
Lecture 5

The Thermal Flame Theory
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In 1938 Zeldovich and Frank-Kamenetzki develops the classical example of an 
asymptotic description of the structure of a premixed flame

Presequisite:  single one-step reaction 

We will assume that reaction rate is first order with respect to fuel and to oxygen
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Alternative forms, in particular a rate which is first order with respect to the fuel only,
may also be considered. 

We will show that this case will be contained as a limit for lean flames in the 
expression above. 

The most important feature in 

is the Arrhenius type temperature dependence. 

The activation energy E is assumed to be large. 
Both the activation energy and the frequency factor B are adjustable parameters
and cannot be deduced from elementary kinetic data. 
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The one-step model has widely been used in descriptions of flame stability, where 
it essentially serves as model that produces a thin flame with a strong temperature 
sensitivity. 

In this lecture we will derive an explicit expression for the burning velocity. 

This is to be compared in Lecture 7  to results derived from a four-step reduced 
mechanism for methane-air flames.
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Flame structure schematically 

Since the reaction is assumed to 
be irreversible, the reaction rate 
must vanish in the burnt gas. 

Therefore one of the reactants 
must be entirely depleted: 
the fuel in the case of lean flames, 
the oxidizer for rich flames and 
both for stoichiometric flames. 
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This leads to the condition in the burnt gas:



The combustion of the reactants in the reaction zone leads to an increase in 
temperature and therefore an increase of the reaction rate. 

In the asymptotic analysis to be developed, the large temperature dependence of 
the reaction rate, expressed by the large activation energy will play a crucial role.

Let us assume at first that the diffusion flux can be written as

where Lewis number is unity. 
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The species balance equation 

now is considered for the mass fractions of fuel and oxygen

Fuel

Oxygen
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The temperature equation

using U�u = Uu sL yields 

These can be combined with the species equations in the form

Here Q and cp have been assumed constant for simplicity.
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In the small Mach number limit from the momentum equation one obtains the 
solution

p = const.

With the aid of the thermal equation of state the fuel and oxidizer mass fractions,  
the density , the thermal conductivity as well as the reaction rate
can be expressed as a function of temperature. 

Again one obtains the solution of the continuity equation.
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The only differential equation remaining describes the temperature profiles in x-
direction.

Zeldovich and Frank-Kamenetzki introduce the following assumptions 
introducing the ignition temperature Ti:

1. in the preheat zone, T � Ti , no reactions take place, therefore Z=0 is assumed.

2. in the reaction zone T  � Ti , the convective term in the temperature equation can 
be neglected compared to the diffusion and the reaction term.

5.-10



In the preheat zone, T � Ti , with Z=0 the temperature equation can be integrated 
Considering the boundary condition 

we achieve for the first derivative 

With the second assumption the temperature equation can be integrated for a first  
time, if  the temperature  T is introduced as an independent variable. 

One substitutes the heat conduction term with
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After multiplication with O/cp it follows

With the boundary conditions at x = f

this equation can be integrated for a first time
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Now at the position xi for T = Ti Zeldovich and Frank-Kamenetzki equalize
the derivatives of the preheat zone, 

and the reaction zone,

This yields an equation for the burning velocity
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An analysis of the integral in closed form is only possible, if further simplifying  
assumptions are introduced.

Expanding the term in the exponent 

in a series around Tb and neglecting higher order terms, one obtains
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Since in the reaction zone T and Tb are only slightly different, it is meaningful to 
introduce the dimensionless temperature

which stays of the order           for large

In the reaction zone for T § Tb in first approximation the material properties are 
also constant
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Considering 

and

the reaction rate can be written as
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Integration yields

Now a consideration is introduced which is obvious only for an asymptotic 
expansion for large activation energy and the matching process to adjust the  
solutions from the preheat zone and the reaction zone. 
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In the integral  4i is substituted by 4u , which may be interpreted as the assumption  
that the solution of the reaction zone is valid far into the preheat zone.

