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CHAPTER

ONE

Introduction

1.1 What is Cantera?

Cantera is a collection of object-oriented software tools for problems involving chemical kinetics, thermodynamics,
and transport processes. It consists of a “kernel” that provides the core numerical capabilities, and language interfaces
that allow accessing the kernel from various environments, including MATLAB, Python, Fortran 90, and C++.

Cantera works withobjectsthat represent components of a simulation — gas mixtures, reactors, kinetics models,
surfaces, equations of state, flames, ODE integrators, reaction path diagrams, and so on. Numerical models are
constructed in a physical, intuitive way, by creating and assembling components.

Cantera provides the advanced capabilities needed for use in research, including fast, efficient algorithms, the capa-
bility to work with large reaction mechanisms, and interfaces for Fortran and C++. But Cantera is also designed to be
easy to learn and use, and can even be used interactively from Python or MATLAB. It is also open-source software,
which means that you can always find out exactly what Cantera is doing internally, should you need to know. It also
means that you can customize it as necessary for your application.

Cantera’s efficient kinetics algorithms can result in substantial performance gains for codes that spend much of their
time evaluating chemical production rates. For typical real-world applications (for example, rich flame simulations)
increases in speed of a factor of two or more have been achieved simply by using Cantera to evaluate the production
rates, leaving the rest of the code (in Fortran) untouched.

Cantera is also designed to be used in teaching. The Python and MATLAB interfaces, in particular, allow students
to quickly solve problems involving chemical equilibrium, thermochemistry, kinetics in well-stirred reactors, one-
dimensional flames, and much more. Problems that previously involved too much computation for effective use in
class now can be easily solved, freeing students to focus on the concepts being taught, instead of carrying out long
calculations by hand. In addition, more interesting problems involving design or optimization are feasible, and (unlike
point-and-click, what-you-see-is-all-you-get programs, the work is documented and saved in a script.

1.2 The Langage Interfaces

Cantera currently supports four programming languages: Python, MATLAB, Fortran 90, and C++. Python is a popular
object-oriented scripting language, and MATLAB is a widely-used problem-solving environment that has its own
scripting language. Both have good support for graphics and array operations, are relatively easy to learn and use,
and can be used interactively. Python is available free for most major platforms fromhttp://www.python.org .
MATLAB is a product of the Mathworks, Inc. Many universities have MATLAB site licenses, and an inexpensive
student version is also available.

Fortran 90 and C++ are, of course, widely-used compiled programming languages. Fortran has traditionally been the
dominant language used for scientific computing, especially the older Fortran 77 version of the language. Fortran 90
adds many modern features found in other programming languages to Fortran, including partial support for object-
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oriented programming. The use of C++ in scientific computing is growing rapidly, due to the development of efficient
C++ compilers that have largely eliminated the performance penalty of C++ compared to Fortran.

The language interfaces are designed so that Cantera has a similar look and feel in all environments. As an example,
the statements required to create an object representing an ideal gas mixture, set its state, and print out its molar
enthalpy are shown below for each language.

Fortran 90

use Cantera
gasmix_t gas
gas = IdealGasMix(’chem.xml’)
call setState_TPX(gas, 300.0, OneAtm, ’CH4:1, O2:2’)
write (*,*) ’molar enthalpy = ’,enthalpy_mole(gas)

Python

from Cantera import *
gas = IdealGasMix("chem.xml")
gas.setState_TPX(300.0, OneAtm, "CH4:1, O2:2")
print "molar enthalpy = ", gas.enthalpy_mole()

MATLAB

gas = IdealGasMix(’chem.xml’);
setState_TPX(gas, 300.0, OneAtm, ’CH4:1, O2:2’);
disp (’molar enthalpy = ’, enthalpy_mole(gas));

C++

include "Cantera.h"
IdealGasMix gas("chem.xml");
gas.setState_TPX(300.0, OneAtm, "CH4:1, O2:2");
cout << "molar enthalpy = ", gas.enthalpy_mole();

The structure of Cantera is shown schematically in Fig.1.1. If Cantera is used from any language other than C++,
access to the kernel goes through a C-callable library that provides functions to create, link, manipulate, and destroy
kernel objects. These functions are “wrapped” by language-specific interface code that uses the capabilities of each
language to represent Cantera objects.

1.3 The Kernel

Cantera is built on a “kernel” written in C++. The kernel consists of classes and functions that provide the core
capabilities that can be accessed from all language environments. It is implemented as a static library.

The kernel has a modular structure, and can be configured with only those features desired. For example, if Cantera
is only going to be used to evaluate thermodynamic and transport properties, then the modules implementing kinetics,
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Figure 1.1: Cantera internal structure.

1.3. The Kernel 7



one-dimensional flows, ODE solvers, and other capabilities can be excluded. This cuts down both on the size of the
kernel library, and on its compile time.

