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3.2 Wave Resistance 

 As mentioned previously, wave resistance is expressed as the sum of wave-pattern 

resistance and wave breaking resistance. Since the effects of viscosity and vorticity on the 

wave formation are negligible, the waves generated by bodies in motion -and also the 

prediction of wave resistance for a moving ship- can be investigated by assuming ideal fluid 

flow which makes the problem and its solution simpler as compared to viscous flow. First, we 

will direct our attention to wave-making resistance which is the dominant component. 

3.2.1 The nature of the wave-making problem 

 Consider a 2D circular cylinder in an infinite, ideal, uniform fluid flow, and let’s 

imagine the streamlines around it: 

 

according to Bernoulli’s equation: the velocity speeds up where the pressure drops and vice 

versa. Now, if we think this 2D circular cylinder is placed under the free surface, the pressure 

distribution on the cylinder perturbes the free surface (which in turn affects the pressure 

distribution on the body to some extend) and causes the generation of a wave system down 

the stream: 

 

Due to the effect of free surface on the pressure distribution on the body, the result of the 

pressure integration over the body is other than zero and gives the wave pattern resistance in 

this case. Note that Bernoulli’s equation on the free surface (streamline) gives: 
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where the pressure can be taken as atmospheric pressure and the velocity field can be derived 

from a scalar potential function V  where   should satisfy Laplace’s equation  

2 2

2 2
0

x z

   
 

 
 

if the flow is assumed to be ideal. (This present attempt is just for giving an introductory 

understanding of the 2-D resistance problem within the context of fluid mechanics). 

Accordingly, wave elevation due to the presence of the body in the flow is obtained by 

21
( )

2
U

g
 

      

The magnitude of the wave elevation is important, since energy of the wave is important, 

since energy of the wave is proportional to the square of the wave amplitude generated: 

21

2
aE g    

Here  is the wavelength which can be related to the wave (or body) velocity U  as; 

2 U

g


   

But wave-making problem of a ship is indeed a 3D problem. It was first Lord Kelvin (William 

Thompson) in 1887formulated the formation of a wave system by considering a moving point 

pressure in the free surface. Today, the wave system obtained by his earlier analyses is still 

used as a good example of describing the wave system due to a moving ship with constant 

velocity in the same direction. 

 

Fig. 3.10: Ship-wave system as obtained from Kelvin’s analysis (Newman, 1980). 
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Fig. 3.11: Observation from above of ship waves confirming Kelvin wave system 

(Newman, 1980). 

Following a simplified approach in reducing ship-wave system into components, gives 

us the four basic components which can be explained by the pressure distribution on the hull 

near the free surface:  

 

Fig. 3.12: Sources of wave systems on the hull and their interference (Harvald, 1991). 
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Since there is a rise in pressure at the bow so that an increase in the wave elevation is 

expected and since there is a pressure drop around the fore-shoulder and accordingly a 

through around fore-shoulder occurs and so on. This approach of reduction total wave system 

into components also is able to explain the interference of wave systems which is important in 

the design phase. Because if the designer has computational tools at hand, he/she is then able 

to search for an optimal position of ship length and location of shoulders for the given design 

speed, in order to obtain the least wave resistance. 

Now, let’s try to rationalize the relation between wave components and wave 

resistance by superimposing the bow and aft wave systems. Consider 
1 1

2
cosa

x
 


  as the 

bow wave and 2 2

2 2
cosa

x l 
 

 

 
  

 
 as the aft wave system where l is the distance 

between the wave troughs (or crests) of the two systems. Thus, superposing the two wave 

system gives the resultant wave amplitude as: 
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If l is represented by 
2

l L


   (where   is an empirical parameter) then 12a  ; 
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where 
22 V

g


   . From Bernoulli’s equation;  ’s are in the order of 2V or are proportional 

with 2V . Thus; 2

1a AV  , 2

2a BV   may be written with empirical coefficients A and B. 

