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Learning outcomes

• How a time-varying current in one coil can induce an emf in a
second, unconnected coil.

• How to relate the induced emf in a circuit to the rate of change of
current in the same circuit.

• How to calculate the energy stored in a magnetic field.
• How to analyze circuits that include both a resistor and an

inductor (coil).
• Why electrical oscillations occur in circuits that include both an

inductor and a capacitor.
• Why oscillations decay in circuits with an inductor, a resistor,

and a capacitor.



Introduction

• A changing current in a coil induces an emf in an adjacent coil.
The coupling between the coils is described by their mutual
inductance.

• A changing current in a coil also induces an emf in that same
coil.

• Such a coil is called an inductor,
• and the relationship of current to emf is described by the

inductance (also called self-inductance) of the coil.



Mutual inductance

• We have considered the magnetic
interaction between two wires carrying
steady currents.

• The current in one wire causes a
magnetic field, which exerts a force on
the current in the second wire.

• An additional interaction arises between
two circuits when there is a changing
current in one of the circuits.



Mutual inductance

• We use lowercase letters to represent
quantities that vary with time (e.g. i).

• i1 produces B, according to Biot-Savarts
law:

B⃗ =
µ0

4π

∫
i1dℓ⃗× r̂

r2 ⇒ B ∝ i1

• Φ through the 2nd loop is proportional
to B

ΦB2 =

∫
B⃗ · dA⃗ ⇒ ΦB2 ∝ B

• Thus ΦB2 ∝ i1.



Mutual inductance

• We call the proportionality constant as
the mutual inductance, M21.

• If there are N2 turns, the same flux
passes through each loop, and

N2ΦB2 = M21i1 (1)

defines M21.



Mutual inductance

• When i1 changes, ΦB2 changes; this
changing flux induces an emf E2 in coil
2, given by

E2 = −N2
dΦB2

dt
(1)

Using N2ΦB2 = M21i1

E2 = −M21
di1
dt

(2)



Mutual inductance

• We found ΦB2 ∝ i1.
• Then the mutual inductance

M21 =
N2ΦB2

i1

is a constant that depends only on the
geometry of the two coils (the size,
shape, number of turns, and orientation
of each coil and the separation between
the coils).

• This is always valid if the coils are in
vacuum.



Mutual inductance

• If a magnetic material is present, M21
also depends on the magnetic properties
of the material.

• If the material has nonlinear magnetic
properties-that is, if the relative
permeability Km is not constant and
magnetization is not proportional to
magnetic field-then ΦB2 is no longer
directly proportional to i1.



Mutual inductance

• A changing current i2 in coil 2 causes a
changing flux ΦB1 and an emf E1 in coil
1.

• The corresponding constant M12 = M21
always, even though in general the two
coils are not identical and Φ through
them is not the same.

M = M21 =
N2ΦB2

i1
= M12 =

N1ΦB1

i2
(1)

• Mutual inductance, M, characterizes
completely the induced-emf interaction
of two coils.



Mutual inductance

Mutually induced emfs are then

E2 = −M
di1
dt

, E1 = −M
di2
dt

(1)



Unit of inductance

• The SI unit of mutual inductance is called the henry (1 H) 1

• One henry is equal to one weber per ampere (M = N2ΦB2/i1)
• Other equivalent units

1 H = 1 Wb/A = 1 V · s/A = 1Ω · s = 1 J/A2 (2)

1In honor of the American physicist Joseph Henry (1797-1878), one of the
discoverers of electromagnetic induction.



Drawbacks and Uses of Mutual Inductance

• Mutual inductance can be a nuisance
in electric circuits, since variations
in current in one circuit can induce
unwanted emfs in other nearby
circuits.

• To minimize these effects two coils
would be placed far apart.

• Mutual inductance also has many
useful applications:

• A transformer
• How do electric toothbrushes charge

through plastic?
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Ex: Calculating mutual inductance

This is a form of Tesla coil
(a high-voltage generator
popular in science
museums)

Question
A long solenoid with length l and
cross-sectional area A is closely wound
with N1 turns of wire. A coil with N2
turns surrounds it at its center. Find the
mutual inductance M.



Ex: Calculating mutual inductance

This is a form of Tesla coil
(a high-voltage generator
popular in science
museums)

Solution
• B1 at the center of the solenoid

B1 = µ0n1i1 =
µ0N1i1

l

where n1 = N1/l.
• The flux through a cross section of

the solenoid equals B1A.
• This also equals the flux ΦB2

through each turn of the outer coil,
independent of its cross-sectional
area as there is almost no mag- netic
field outside a very long solenoid.



Ex: Calculating mutual inductance

This is a form of Tesla coil
(a high-voltage generator
popular in science
museums)

Solution
• The mutual inductance is then

M =
N2ΦB2

i1
=

N2B1A
i1

=
µ0N1N2Ai1

li1
=

µ0N1N2A
l

• The mutual inductance M of any two
coils is proportional to the product
N1N2 of their numbers of turns.

