ITU PHYSICS ENGINEERING. STUDENT,
now 21, 16
IDENTITY NUMBER :
NAME LASTNAME :
FIZ 411E QUIZ - 5 POINT :
[Question.1] (70/100 Pnts) A (perfect) dipole \mathbf{p} is situated a distance z above an infinite grounded conducting plane (in the following Figure). The dipole makes an angle θ with the perpendicular to the plane.

Find the torque on \mathbf{p}.
Hint-1: Use the image method, sketch the figure.
Hint-2: Remember! the perfect dipole important property to express its electric field.
Hint-3: Express the perfect dipole in the polar coordinate.
Hint-4: Take the direction out of page for torque with $-\hat{\boldsymbol{\phi}}$ (by taking $\hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}}$).

FIG. 1: perfect dipole configuration in the system
[Answer.1] With the help of Hint-1,2,3,4:

FIG. 2: perfect dipole image configuration in the system

$$
\begin{equation*}
\mathbf{N}=\mathbf{p} \times \mathbf{E}_{\text {image }} \tag{1}
\end{equation*}
$$

here, the electric field expression for perfect dipole image and the perfect dipol expression in the polar coordinate are given, respectively:

$$
\begin{aligned}
\mathbf{E}_{\text {image }} & =k_{e} \frac{p}{(2 z)^{3}}(\hat{\mathbf{r}} 2 \cos \theta+\hat{\boldsymbol{\theta}} \sin \theta) \\
\mathbf{p} & =p(\hat{\mathbf{r}} \cos \theta+\hat{\boldsymbol{\theta}} \sin \theta)
\end{aligned}
$$

By substituting these into eq. (1),

$$
\begin{align*}
\mathbf{N} & \left.=\frac{k_{e} p^{2}}{8 z^{3}}((\hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}}) \cos \theta \sin \theta+(\hat{\boldsymbol{\theta}} \times \hat{\mathbf{r}}) 2 \sin \theta \cos \theta)\right), \\
\therefore \mathbf{N} & =-\hat{\boldsymbol{\phi}} \frac{k_{e} p^{2}}{16 z^{3}} \sin 2 \theta . \tag{2}
\end{align*}
$$

here we used the trigonometrical identity as $2 \sin \theta \cos \theta=\sin 2 \theta$ and $\hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}}=\hat{\boldsymbol{\phi}}$.
The direction of torque is out of the page.
[Question.2] (30/100 Pnts) A sphere of radius R carries a polarization $\mathbf{P}(\mathbf{r})=\alpha \mathbf{r}$, where α is a constant and \mathbf{r} is the vector from the center. Calculate the expressions σ_{b} and ρ_{b} for the bound charges.

Hint-5: Remember! Divergence operator for spherical coordinates.
[Answer.2] We know that

$$
\begin{equation*}
\sigma_{b}=\mathbf{P} \cdot \hat{\mathbf{n}} \text { and } \rho_{\mathbf{b}}=-\boldsymbol{\nabla} \cdot \mathbf{P} \tag{3}
\end{equation*}
$$

Then for this question, by applying Hint- 5 we obtain their values as

$$
\begin{align*}
\sigma_{b} & =\alpha R(\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}) \quad \text { and } \quad \rho_{b}
\end{align*}=-\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \alpha r\right)(\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}), ~ 子 \quad \therefore \sigma_{b}=\alpha R \quad \text { and } \quad \rho_{b}=-3 \alpha . ~ \$
$$