1.4 Versions of this Document

For each language, there is a version of this manual. The one you are reading is the C++ version. For information
about using Cantera from any of the other supported languages, consult the appropriate version of the manual.
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CHAPTER

TWO

Cantera in C++

Cantera is itself written in C++, and this makes using it in C++ programs different than using it to write programs in
any of the other supported languages. It also makes this version of the user’s manual different than the other versions
too, since it includes a discussion of procedures to modify and extend Cantera, and a description of some of Cantera’s
internal features.

2.1 Installing Cantera

To use Cantera in C++ programs, download the Cantera source distribution and compile it on your system. The latest
version of Cantera is always available fromhttp://www.cantera.org .

To compile Cantera, both a C++ compiler and a Fortran 77 compiler are required, since a few external routines that
Cantera uses are written in Fortran 77. Cantera has been built successfully on PCs running several flavors of the
Windows operating system, and on most common unix or unix-like platforms.

2.1.1 Environment Variables

Before running applications that use Cantera, the environment variable CANTERA_ROOT should be set to the top-
level Cantera directory. For example, if Cantera is located at ‘/usr/local/cantera-1.3’, then CANTERA_ROOT should
be set to/usr/local/cantera-1.3 .

Also, the ‘CANTERA_ROOT/bin’ subdirectory should be put on thePATH, since this contains some useful utility
programs.

On a Windows PC, environment variables can be set from the Control Panel, by double-clicking on the System icon,
and selecting the tab labeled Advanced.

On a unix system, they may be set using shell commands. These may be put in a startup file (for example, ‘.cshrc’ or
‘ .profile’. A typical csh unix script might look like this:

#!/bin/csh
setenv CANTERA_ROOT /usr/local/cantera-1.3;
setenv PATH $PATH:$CANTERA_ROOT/bin

The equivalent commands for the GNUbash shell would be:

#!/bin/bash
export CANTERA_ROOT=/usr/local/cantera-1.3;
export PATH=$PATH:$CANTERA_ROOT/bin

9
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2.1.2 Windows Build Procedure

Under Windows, Cantera can be built using Microsoft Visual C++ and Compaq Visual Fortran. Both share the same
Developer Studio development environment. The Cantera distribution comes with Developer Studio workspace and
project files configured to build Cantera. Simply open the workspace ‘cantera.dsw’ in folder ‘win32’, set the Active
Configuration on the Build menu toexamples - Win32 Release , and build the project. This will build the
Cantera kernel static libraries and a test programexamples.exe . Execute ‘examples.exe’ to verify that Cantera has
been correctly installed.

2.1.3 Unix Build Procedure

On a unix system, go to CANTERA_ROOT and edit file ‘configure’. Set the options appropriate for your system, save
the file, and then run it by typing at the shell prompt

./configure

This will cause a set of ‘Makefiles’ to be written that are configured appropriately for your system.

After ‘configure’ has completed, type

make

to build Cantera, and then

make install

to install it. You may need to have the “superuser” for your system help you with the last step, depending on how your
system’s file priviliges are set.

Be sure to use amake program compatible with GNUmake. This may be called something other thanmake on your
system.

Whenmake finishes, you should build the example programs to verify that Cantera is working properly. Type

cd examples/cxx
make

to build them.

If ‘ CANTERA_ROOT/bin’ is on your PATH, then the examples may be run from any directory by typing

cxx_examples

Note that doing so will generate several output files — be sure to run this command from a directory where you want
them to be written.

This unix build procedure also works on linux systems, and on Windows PCs running the Cygwin1 unix-like environ-
ment. If the ‘configure’ script is left unmodified, it’s settings are appropriate to build Cantera on a linux or cygwin
system using the GNU compilers.

1available fromhttp://www.cygwin.com
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2.1.4 Compilers

Cantera can be built with recent versions of most C++ compilers. The compiler must support namespaces, thebool
datatype, and have good support for templates, including the Standard Template Library (STL). If your C++ compiler
is several years old, you may need to upgrade it first.

Different compilers come with different implementations of the STL, some of which are better than others. A good
implementation that should work with most compilers is available fromhttp://www.sgi.com/tech/stl/
download.html .

If you are using a recent compiler, but still get errors when you try to compile, please post a message at the Cantera
User’s Group stating the problem; someone else may have experienced the same problem and knows the solution,
or perhaps there is an incompatibility in the Cantera source code or Makefiles that can be modified to eliminate the
problem. If you found a problem and were able to modify something to fix it, please post a message with your fix.
We would like Cantera to compile “out of the box” on as many systems as possible, and will incorporate your fix into
Cantera if practical to do so.

If you don’t have C++ and Fortran 77 compilers specifically for your system, you can use the free GNUg++ and
g77 compilers (http://www.gnu.org/software/gcc/gcc.html ). If you have these on your system, the
configure script will select them automatically unless you edit the configure script to specify different compilers.