Recall that energy flux in regular waves is proportional to 2

a , which is closely related to the 

wave resistance. Therefore, 
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 
 

Note that the least term in parenthesis represents the interference effect which may reduce or 

increase the wave resistance depending on the position of aft and bow points at a given Fr. 

This semi-empirical/semi-theoretical modelling of wave resistance paved the way to 

Havelock’s modelling of wave resistance by moving bow and aft pressure distributions and in 

turn yields the sophisticated empirical methods of Oortmerssen and Holtrop-Mennen. 
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3.2.2 Theoretical wave resistance 

Since Lord Kelvin (1887), theoretical analysis of wave resistance is one of the primary 

concerns of naval hydrodynamicists. Negligence of viscosity in wave motion makes the 

problem analytically solvable on the one hand, but the related non-linear boundary conditions 

turn the problem out a challenging one on the other.  

We can start with the mathematical definition of the full/exact problem. Assume that 

the body/ship is fixed in an onset flow with velocity U on the free surface.  

 

  n         

Under the ideal fluid flow assumptions the velocity field is derived from a potential function; 

V  ; which satisfies Laplace’s equation: 

2 ( , , ) 0x y z   

Note that the flow is steady so that Bernoulli’s equation gives by considering points 1 and 2 

on the free surface streamline: 
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which is called as dynamic boundary condition on the free surface. The kinematic free surface 

condition is obtained by making the material derivative of the free surface equation 

( , )F z x y  equal to zero 0
DF

V F
Dt t

 
    

 
, which gives: 

0x x y y z        ;  z  . 

  can be discarded from the free surface equations by taking the derivatives of ( , )x y  in the 

dynamic boundary condition, and then substituting them is the kinematic boundary condition 

to give: 

 
1
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zg   
 

     
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 ;  z   

which is the resultant nonlinear free surface condition.  

Z=ζ(x,y) 
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The boundary condition on the wetted hull surface implies  n normal fluid velocities to the 

surface should be zero: 

0
n





 (on the hull surface S). 

Normal velocities to the flat sea bottom at z : 

0
z





. 

Additionally, there is also a radiation condition at infinity (as 
2 2r x y   ): 

1
; 0

1
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Ux o x
r

Ux O x
r



  
  

  
 

      

 

This is indeed a challenging problem due to its nonlinear boundary conditions, but solvable 

with sum assumptions. Once the potential solution is obtained, wave resistance is calculated 

by integrating the x-component pressure distribution on the body surface S: 

w x

S

R pn dS   

where nx is the x-component of the normal vector to the body and hydrodynamic pressure is 

given by means of the Bernoulli’s equation: 

  2

2
p U


         

The boundary value problem given above is very difficult to solve by analytical means, so 

that some simplifications/assumptions are made. For example total velocity potential is 

assumed to be the sum of: ( , , )xU x y z   , where   is the perturbation potential due to the 

body in uniform flow U and due to the free surface effects. In this case, nonlinear free surface 

condition may be linearized in terms of   to give the following Newman-Kelvin  

(N-K) problem: 

2 0   

2 ( , ,0) ( , ,0) 0xx zU x y g x y      ;    (on the free surface z=0) 

xUn
n


 


  ;   (on hull surface S) 

0
z





  ;   (at the bottom; z→  - ∞ ) 

and radiation conditions at infinity.  
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Note that boundary condition n xUn    on the body is indeed a nonlinear expression. 

Thin-ship Theory – Michell’s Integral 

If one assumes a very thin ship (as L/B >>1), boundary condition on the hull surface can also 

be linearized to give: 

( , 0, ) ( , )
f

x z U x z
y x

 
  

 
; (on the centerplane) 

where y=f(x,z) denotes half-breadths and subsequently the hull surface; S=y-f(x,z)=0. With 

this linearization, (N-K) problem, it turns out to be the thin-ship theory. This problem was 

first solved solved by Michell (1898) by distribution of sources/sinks on the centerplane of 

ship and then Havelock (1923) made important contributions to the solution of this problem. 

