q0 is distributed

over the upper plates of both capacitors and the negative

charge −Q0 is distributed over the lower plates.
39



Example: Transferring charge/energy between capacitors

Question:

We connect a capacitor C1 = 8.0µF to a

power supply, charge it to a potential

difference V0 = 120 V, and disconnect the

power supply.

(c) Capacitor C2 = 4.0µF is initially uncharged. We close switch S. After charge

no longer flows, what is the potential difference across each capacitor, and what is

the charge on each capacitor?

Solution c: 2nd step

Let Q1 and Q2 be the magnitudes of the final charges on the

capacitors. Conservation of charge requires that Q1 +Q2 = Q0.

The potential difference V between the plates is the same for

both capacitors because they are connected in parallel, so the

charges are Q1 = C1V and Q2 = C2V .
39



Example: Transferring charge/energy between capacitors

Question:

We connect a capacitor C1 = 8.0µF to a

power supply, charge it to a potential

difference V0 = 120 V, and disconnect the

power supply.

(c) Capacitor C2 = 4.0µF is initially uncharged. We close switch S. After charge

no longer flows, what is the potential difference across each capacitor, and what is

the charge on each capacitor?

Solution c: 3rd step
We now have three independent equations relating the three unknowns Q1, Q2,

and V . Solving these, we find

V =
Q0

C1 + C2
= 80 V

Q1 = 640µC and Q2 = 320µC 39



Example: Transferring charge/energy between capacitors

Question:
We connect a capacitor C1 = 8.0µF to a

power supply, charge it to a potential

difference V0 = 120 V, and disconnect the

power supply.

(d) What is the final energy of the

system?

Solution d:

The final energy of the system is

Ufinal =
1

2
Q1V +

1

2
Q2V =

1

2
Q0V = 0.038 J

Note: Ufinal < Uinitial; the difference was converted to energy of

some other form. The conductors become a little warmer

because of their resistance, and some energy is radiated as EM

waves.
39



Example: Electric-field energy

Question: What is the magnitude of the electric field required

to store 1.00 J of electric potential energy in a volume of 1.00 m3

in vacuum?
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Example: Electric-field energy

Question: What is the magnitude of the electric field required

to store 1.00 J of electric potential energy in a volume of 1.00 m3

in vacuum?

The E-field can be calculated from the energy density

E =

√
2u

ε0
=

√√√√ 2
(

1.00J/m3
)

8.85× 10−12 C2/N · m2
= 4.75× 105 V/m

Question: If the field magnitude is 10 times larger than that,

how much energy is stored per cubic meter?
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Example: Electric-field energy

Question: What is the magnitude of the electric field required

to store 1.00 J of electric potential energy in a volume of 1.00 m3

in vacuum?

The E-field can be calculated from the energy density

E =

√
2u

ε0
=

√√√√ 2
(

1.00J/m3
)

8.85× 10−12 C2/N · m2
= 4.75× 105 V/m

Question: If the field magnitude is 10 times larger than that,

how much energy is stored per cubic meter?

u is proportional to E2,

if E increases by a factor of 10, then u increases by 102 = 100.

40



Example: Electric field energy stored in a uniform sphere

of charge Q and radius a

Hint:

• Outside the sphere E = Q/4πε0r
2

• and so u = 1
2ε0E

2 ∝ 1/r4.

• The total energy is U =
∫
V udV where dV = 4πr2 dr.

• Uout =
∫∞
a u4πr2 dr =?

• Inside the sphere Qr/4πε0a
3

• and so u = 1
2ε0E

2 ∝ r2.

• Uin =
∫ a

0 u4πr2 dr =?

• U = Uin + Uout = 3
5

Q2

4πε0a
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Dielectrics

Most capacitors have a

nonconducting material (dielectric)

between their conducting plates.

Why?

• maintains two large metal

sheets at a very small

separation without actual

contact

• prevents dielectric breakdown

• capacitance is greater with

dielectric compared to vacuum

A common type of capacitor

uses dielectric sheets to

separate the conductors.
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Dielectrics

Most capacitors have a

nonconducting material (dielectric)

between their conducting plates.

Why?

• maintains two large metal

sheets at a very small

separation without actual

contact

• prevents dielectric breakdown

• capacitance is greater with

dielectric compared to vacuum

A common type of capacitor

uses dielectric sheets to

separate the conductors.
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Dielectric constant of a material K

A sensitive electrometer is a device

that measures the potential difference

between two conductors without

letting any appreciable charge flow

from one to the other.