If you do use the GNU compilers, it is strongly recommended that you use version 3.0 or later
(preferably 3.2 or later). Earlier versions ofg++ will compile Cantera, but may be slow and do
not provide adequate support for exception handling. Throwing an exception is likely to cause your
program to terminate, even if you supply code to catch the exception.

2.2 Creating a Cantera Application

Cantera comes with a utility programctsetup that generates properly-configuredMakefiles or Visual Studio
project files for your application. It can also create a prototype main program file.

To begin a new application, type at the command line

ctsetup

(If ‘ $CANTERA_ROOT/bin’ is not on your path, then you will need to type the full path instead.)

When you runctsetup , it will ask you for a project (i.e program) name, the directory where files should be written,
and the type of output file to generate (a unix Makefile, or a Developer Studio project file).

If there is no file named ‘<project>.cpp’ present, one will be created, with the following contents:

#include "Cantera.h"
// include additional header files here if needed

main( int argc, char ** argv) {
try {

// your code goes here
}
catch (CanteraError) {

showErrors(cerr);
cerr << "program terminating." << endl;

}

2.2. Creating a Cantera Application 11
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}

Simply fill in the try block with your code.

If you generate a unix Makefile, it has the project name and the extension ‘.mak’. If your program is namedreact ,
for example, then you would build the program by typing

make -f react.mak

If your program consists of more than one source file, you will need to first edit the Makefile to add the other object
file names.

If you generate a Developer Studio project file, simply open it and build the project. The project file is set up so that
the links to the Cantera libraries will be made.

2.3 Exception Handling

As can be seen from the prototype program above, Cantera uses the exception-handing mechanism of C++ to report
error conditions. Many different possible errors result in aCanteraError exception being thrown. When this
occurs, an error message is written to an internal buffer, and, if thrown within atry block, transfers execution to the
correspondingcatch block.

In the prototype program above, this simply prints out the error message and terminates execution. If necessary,
additional clean-up actions could be taken in thiscatch block.

2.4 An Example Cantera C++ Application

An example of a C++ Cantera application is shown below. This program creates an object representing an ideal
gas mixture, reads an input file specifying its attributes, and prints a table listing the species names, their molecular
weights, standard-state enthalpy of formation at 25 C, and elemental composition.

Listing 2.1: A program to list species data.

#include "Cantera.h"
#include <stdio.h>

void printSpeciesInfo(IdealGasMix& gas) {
int nsp = gas.nSpecies();
int nel = gas.nElements();
int k, m;

// print header
printf(" %10s %10s %10s","Species","MolWt",

"h0_298");
for (m = 0; m < nel; m++)

printf("%3s",gas.elementName(m).c_str());
printf("\n %10s %10s %10s"," ","[g/mol]",

"[kJ/mol]");
printf("\n\n");

// print data for each species
string x;
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for (k = 0; k < nsp; k++) {
x = gas.speciesName(k)+":1";
gas.setState_TPX(298.15, OneAtm, x);
printf(" %10s %10.4f %10.4f",

gas.speciesName(k).c_str(),
gas.molecularWeight(k),
1.e-6*gas.enthalpy_mole());

for (m = 0; m < nel; m++)
printf("%3d", int (gas.nAtoms(k,m)));

printf("\n");
}

}

int main( int argc, char ** argv) {
try {

if (argc < 2)
cout << "usage: speciesinfo <filename>" << endl;

else {
string fname = string(argv[1]);
IdealGasMix g(fname);
printSpeciesInfo(g);

}
return 0;

}
catch (CanteraError) {

showErrors(cerr);
cerr << "program terminating." << endl;
return -1;

}
}

This program is invoked from the command line with a filename, as follows:

speciesinfo gri30.xml

The resulting output looks like this:

Species MolWt h0_298 O H C N AR
[g/mol] [kJ/mol]