There are various versions of Michell’s integral currently used in today’s applications. Widely 

used version is given by: 
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    
   

   
  . 

The ship geometry is introduced by y=f(x,z), Although, Michell’s integral gives exaggerated 

humps and hollows in wave resistance the positions of the local minimums show the correct 

optimum points of wave interference: 

 

Fig. 3.13: Basic humps and hollows as obtained from Michell’s integral.  

(Gören & Sabuncu, 1986) 
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With today’s standards Michell integral may not be regarded as a reliable, high-precision 

code, but it can still be used to compare the wave-resistances of the hull forms. 

Low Froude Number Theory 

If total velocity potential in N-K problem is taken as: 

D     ( instead of xU    as in thin-ship theory) 

where D  is called double-model potential of a double-model, obtained by taking the mirror 

image of the hull form under the still water level, assumed to be in an infinite fluid flow with 

constant speed. In this exact free surface condition is linearized in terms of the perturbation 

potential  . Low Froude number theory satisfies kinematic boundary condition on the body 

0
n





 exactly. Today most of the research centers, well-established design offices utilize 

wave resistance analysis codes based on Low Froude number theory. 

The other well-known wave resistance theory is the Slender Body Theory which assumes both 

the beam and the draft are very small as compared to the length of the ship. One can imagine 

a ship which fits slender body assumption roughly as a pencil with both ends sharpened. 

According the slender ship theory the ships having the same sectional area curves have the 

same wave-making characteristics. 

 

3.2.3 Computational wave resistance 

Computational applications regarding with Michell’s integral and the Low Froude number 

theory are given in the following. 

Michell’s integral (ITU- Michell) 

In this code (see http://160.75.46.2/staff/devrim/michell.rar) Michell’s integral is evaluated by 

considering a mesh depicted in the figure below: 

 

Fig. 3.14: Meshing of centerplane for ITU-Michell. 

http://160.75.46.2/staff/devrim/michell.rar
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The hull geometry is represented by tent functions. This representation of the geometry by 

tent functions approximates the surface of the hull by a kind of linear spline surface such as: 

 

Fig. 3.15: Approximation of the hull surface by a family of tent functions. 

(For details of this geometrical formulation required in Michell integral: Sabuncu, T. and 

Gören, Ö. “Çadir Fonksiyonlari Yardimiyla Gemi Direnci Hesabi”, İTÜ Dergisi, Cilt 44, Sayı 

3-4, 1986, pp. 32-41) 

As mentioned before, Michell integral is able to give reasonable results for very fine and thin 

ships, but not for fuller forms and for relatively high Froude number. An example of such a 

study for a bi-Wigley catamaran hull (which is indeed a very fine form with high L/B ratio) is 

given in the following figure. Thin-ship results are due to ITU-Michell. (The curve with 

squares on it represents Low Froude number theory).  

 

Fig. 3.16: Comparison of wave resistance coefficients. 
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In order to run ITU-Michell given in the folder that you can find via the web address given 

above the following input files should be prepared your ship geometry. 

 

 

Please do not exceed the limits 16 for stations number and 6 for waterlines number. 

Consequently, double clicking of exe file Michell gives the following output: 
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Low-Froude Number Theory (ITU- Dawson) 

The code developed at ITU by Goren (1987,1990) namely ITU-Dawson is based on Low 

Froude number theory and uses, in combination , Hess & Smith’s (1967) source-panel 

method and Dawson’s (1977) algorithm for free surface condition. A sample of geometrical 

discretization of a ship hull is given in the following. 

 

Fig. 3.17: A sample of panelling of the free surface and the body surface for ITU-Dawson. 

As seen from the figure of “Comparison of wave resistance coefficients, the code based on 

Low Froude number theory (Present Comp. In figure) gives more realistic and high accuracy 

results for moderate speeds. The resulting wave system around the hulls as obtained by ITU-

Dawson could be seen in the following figure. 

 

Fig. 3.18: Wave systems of two hull forms as computed by ITU-Dawson 