That is equivalent with the physical conception that underneath the temperature Ti

the integral

is negligible because of the strong dependence of the reaction rate on temperature 
for which reason it makes no difference whether integration is performed between 
Ti and Tb or  Tu and Tb.
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Since 4u takes large negative values for large activation energies, in all terms 
containing   exp 4u ,  4u will finally be replaced by -f, so that they disappear.



On the other hand on the left side of 

Ti is replaced by  Tb and Oi by Ob .

This implies the concept that the reaction zone is so thin, that the preheat zone is 
stretching till  Tb and that Ti is hardly distinguishable from Tb.

The Equation above reads
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The contribution of the individual terms in S depends strongly on the equivalence 
ratio I �/O: 

In very lean or very fat mixtures respectively YO2,b or YF,b are large, while both 
vanish for stoichiometric mixtures. 

Therefore in stoichiometric mixtures the last term is predominant. It holds
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Finally the assumptions introduced should be summarized:

1. In the preheat zone the reaction rate is neglected.

2. In the reaction zone the convective term is neglected

3. The reaction rate is approximated by an expansion around Tb, only the expo-nential
term is expanded. Material properties are set constant and evaluated at Tb

4. The integration over the reaction zone leads to an expression that correspond to an  
integral between the limits T =-f and T = Tb.

5. Using the solution from the preheat zone the ign. temperature Ti is equalized to Tb.
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Originally the thermal flame theory of Zeldovich and Frank-Kamenetzki was not 
derived for reaction  rates in the form of

being of 1st order both for the fuel and the oxidizer. 

Rather several solutions were derived for the reaction rate of 0th, 1st and 2nd order. 

The comparison with the result resented here shows that a reaction of 1st order is 
conform with a very fat or very lean mixture, for which the component in-deficit
governs the conversion rate.

In contrast the stoichiometric mixture relates to a reaction of 2nd order, since here 
both components are rate determining.
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Flame Thickness and Flame Time

Previously we have identified the burning velocity sL as an eigenvalue of the 
problem, which results from the solution of the one-dimensional balance 
equations. 
Under the assumption of a one step reaction, in which only a chemical time scale 
has been introduced, and with the assumption of Le = a /D =1, with

one obtains a relation for sL. which combines the parameters diffusivity and 
chemical time as

5.-23



Here the thermal diffusivity D determined with U = Uu and O = Ob is defined as

while the chemical time is given by

Here the Zeldovich number, defined by

appears squared. 
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Since Ze is of the order of 10, the chemical time tc is by two orders of magnitude 
larger than a chemical time, which, irrespective of the density ratio Uu/Ub, would be 
calculated from the reaction rate for example for very lean flames I� >> 1 as the 
reciprocal of

Obviously  tc is no time, which is solely determined by chemistry.

tc incorporates the structure of the flame also. This will become apparent, if from 
dimensional arguments one defines the flame thickness as
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Then one can further introduce the flame time

This is the time, which the flame front requires, to propagate the distance of the 
thickness of the flame.

The comparison between                         and              up to 

show, that tc is equal to the flame time.
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The flame thickness can be descriptively constructed from the temperature profile.

If one attaches a tangent to the turning 
point of the temperature profile and 
determines the intersection with the 
horizontal line at  Tu and Tb, at the 
abscissa the flame length  can be taken.

If one substitutes in

the left side by                          and evaluates the right side at T=Tb, one obtains
in accordance with
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Below we will introduce a normalized coordinate 

which eliminates all properties from the temperature equation, as will be shown with

This suggests
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Assuming 

where T0 is the inner layer temperature to be defined in Lecture 6, one obtains a more 
suitable definition for the flame length

Since the reaction zone was assumed to be thin, the flame thickness hence describes 
the thickness of the preheat zone of the flame structure.

The flame thickness is a measure for the quenching distance d of a flame. 

This is the distance, for whom a flame extinguishes, if it encounters a cold wall. 
There is the estimation
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