H2 2.0159 0.0000 0 2 0 0 0
H 1.0080 217.9851 0 1 0 0 0
O 15.9994 249.1598 1 0 0 0 0

O2 31.9988 0.0000 2 0 0 0 0
OH 17.0074 39.3447 1 1 0 0 0

H2O 18.0153 -241.8112 1 2 0 0 0
HO2 33.0068 12.5512 2 1 0 0 0

H2O2 34.0147 -135.8717 2 2 0 0 0
C 12.0112 716.6360 0 0 1 0 0

CH 13.0191 597.3014 0 1 1 0 0
CH2 14.0271 392.3113 0 2 1 0 0

CH2(S) 14.0271 429.8661 0 2 1 0 0

2.4. An Example Cantera C++ Application 13



CH3 15.0351 146.8910 0 3 1 0 0
CH4 16.0430 -74.5954 0 4 1 0 0

CO 28.0106 -110.5232 1 0 1 0 0
CO2 44.0100 -393.4859 2 0 1 0 0
HCO 29.0185 41.9974 1 1 1 0 0

CH2O 30.0265 -108.5733 1 2 1 0 0
CH2OH 31.0345 -14.6270 1 3 1 0 0

CH3O 31.0345 16.3028 1 3 1 0 0
CH3OH 32.0424 -200.9277 1 4 1 0 0

C2H 25.0303 566.1707 0 1 2 0 0
C2H2 26.0382 228.1860 0 2 2 0 0
C2H3 27.0462 299.7218 0 3 2 0 0
C2H4 28.0542 52.4968 0 4 2 0 0
C2H5 29.0622 118.6510 0 5 2 0 0
C2H6 30.0701 -83.8464 0 6 2 0 0
HCCO 41.0297 177.4009 1 1 2 0 0

CH2CO 42.0376 -47.6971 1 2 2 0 0
HCCOH 42.0376 78.2540 1 2 2 0 0

N 14.0067 472.6510 0 0 0 1 0
NH 15.0147 356.8964 0 1 0 1 0

NH2 16.0226 192.0384 0 2 0 1 0
NH3 17.0306 -45.8957 0 3 0 1 0
NNH 29.0214 249.5017 0 1 0 2 0

NO 30.0061 91.2594 1 0 0 1 0
NO2 46.0055 34.1911 2 0 0 1 0
N2O 44.0128 81.5950 1 0 0 2 0
HNO 31.0141 106.2523 1 1 0 1 0

CN 26.0179 438.6564 0 0 1 1 0
HCN 27.0258 130.8079 0 1 1 1 0

H2CN 28.0338 247.3193 0 2 1 1 0
HCNN 41.0325 462.0938 0 1 1 2 0
HCNO 43.0252 171.0257 1 1 1 1 0
HOCN 43.0252 -11.8014 1 1 1 1 0
HNCO 43.0252 -118.0712 1 1 1 1 0

NCO 42.0173 131.7890 1 0 1 1 0
N2 28.0134 0.0014 0 0 0 2 0
AR 39.9480 -0.0000 0 0 0 0 1

C3H7 43.0892 100.4942 0 7 3 0 0
C3H8 44.0972 -103.8476 0 8 3 0 0

CH2CHO 43.0456 25.1008 1 3 2 0 0
CH3CHO 44.0536 -166.1798 1 4 2 0 0

We’ll look at many more examples in subsequent chapters.

2.5 Summary

This chapter has described the basics of how to download and install Cantera, and how to build a C++ application.
With this as background, we are now ready to begin looking at how to use Cantera to solve problems.
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CHAPTER

THREE

Phases of Matter

Some of the most useful classes Cantera provides are those that model phases of matter in various forms — gases,
liquids, and solids. In this chapter, we’ll introduce these classes and work through several examples showing how to
use them.

3.1 Ideal Gas Mixtures

Let’s begin by looking at how ideal gas mixtures are represented.

The Cantera class representing ideal gas mixtures is classIdealGasMix . A simple program that uses this class is
shown below.

Listing 3.1: A simple program using classIdealGasMix .

#include "Cantera.h"

int main( int argc, char ** argv) {
try {

IdealGasMix g("silane.xml");
g.setState_TPX(2000.0, 100.0, "SIH4:0.01,H2:0.99");
equilibrate(g, TP);
printSummary(g, cout);
return 0;

}
catch (CanteraError) {

showErrors(cerr);
cerr << "program terminating." << endl;
return -1;

}
}

This program creates an ideal gas mixture from a specification in an input file, sets its initial state, finds the chemical
equilibrium state at the same temperature and pressure, and then prints out a summary of the results. This program
requires adding only four statements to the boilerplate code generated byctsetup .

The output looks like this:

temperature 2000 K
pressure 100 Pa

density 1.33182e-05 kg/m^3
mean mol. weight 2.21455 amu
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1 kg 1 kmol
----------- ------------

enthalpy 3.03206e+07 6.715e+07 J
internal energy 2.28121e+07 5.052e+07 J

entropy 111327 2.465e+05 J/K
Gibbs function -1.92333e+08 -4.259e+08 J

heat capacity c_p 15109.6 3.346e+04 J/K
heat capacity c_v 11355.4 2.515e+04 J/K

X Y
------------- ------------

H2 9.402287e-01 8.559033e-01
H 5.023175e-02 2.286333e-02

SIH4 1.904176e-10 2.761643e-09
SI 9.493714e-03 1.204037e-01

SIH 2.610042e-05 3.428973e-04
SIH2 2.437203e-06 3.312835e-05
SIH3 5.801418e-09 8.149792e-08

H3SISIH 3.881514e-15 1.055211e-13
SI2H6 9.861394e-20 2.770644e-18

H2SISIH2 4.058658e-14 1.103369e-12
SI2 1.619905e-05 4.108876e-04
SI3 1.121605e-06 4.267413e-05

This output is all produced by the call toprintSummary . This is a very useful way to get a quick overview of the
state of the gas mixture.