• Notice that M depends only on the
geometry of the two coils, not on the
current.



Ex: Calculating mutual inductance

This is a form of Tesla coil
(a high-voltage generator
popular in science
museums)

Numerical
Suppose l = 0.50 m,
A = 10 cm2 = 1.0 × 10−3 m2,
N1 = 1000 turns, and N2 = 10 turns.
The mutual inductance is then

M =
µ0N1N2A

l

=
4π × 10−7Wb/A · m × 1000 × 10 × 1.0 × 10−3 m2

0.50 m
= 25 × 10−6 H



Self-inductance

• A current in a circuit sets up a
magnetic field that causes a magnetic
flux through the same circuit;

• this flux changes when the current
changes.

• Thus any circuit that carries a
varying current has an emf induced
in it by the variation in its own B.
Such an emf is called a self-induced
emf.



Self-inductance

• By Lenz’s law, a self-induced emf
opposes the change in i that caused
the emf and so tends to make it more
difficult for variations in i to occur.

• Self-induced emfs can occur in any
circuit, since there is always some
ΦB through the closed loop of a
current-carrying circuit.

• But the effect is greatly enhanced if
the circuit includes a coil with N
turns of wire.



Self-inductance

• The self-inductance of the circuit is
defined as

L =
NΦB

i
(3)

From Faraday’s law E = −NdΦB/dt

E = −L
di
dt

(4)

• The − sign is a reflection of Lenz’s
law: the self-induced emf in a circuit
opposes any change in the current in
that circuit.



Inductors as circuit elements

• A circuit device that is designed to have a particular inductance
is called an inductor, or a choke.

• The usual circuit symbol for an inductor is
• Their purpose is to oppose any variations in the current through

the circuit.



Application

• If lightning strikes part of an
electrical power transmission
system, it causes a sudden spike in
voltage that can damage the
components of the system as well as
anything connected to that system.

• To minimize these effects, large
inductors are incorporated into the
transmission system.

• An inductor opposes and suppresses
any rapid changes in the current.



Self-inductance of an ideal soleoid

• Prototype of inductors.
• n = N/l
• B = µ0ni
• ΦB = BA = µ0niA
• Then

L =
NΦB

i
= µ0nNA
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Self-inductance of a toroidal soleoid

• B = µ0Ni
2πr

• ΦB =
∫

B⃗ · dA⃗ =
∫ b

a Bh dr = µ0Nih
2π ln b

a

• L = NΦB
i = µ0N2h

2π ln b
a
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Magnetic field energy

• An inductor carrying a current has
energy stored in it.

• Establishing a current in an inductor
requires an input of energy.



Energy Stored in an Inductor

• What is the total energy input U
needed to establish a final current I
in an inductor with inductance L if
the initial current is zero.

• The rate P at which energy is being
delivered to the inductor is

P = Vabi = L
di
dt

i



Energy Stored in an Inductor

• The energy dU supplied to the
inductor during an infinitesimal time
interval dt is dU = Pdt, so

dU = Li di

• The total energy U supplied while
the current increases from zero to a
final value I is

U = L
∫ I

0
i di =

1
2

LI2

• Where is this energy stored?



Magnetic energy density

Recall
• The electric energy

density was defined as

uE =
1
2
ϵ0E2

• The energy given to a
capacitor was stored in
the electric field

• The magnetic energy density

uB =
B2

2µ0
(5)

• Ex: The magnetic energy density in
an ideal solenoid is then
uB = (µ0ni)2

2µ0
= 1

2µ0n2i2

• The energy in an ideal solenoid is
then UB = uBAl = 1

2µ0n2lAi2

• Recalling L = µ0n2lA we get
UB = 1

2 Li2 = U.
• All given energy is stored in the

magnetic field.
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Energy stored in a toroidal solenoid
• Recall L = NΦ

i = µ0N2h
2π ln b

a and so

U =
1
2

Li2 =
µ0N2h

4π
ln

b
a

i2

• Let us find this from the energy density.
• Recall B = µ0Ni/2πr
• Energy density: uB = B2/2µ0 = µ0N2i2/8π2r2 (not uniform)
• Consider a cylindrical shell of radius r, thickness dr and height

h. It’s volume is dV = 2πr drh. The energy stored is dU = uBdV

UB =

∫ b

a
ub dV =

∫ b

a

µ0N2i2

8π2r2 2πr dr h

=
µ0N2hi2

4π

∫ b

a

dr
r

=
µ0N2hi2

4π
ln

b
a
= U
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The R − L circuit

• How does an inductor behave in a
circuit?

• An inductor in a circuit makes it
difficult for rapid changes in current
to occur, thanks to the effects of
self-induced emf.

• According to E = −L di
dt the greater

the rate of change of current di/dt,
the greater the self-induced emf and
the greater the potential difference
between the inductor terminals.



The potential difference across an inductor

• The potential difference across a
resistor depends on the current (a).