• without dielectric: charge Q and

potential V0

• with dielectric: charge Q and

potential V < V0

• C = Q/V increases ⇒ C > C0

• dielectric constant of the material

K = C/C0 and V = V0/K
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Dielectric constant of a material K

A sensitive electrometer is a device

that measures the potential difference

between two conductors without

letting any appreciable charge flow

from one to the other.

• without dielectric: charge Q and

potential V0

• with dielectric: charge Q and

potential V < V0

• C = Q/V increases ⇒ C > C0

• dielectric constant of the material

K = C/C0 and V = V0/K

K > 1
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Values of Dielectric Constant K at 20◦C
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Water as a dielectric?

• While water has a very large value of K = 80!

• Would we use it in capacitors?

• No! Why?

• While pure water is a very poor conductor, it is also an

excellent ionic solvent.

• Any ions that are dissolved in the water will cause charge

to flow between the capacitor plates, so the capacitor

discharges.
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Leakage Current

• No real dielectric is a perfect insulator.

• Hence there is always some leakage current between the

charged plates of a capacitor with a dielectric.

• We tacitly ignored this effect when we derived expressions

for the equivalent capacitances of capacitors in series

(C−1 = C−1
1 + C−1

2 ) and in parallel (C = C1 + C2).

• But if a leakage current flows for a long enough time to

substantially change the charges from the values we used to

derive these equations, they may no longer be accurate.
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Leakage Current

• No real dielectric is a perfect insulator.

• Hence there is always some leakage current between the

charged plates of a capacitor with a dielectric.

• We tacitly ignored this effect when we derived expressions

for the equivalent capacitances of capacitors in series

(C−1 = C−1
1 + C−1

2 ) and in parallel (C = C1 + C2).

• But if a leakage current flows for a long enough time to

substantially change the charges from the values we used to

derive these equations, they may no longer be accurate.
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Induced Charge and Polarization

• Vacuum E0, E

with dielectric

E = E0/K

K > 1

• induced

charge of the

opposite sign

appears on

each surface of

the dielectric

E0 =
σ

ε0
and E =

σ − σi
ε0

so that σi = σ

(
1− 1

K

)
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Capacitance and energy with dielectric

The permittivity of a dielectric is denoted by ε.

ε = Kε0, K > 1

Capacitance of a parallel plate capacitor with dielectric

C = KC0 = Kε0
A

d
= ε

A

d

Electric energy density in a dielectric

u =
1

2
Kε0E

2 =
1

2
εE2
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A capacitor with and without a dielectric

Adding a dielectric between the plates of a capacitor increases

the capacitance by a factor of K.

For a given amount of charge, adding the dielectric also reduces

V , E-field, the electric energy density, and the total stored

energy, all by a factor of 1/K.

Energy storage with and without a dielectric

U0 =
1

2

Q2

C0
>

1

2

Q2

C
= U ⇒ energy decreases at fixed Q

As a result there is force pulling

the dielectric slab into the

capacitor.
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Dielectric Breakdown

• When a dielectric is subjected to

a sufficiently strong electric field,

dielectric breakdown takes place

and the dielectric becomes a

conductor.

• Lightning is a dramatic example

of dielectric breakdown in air.

Dielectric breakdown occurs when the E-field is so strong that

e− are ripped loose from their molecules and crash into other

molecules, liberating even more e−s. This avalanche of moving

charge forms a spark or arc discharge.
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Dielectric Strength

The maximum E-field magnitude that a material can withstand

without the occurrence of breakdown is called its dielectric

strength.

This quantity is affected significantly by temperature, trace

impurities, small irregularities in the metal electrodes, and

other factors that are difficult to control.

The dielectric strength of dry air is about 3× 106 V/m.
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Molecular model of induced

charge



Polar molecules in E-field

(a) When no electric field is present

in a gas or liquid with polar

molecules, the molecules are

oriented randomly

(b) In an electric field, however, they

tend to orient themselves.

Because of thermal agitation, the

alignment of the molecules with
~E is not perfect.
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Polar molecules in E-field

(a) When no electric field is present

in a gas or liquid with polar

molecules, the molecules are

oriented randomly

(b) In an electric field, however, they

tend to orient themselves.

Because of thermal agitation, the

alignment of the molecules with
~E is not perfect.
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Nonpolar molecules in E-field

(a) A molecule that is not

ordinarily polar will become a

dipole when placed in an ~E

field because ~E the positive

and negative charges in the

molecules in opposite

directions.

(b) This causes a redistribution of

charge within the molecule.