3.2 Input Files

It is clear from the output above that the ideal gas mixture this object represents contains multiple species. We did
not explicitly specify these species and their properties in program statements (although we could have). Instead, they
were read in from file ‘silane.xml’. This file contains an entry for each species similar to the one shown below. (It also
contains entries for every reaction.)

<!-- SIH4 -->
<species id="this_s_SIH4" name="SIH4" phaseType="G">

<string title="comment">90784</string>
<atomArray>

<integer title="SI">1</integer>
<integer title="H">4</integer>

</atomArray>
<thermo>

<NASA Tmax="2000" Tmid="1000" Tmin="300">
<floatArray size="7" title="low">

1.451640400E+000, 1.398736300E-002, -4.234563900E-006,
-2.360614200E-009, 1.371208900E-012, 3.113410500E+003,

1.232185500E+001
</floatArray>
<floatArray size="7" title="high">

7.935938000E-001, 1.767189900E-002, -1.139800900E-005,
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Figure 3.1: Silane XML data as viewed in a graphical XML viewer like Internet Explorer.

3.599260400E-009, -4.524157100E-013, 3.198212700E+003,
1.524225700E+001

</floatArray>
</NASA>

</thermo>
</species>

The input file is written in an XML-based format we call CTML, for “Cantera Markup Language.” It is a plain text
file, and may be edited with any text editor. But CTML files are meant to be viewed and edited with graphical tools. If
the file containing this silane entry is viewed in Internet Explorer or any other XML viewer, the silane record appears
as shown in Fig.3.2. And if this file is opened in an XML editor like XML Spy, species records can be added, deleted,
or modified graphically. This is a big advantage of using XML data files: graphical XML viewers and editors already
exist, so there is no need to write special graphical tools for this purpose, as would be necessary if some non-standard
file format were used.

The graphical view may not work in the current release.

In addition to CTML, input files in the format used in the Chemkin software package [Kee et al., 1989] may be used.
We will call this format “CK format.” Files in this format often have extensions ‘.inp’ or ‘ .dat’. In any case, Cantera
looks at the file contents, not the extension, to determine the file type, so any extension may be used.

The CK format specification allows species thermodynamic data to be taken from a separate database file. This file
may be specified as a second parameter, if it is required. If a database file is specified, then it must exist, whether or
not it is actually needed.
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All of the following are valid ways to call theIdealGasMix constructor:

// CTML file with one phase specification
IdealGasMix g1("silane.xml");

// CTML file with multiple phases
IdealGasMix g1("silane.xml/vapor");

// self-contained CK file
IdealGasMix g1("silane.inp");

// CK file with an external database
IdealGasMix g1("silane.inp", "therm.dat");

A utility programck2ctml is included in the distribution that converts files in this format into CTML. For example

ck2ctml -i chem.inp -t therm.dat -o mech.xml

converts Chemkin input file ‘chem.inp’ into CTML file ‘ mech.xml’, using file ‘therm.dat’ to resolve undefined species
in the input file.

Specifying a CK-format input file in the call toIdealGasMix automatically callsck2ctml also to generate an
equivalent CTML file. For example, if the input file is specified as ‘chem.inp’, then the call toIdealGasMix will
create a file ‘chem.xml’. This file can optionally be used later instead of ‘chem.inp’. One advantages of doing so is
that it allows viewing/editing the file graphically. Also, CTML files are self-contained, with all thermodynamic data
for each species.

ck2ctml.exe for Windows PCs may be downloaded from
http://blue.caltech.edu/cantera_dist/tools/ck2ctml.exe

3.2.1 The Search Path

Whenever a file name is specified, Cantera first searches the local directory for a file with the specified name. If one is
not found, then Cantera data directories are searched, including directory ‘CANTERA_ROOT/data/inputs’, where the
input files used in the examples are located.

If you want to use your own input files in application programs in different directories, you can put the files into
‘CANTERA_ROOT/data/inputs’, instead of copying the input file to every directory where you want to use it.

Alternatively, additional directories can be added to the Cantera search path. This is done by calling function
addDirectory :

addDirectory("/usr/local/inputs");

The format of the directory string depends on the operating system. On a PC running Windows, the call to
addDirectory might look like this:

addDirectory("c:\\inputs");

Note that two backslashes are required to produce a literal ’
’ in the string.
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3.3 Methods

ClassIdealGasMix has a large number of methods, most of which are inherited from base classes. We’ll look at
some of the most useful methods here; others are described in the Reference section.

