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Derivation of the Static Thrust Expression 

•  Force balance in the x direction 
 
 

 
•  Assumption 1: Static firing/ External gas is at rest 
•  Assumption 2: No body forces acting on the rocket 
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•  Combined to obtain the thrust force 

•  Introduce the mass flow rate: 

•  Two terms can be combined by introducing the effective 
exhaust velocity, Ve 

•  Maximum thrust for unit mass flow rate requires 
–  High exit velocity 
–  High exit pressure 

•  This cannot be realized. Compromise -> optimal expansion 

 
 
 

Derivation of the Static Thrust Expression 
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•  Thrust equation: 

•  At fixed flow rate, chamber and atmospheric pressures, 
the variation in thrust can be written as 

•  Momentum equation in 1D 

•  Substitute in the differential expression for thrust 

•  Maximum thrust is obtained for a perfectly expanded 
nozzle 

 

 
 
 

Maximum Thrust Condition 
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Nozzle Types 
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Bell Nozzle Operation 
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Plug and Aerospike Nozzles 
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•  Thrust equation: 

•  Thrust coefficient: 

 

•  For isentropic flow and calorically perfect gas in the 
nozzle the thrust coefficient can be written as 

 
 
 

Definitions-Thrust Coefficient 
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•  Mass flow equation (choked and isentropic flow of a 
calorically perfect gas in the convergent section of the 
nozzle): 

•  Definition of c*: 

 
•  c* can be expressed in terms of the operational 

parameters as 

 
 
 

Definitions - c* Equation 
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•  Combine the definitions of the thrust coefficient and c* to express the 
thrust 

•  Think of nozzle as a thrust amplifier and CF as the gain 
•  Specific Impulse: Thrust per unit mass expelled 

•  Impulse Density: Thrust per unit volume of propellant expelled 

 
 
 

Definitions – Specific Impulse and Impulse density 
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Energy of the gases 
In the chamber 

Flow in the nozzle 
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•  The total impulse is defined as 

•  Average thrust 

•  Delivered Isp 

 
 
 

Definitions – Total Impulse, Average Thrust, Delivered Isp 
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•  In a thermal rocket the propellant molecules are thermalized by addition of heat 
in a chamber. 

•  This thermal energy (random motion of the molecules) is converted to the useful 
directional velocity needed for thrust in the nozzle.  

•  The heat source varies 
–  Nuclear energy: Thermonuclear rockets 
–  Chemical bond energy: Chemical rockets 
–  Electric energy: Resistojets and Arcjets 
–  Thermal energy of the stored propellant: Cold gas thrusters 

 

Thermal Rocket – General Concept 
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