• whereas the potential difference
across an inductor depends on the
rate of change of the current (b), (c),
(d) .



The R − L circuit

• Apply Kirchhoff’s loop rule

E − iR − L
di
dt

= 0

• Arrange

di
i − (E/R)

= −R
L

dt



The R − L circuit

• Integrate∫ i

0

di′

i′ − (E/R)
= −

∫ t

0

R
L

dt′

ln

(
i − (E/R)
−E/R

)
= −R

L
t

• take exponentials of both sides and
solve for i

i =
E
R

(
1 − e−t/τ

)
, τ = L/R



The R − L circuit

• Recall

i =
E
R

(
1 − e−t/τ

)

• Take derivative:

di
dt

=
E
L

e−t/τ

• At time t = 0, i = 0 and
di/dt = E/L. As t → ∞ , i → E/R
and di/dt → 0



The R − L circuit

• Recall

i =
E
R

(
1 − e−t/τ

)

• At t = τ the current has risen to
(1 − 1/e) ≃ 63% of its final value.

• At t = 5τ the current has risen to
99.3% of its final value.



Energy considerations

• The rate at which the source delivers
energy to the circuit is PE = E i.

• The rate at which energy is
dissipated in the resistor is PR = i2R.

• The rate at which energy is stored in
the inductor is PL = Lidi/dt

• Multiply E − iR − L di
dt = 0 by i and

arrange

E i = i2R + Li
di
dt

Of the power supplied by the source
E i, part i2R is dissipated in R and
part Li di

dt goes to store energy in L.



Energy delivered by the source
• The rate at which the source delivers

energy to the circuit is PE = E i.
• dUE = PEdt and i = E

R

(
1 − e−t/τ

)
• UE =

∫∞
0 E idt

UE =
E2

R

∫ ∞

0

(
1 − e−t/τ

)
dt

=
E2

R
τ

∫ ∞

0

(
1 − e−x) dx

where x ≡ t/τ . The integral
diverges. If we integrate to some
finite xf ≫ 1

UE =
E2

R
τ
(
x + e−x)xf

0 ≃ E2

R
τ(xf−1)



Energy dissipated on the resistor
• The rate at which the resistor dissipates energy

is PR = Ri2.
• dUR = PRdt and i = E

R

(
1 − e−t/τ

)
• UR = R

∫∞
0 i2dt

UR =
E2

R

∫ ∞

0

(
1 − e−t/τ

)2
dt

=
E2

R
τ

∫ ∞

0

(
1 − e−x)2 dx

where x ≡ t/τ . If we integrate to some finite
xf ≫ 1

UR =
E2

R
τ

(
x + 2e−x − 1

2
e−2x

)xf

0
≃ E2

R
τ(xf−

3
2
)



Energy stored on the inductor
• The rate at which the inductor stores energy is

PL = Lidi/dt.
• dUL = PLdt and i = E

R

(
1 − e−t/τ

)
,

di/dt = E
Rτ e−t/τ

• UL = L
∫∞

0 i(di/dt)dt

UL = L
E2

R2τ

∫ ∞

0

(
1 − e−t/τ

)
e−t/τdt

=
E2

R
τ

∫ ∞

0

(
1 − e−x) e−xdx

where x ≡ t/τ . If we integrate to some finite
xf ≫ 1

UL =
E2

R
τ

1
2
(
(1 − e−x)2)xf

0 ≃ E2

2R
τ =

1
2

LI2



In summary

Since the current does not go to

zero, there is always some

dissipation of energy on the

resistor which is supplied by the

source.

• Energy delivered by the source to the
circuit

UE ≃ E2

R
τ(xf − 1)

• Energy dissipated on the resistor

UR ≃ E2

R
τ(xf −

3
2
)

• Energy stored on the inductor

UL ≃ E2

R
τ

1
2

• UE = UR + UL



Current decay in an R-L circuit

• Now suppose switch S1 has been
closed for a while and the current
has reached the value I0.

• We reset our stopwatch to redefine
the initial time, we close switch S2 at
time t = 0, bypassing the battery.

• Kirchhoff’s loop eqn:
−iR − L di

dt = 0 whose solution is

i = I0e−t/τ , τ = L/R (6)



Ex: R − L circuit

Question
An inductor with inductance L = 0.300 H
and negligible resistance is connected to a
battery, a switch S, and two resistors,
R1 = 12.0Ω and R2 = 16.0Ω. The
battery has emf 96.0 V and negligible
internal resistance. S is closed at t = 0.
(a) What are the currents i1, i2, and i3 just
after S is closed? (b) What are i1, i2, and
i3 after S has been closed a long time?



Ex: R − L circuit

Solution a
• As soon as the S is closed there is no

current on the L branch.
• i3 = 0
• i1 = i2 = E/R1
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Ex: R − L circuit

Solution b
• After S has been closed a long time

L acts just like a wire (as di/dt = 0).
• i2 = E/R1

• i3 = E/R2

• i1 = i2 + i3
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