3.3.1 Element, Species, and Reaction Information

A few useful methods to retrieve information about the elements, species, and reactions for the mixture are shown
below.

int nel = gas.nElements(); // number of elements
int nsp = gas.nSpecies(); // number of species
int nrx = gas.nReactions(); // number of reactions

The elements and species have anindex number, which is assigned in sequence as they are added to the mixture object.
Therefore, the index number corresponds to the order in which they are declared in the input file.

Since indexing of arrays in C/C++ begins with zero, the first element listed in the input file has index number 0, and
the last one has index numbernElements() - 1 . Similarly, the first species has index number 0, and the last one
has index numbernSpecies() - 1 .

Note that this convention differs in the other Cantera language interfaces, since Cantera uses the default indexing
scheme for the local environment. Thus, in Python indexing also begins with 0, but in MATLAB and Fortran it begins
with 1.

int m, k, i, j;
string s;
for (m = 0; m < nel; m++) {

s = gas.elementName(m); // index number -> name
j = gas.elementIndex(s); // name -> index number
a = gas.atomicWeight(m); // atomic wt.

}
for (k = 0; k < nsp; k++) {

s = gas.speciesName(k); // index number -> name
j = gas.speciesIndex(s); // name -> index number
a = gas.molecularWeight(m); // mol. wt.

}

While elements and species may be referenced by name or by index number, reactions can only be referenced by
number. As with elements and species, numbers are assigned in order as reactions are added to the mixture.

bool rev;
for (i = 0; i < nrx; i++) {

s = gas.reactionString(i); // rxn equation
rev = gas.isReversible(i); // reversible rxn?
j = gas.rxnType(i); // reaction type flag

}

3.3.2 Setting the State

The methods discussed in the last section are examples of methods that return the values of constant, “read-only”
mixture attributes like the number of species, their names, the coefficients that are used to compute their properties,
etc. Once set during the construction phase (that is, while building the object from the input file specification), these
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attributes are frozen and cannot be changed.

Other methods return the values of physical properties that may change during the course of a simulation. Examples
include methods that return thermodynamic properties, transport properties, and kinetic rates. These all depend on the
thermodynamic stateof the gas mixture, which is fully specified by the values of any two independent thermodynamic
properties of the mixture plus the chemical composition. If we consider only the intensive state (the state of a unit
amount), then the composition is specified byK − 1 mole or mass fraction values, since the last one can be obtained
from the summation conditions ∑

k

Xk = 1, (3.1)

and ∑
k

Yk = 1. (3.2)

We will use the notation
∑

k as shorthand for
∑K

k=1, whereK is the total number of species in the
mixture.

If there areK species in the mixture, then the intensive thermodynamic state is a function ofK +1 parameters — two
thermodynamic properties, andK − 1 mole fractions, mass fractions, or concentrations.

Cantera allows the state to be set by specifying the value of one quantity from each of the three columns in the table
below. The methods to set the state have names that begin withsetState_ , which is followed by three uppercase
letters. The letters denote the properties that are being specified, and corrrepond to the letters in parentheses in the
table. The three letters must be in the same order as the columns of this table — the first letter must be T, H, or S;
the second one P or R, and the third one X or Y. For example, to set the temperature, density, and mole fractions, you
would call methodsetState_TRX ; to set the specific entropy, pressure, and mass fractions, you would call method
setState_SPY .

Temperature (T) Density (R) Mole Fractions (X)
Specific Enthalpy (H) Pressure Mass Fractions (Y)
Specific Entropy (S)

These methods take three arguments, which must be the chosen property values in the same order. The first two
arguments are given as floating-point numbers, and the third argument specifying the chemical composition must be
either an array, or a string.

3.3.3 Specifying the Composition

Using an Array

If the composition is specified with an array, it must contain values (mole fractions or mass fractions) for each species,
ordered by species index number. Although onlyK − 1 values are actually required due to the summation condition,
these methods require that allK values be input. This is done for convenience, so thatrelativevalues may be specified
that do not satisfy the summation conditions. The input values will be scaled by dividing by their sum, so that the
scaled values are guaranteed to sum to one.

Therefore, if you want to set the species mole fractions all to the same value, it is sufficient to set them all to 1.0 (or
any other non-zero value):

vector_fp x(gas.nSpecies(), 1.0);
gas.setState_TPX(300.0, OneAtm, x.begin());
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Sometimes it is desired to set the mole or mass fractions to values that do not sum to 1.0. Often this occurs
when computing small perturbations to a system of equationa about a point where the summation condition is sat-
isfied. Two methods are provided that set the state without scaling the input values:setState_TPX_NoNorm and
setState_TPY_NoNorm .

3.3.4 Using a String

In cases where only a few species have non-zero mole or mass fractions, it is sometimes more convenient to specify the
composition with a string. Versions of thesetState_abc methods are also provided that take a string rather than
an array for the third argument. The format of the string is a list of comma-separated name:value pairs, for example

"SI2H6:2, SIH4:1.2, O2:0.1"

The colon separating the name and the value is required, as is the comma separating the species. The format of the
number can be anything that the C functionatof can parse correctly. The species name is case-sensitive, and must
match a species in the mixture exactly.