Such dipoles are called

induced dipoles.
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Nonpolar molecules in E-field

(a) A molecule that is not

ordinarily polar will become a

dipole when placed in an ~E

field because ~E the positive

and negative charges in the

molecules in opposite

directions.

(b) This causes a redistribution of

charge within the molecule.

Such dipoles are called

induced dipoles.
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Molecular model of induced charge

With polar/nonpolar molecules, the redistribution of charge

caused by the field leads to the formation of a layer of charge on

each surface of the dielectric material.

• surface charge densities σi

• these charges are not free to move

indefinitely

• called bound charges

• in the interior of the material the net

charge per unit volume remains zero

• this redistribution of charge is called

polarization

• the material is said to be polarized.
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Capacitor with dielectric

(a) the original field inside the capacitor without dielectric slab
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Capacitor with dielectric

(a) the original field inside the capacitor without dielectric slab

(b) dielectric has been inserted but no rearrangement of charges
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Capacitor with dielectric

(a) the original field inside the capacitor without dielectric slab

(b) dielectric has been inserted but no rearrangement of charges

(c) additional field set up in the dielectric by its induced surface

charges (opposite to the original field
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Capacitor with dielectric

(a) the original field inside the capacitor without dielectric slab

(b) dielectric has been inserted but no rearrangement of charges

(c) additional field set up in the dielectric by its induced surface

charges (opposite to the original field

(d) the resultant field in the dielectric, decreased in magnitude 55



Force on an uncharged object by a charged object

• induced positive charges on B

experience a force toward the

right

• force on the induced negative

charges is toward the left

• the negative charges are closer to

A, and thus are in a stronger field

• the force toward the left is

stronger (attraction)

• works similarly for conductors
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Gauss’ law in dielectrics

Apply Gauss’ law to the rectangular box shown by purple lines

• The left side is embedded in the

conductor ⇒ E = 0

• The right side is embedded in the

dielectric with field magnitude E

• E⊥ = 0 on other four sides

• Qencl = (σ − σi)A
• EA = Qencl/ε0 gives

EA =
(σ − σi)A

ε0

Not clear since σi and E in dielectric

unknown. 57



Gauss’ law in dielectrics

Apply Gauss’ law to the rectangular box shown by purple lines

• Recall σi = σ(1− 1/K) which is

equivalent to σ − σi = σ/K

• Using this with EA = (σ−σi)A
ε0

we get

KEA = σA/ε0

• We thus write Gauss’ law in dielectrics

as ∮
K~E · d~A =

Qencl−free

ε0

• Equation says that the flux of KE, not

E, through the Gaussian surface is

equal to the enclosed free charge σA

divided by ε0.

• The right sides contain only the free

charge on the conductor, not the bound

(induced) charge.
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A spherical capacitor with dielectric

Problem: Use Gauss’s law to find the capacitance of the

spherical capacitor of if the volume between the shells is filled

with an insulating oil with dielectric constant K.

Consider a spherical Gaussian surface of radius ra < r < rb.

58



A spherical capacitor with dielectric

Problem: Use Gauss’s law to find the capacitance of the

spherical capacitor of if the volume between the shells is filled

with an insulating oil with dielectric constant K.

Consider a spherical Gaussian surface of radius ra < r < rb.∮
K~E · d~A =

∮
KEdA = KE

∮
dA = KE

(
4πr2

)
=
Q

ε0
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A spherical capacitor with dielectric

Problem: Use Gauss’s law to find the capacitance of the

spherical capacitor of if the volume between the shells is filled

with an insulating oil with dielectric constant K.

Consider a spherical Gaussian surface of radius ra < r < rb.∮
K~E · d~A =

∮
KEdA = KE

∮
dA = KE

(
4πr2

)
=
Q

ε0

Using E(r) = Q/
(
4πKε0r

2
)
, the potential difference is

V =
Q

4πKε0

(
1

ra
− 1

rb

)
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A spherical capacitor with dielectric

Problem: Use Gauss’s law to find the capacitance of the

spherical capacitor of if the volume between the shells is filled

with an insulating oil with dielectric constant K.

Consider a spherical Gaussian surface of radius ra < r < rb.∮
K~E · d~A =

∮
KEdA = KE

∮
dA = KE

(
4πr2

)
=
Q

ε0

Using E(r) = Q/
(
4πKε0r

2
)
, the potential difference is

V =
Q

4πKε0

(
1

ra
− 1

rb

)
and the capacitance follows as

C =
Q

V
=

4πKε0rarb
rb − ra

Exercise: Repeat when capacitor is partially filled.
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