\qquad
\qquad
I. (a) Consider the set \mathbb{N} together with the set function

$$
\alpha(U)=\sum_{x \in U} x
$$

Show that α is a measure on \mathbb{N}.
Solution: Since every element of \mathbb{N} is positive, it is clear that $\alpha(U) \geq 0$ for every $U \subseteq$ \mathbb{N}. We need to show that α is countably additive. So, assume $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ is a countable disjoint family of subsets of \mathbb{N}, i.e. $U_{n} \cap U_{m}=\emptyset$ whenever $n \neq m$. By removing empty sets from the family, we can assume $U_{n} \neq \emptyset$ for every n. But then, we either have a finite family $\left\{U_{n}\right\}_{n=0}^{N}$ or an infinite family $\left\{U_{n}\right\}_{n=0}^{\infty}$ with $\left|U_{n}\right|>0$ for every $n \geq 0$. It is easy to see that α is finitely additive since

$$
\alpha\left(\bigcup_{n=0}^{N} U_{n}\right)=\sum_{x \in \bigcup_{n=0}^{N} U_{n}} x=\sum_{n=0}^{N} \sum_{x \in U_{n}} x=\sum_{n=0}^{N} \alpha\left(U_{n}\right)
$$

In case the family is infinite we have $\infty=\alpha\left(\bigcup_{n=0}^{\infty} U_{n}\right)$ and

$$
\sum_{n=0}^{\infty} \alpha\left(U_{n}\right)=\lim _{n \rightarrow \infty} \sum_{n=0}^{N} \alpha\left(U_{n}\right) \geq \lim _{n \rightarrow \infty} \sum_{n=0}^{N} 1=\infty
$$

(b) Now, we consider the cartesian product $\mathbb{N} \times \mathbb{N}$ together with the product measure $\alpha \otimes \alpha$. Calculate the product measure $(\alpha \otimes \alpha)(A)$ of the set

$$
A=\{(1,2),(2,2),(1,3),(2,3),(3,3)\}
$$

Solution: We have

$$
\begin{aligned}
(\alpha \otimes \alpha)(A) & =\sum_{(a, b) \in A}(\alpha \otimes \alpha)(\{(a, b)\}) \\
& =\sum_{(a, b) \in A}(\alpha \otimes \alpha)(\{a\} \times\{b\}) \\
& =\sum_{(a, b) \in A} \alpha(\{a\}) \alpha(\{b\}) \\
& =\sum_{(a, b) \in A} a \cdot b \\
& =1 \cdot 2+2 \cdot 2+1 \cdot 3+2 \cdot 3+3 \cdot 3=24
\end{aligned}
$$

2. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x \in[-1,1], y \in[-x, x] \cap \mathbb{Q}\right\}$ and calculate

$$
\int_{\Omega}|x+y| d(\mu \otimes \mu)
$$

Solution: We know that

$$
\Omega_{x}=\{(a, b) \in \Omega \mid a=x\}=[-x, x] \cap \mathbb{Q}
$$

and therefore $\mu\left(\Omega_{x}\right)=0$ since Ω_{x} is countable for every $x \in[-1,1]$. Then

$$
0 \leq \int_{\Omega}|x+y| d(\mu \otimes \mu)=\int_{[-1,1]} \int_{\Omega_{x}}|x+y| d \mu(y) d \mu(x)
$$

On the other hand $|x+y| \leq 2$ for every $(x, y) \in \Omega$ and

$$
0 \leq \int_{\Omega}|x+y| d(\mu \otimes \mu) \leq \int_{[-1,1]} \int_{\Omega_{x}} 2 d \mu(y) d \mu(x)=2 \int_{[-1,1]} 2 \mu\left(\Omega_{x}\right) d \mu(x)=0
$$

i.e. $\int_{\Omega}|x+y| d(\mu \otimes \mu)=0$.