All unspecified species are set to zero, and if a species is specified that is not present in the mixture an exception is
thrown.

nsp = gas.nSpecies();
vector_fp x(nsp, 1.0/nsp);
double t = 300.0, p = OneAtm, rho = 0.001;

gas.setState_TPX(t, p, x); // set T, P, and X
gas.setState_TRX(t, rho, x); // set T, density, and X

string xstring = "CH4:0.2, N2: 0.5, O2:0.3";
gas.setState_TPX(t, p, xstring); // set T, P, and X

vector_fp y(nsp, 1.0/nsp);
gas.setState_TPY(t, p, y); // set T, P, and Y
gas.setState_TRY(t, rho, y); // set T, density, and Y

string ystring = "CH4:0.2, N2: 0.5, O2:0.3";
gas.setState_TPY(t, p, ystring); // set T, P, and Y

3.4 Updating the State

The methods of the previous section set the complete thermodynamic state. After one of them has been invoked, the
state of the object is entirely independent of its previous state. In contrast, the methods discussed here onlyupdatethe
current state, by changing the values of some but not all properties.

In implementing methods that set only part of the state, there is some ambiguity about which unspecified property is
held fixed. For example, if methodsetState_TX is called to set the temperature and mass fractions, is the pressure
held constant, or the density? A convention must be adopted, and this is the one Cantera uses:

1. If neither T, H, or S is specified, then T is held to its current value

2. If neither P nor R is specified, then thedensityis held to its current value.

3. If neither X nor Y is specified, then the composition is held fixed.
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nsp = gas.nSpecies();
vector_fp x(nsp, 1.0);
double t = 300.0, p = OneAtm, rho = 0.001;

gas.setState_TP(t,p); // set T and P, hold comp.
gas.setState_PX(p,x); // set P and X, hold T
gas.setState_TR(t,rho); // set T and density, hold comp.

gas.setTemperature(t); // set T, hold *density* and comp.
gas.setDensity(rho); // set density, hold T and comp.
gas.setPressure(p); // set P, hold T and comp.

gas.setMoleFractions(x) // set X, hold T and density
gas.setMoleFractions_NoNorm(x); // set raw X, hold T and density

string xstring = "CH4:0.2, N2: 0.5, O2:0.3";
gas.setState_TPX(t, p, xstring); // set T, P, and X

vector< double > x(nsp, 1.0/nsp);
gas.setState_PY(p,y); // set P and Y, hold T

gas.setMassFractions(x) // set Y, hold T and density
gas.setMassFractions_NoNorm(x); // set raw Y, hold T and density

The methods that set two properties have the samesetState_ form that those that set three do. But the methods that
set only one property deviate from this form. For example, the method to set the temperature only (holding density
and composition fixed) is calledsetTemperature , notsetState_T .

3.5 Thermodynamic Properties

The following methods return mixture thermodynamic properties. Those with names ending in_mole return molar
properties, and those ending in_mass return specific properties.

double v;
v = gas.enthalpy_mole(); // molar enthalpy [J/kmol]
v = gas.entropy_mole();
v = gas.gibbs_mole();
v = gas.cp_mole();
v = gas.cv_mole();

v = gas.enthalpy_mass(); // specific enthalpy [J/kg]
v = gas.entropy_mass();
v = gas.gibbs_mass();
v = gas.cp_mass();
v = gas.cv_mass();

Property values associated with individual species may also be determined. Thepartial molarproperties represent the
contribution of each species to the mixture properties. Thepure molarproperties are those of the pure species at the
mixture temperature and pressure.

These may not work in the current release.
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int nsp = gas.nSpecies();
vector< double > output(nsp);

gas.getChemPotentials(output); // chemical potentials

// partial molar properties
gas.getPartialEnthalpies_mole(output);
gas.getPartialEntropies_mole(output);
gas.getPartialGibbs_mole(output);
gas.getPartialCp_mole(output);

// pure species properties
gas.getPureEnthalpies_mole(output);
gas.getPureEntropies_mole(output);
gas.getPureGibbs_mole(output);
gas.getPureCp_mole(output);

3.6 Kinetics

Objects of typeIdealGasMix representreacting ideal gas mixtures. The most useful methods for kinetics are
introduced here.

int nsp = gas.nSpecies();
int nrx = gas.nReactions();
vector_fp rxndata(nrx);
vector_fp spdata(nsp);

gas.getFwdRatesOfProgress(rxndata.begin());
gas.getRevRatesOfProgress(rxndata.begin());
gas.getNetRatesOfProgress(rxndata.begin());

gas.getCreationRates(spdata.begin());
gas.getDestructionRates(spdata.begin());
gas.getNetProductionRates(spdata.begin());

These examples show only a fraction of the methods available in classIdealGasMix . These and others will be
described in more detail in subsequent chapters.

3.7 Transport Properties

Currently transport properties are not integrated into classIdealGasMix , although they may be in subsequent re-
lease. See Chapter?? for information on calculation of transport properties.

3.8 Structure

We saw in the last few sections that classIdealGasMix provides a rich set of methods to simulate the behavior of
reacting ideal gas mixtures. Many of them, of course, would be useful for simulating dense gases, liquids, or even
solids. It would be very inefficient to have to implement the entire set from scratch for each class representing some
material phase.

3.6. Kinetics 23



Figure 3.2: Inheritance diagram for classIdealGasMix .

In fact, most of the methods discussed in previous sections are not defined in classIdealGasMix at all. They are
defined in more elementary base classes from whichIdealGasMix derives. ClassIdealGasMix is derived from
three lower-level classes —Phase , GasKinetics , andIdealGasThermo . It defines relatively few methods of
its own. A simplified version of its definition is shown below, and the inheritance diagram is shown in Fig.??.

class IdealGasMix : public Phase, public IdealGasThermo,
public GasKinetics

{
public :

IdealGasMix();
IdealGasMix(string infile, string dbase="",

bool validate= true );
virtual ~IdealGasMix();

// a few utility methods
// ...

};

Each of the base classes ofIdealGasMix handles a specific portion of the required tasks, as described below.

Phase.ClassPhase provides a basic no-frills representation of any phase. It provides methods to set or get the
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temperature, density, and composition (in several forms), and handles constant data for the elements and species.
It itself derives from two more-elementary classes (State andConstituents ).

IdealGasThermo. This class provides the thermodynamic property methods. It is a member of a family of classes
that derive from classThermo . Each family member has the same set of public methods, but implements them
using expressions appropriate for a particular thermodynamic model. ClassIdealGasThermo is the family
member that computes properties using expressions valid for ideal gas mixtures.

GasKinetics. ClassGasKinetics provides the methods that compute reaction rates of progress and species
production rates. It uses rate expressions valid for elementary reactions in ideal gas mixtures. Like
IdealGasThermo , GasKinetics is part of a family of clases that derive from a common base class
(Kinetics ).

Each of these classes is described in more detail in later chapters.

The advantage of this structure is that it is easy to create new classes representing different types of gases, liquids, or
solids. For example, suppose we want to create a class representing gas mixtures that obey the van der Waals equation
of state. For simplicity, we will not do kinetics simulations with this class, so only need to derive a new class for the
thermodynamic properties.

All we need to do is first derive a class fromThermo :

class VdwThermo : public Thermo {
public :

VdwThermo(phase_t& phase);
virtual ~VdwThermo();

// new methods
void setVdwConstants( double a, double b);

// overloaded methods
virtual double pressure() { ... }
virtual double enthalpy_mole() { ... }
// add other virtual methods

};

Then simply fill in the body of the methods with the appropriate van der Waals expressions. The easiest way to do this
would be to copy fileIdealGasThermo.h and make the necessary modifications.

We have added a method to set the van der Waalsa andb parameters. A better model would use a mixture rule to com-
pute these from data for individual species. But those are design decisions that specify the model to be implemented;
the procedure is the same whatever the model.

Once this class is finished, define classVdwGasMix as

class VdwGasMix : public Phase, public VdwThermo {
public :

VdwGasMix(string infile);
virtual ~VdwGasMix();

};

The same code could be used to import the gas specification from a CTML file, and then methodsetVdwConstants
called to seta andb. Alternatively, the function that reads CTML files (importCTML ) could be modified to recognize
XML tags that specify van der Waals parameters in the input file.

By building up classes from more elementary ones in this way, it is possible to re-use a great deal of code, and only
code the differences between the new derived class and its base class(es). The resulting class can be used wherever
one of its base classes can be used. Instances of classVdwGasMix can, for example, be operated on using the same
functions and methods used forIdealGasMix (except for kinetics, which we didn’t implement).
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CHAPTER

FOUR

Utilities

This chapter describes some classes, templates, and functions that have nothing to do with kinetics, thermodynamics,
or transport processes, but are useful just the same. They are used internally within Cantera, and may be useful in user
programs too.

4.1 Arrays

Many methods and functions in Cantera take array arguments of typedouble* . Although there are many different
implementations in C++ of classes for arrays, the POD1 typedouble* is used for this purpose in Cantera, since these
methods must be accessible from other languages too. Fortran arrays, MATLAB arrays, and NumPy arrays in Python
all can be accessed through pointers of typedouble* . If the method arguments were instead a C++ array class such
asstd::vector<double> , then the language interfacing code would have to copy the native array data into C++
objects before invoking the function or method.

Still, when writing C++ code, it is convenient to use an array class that handles memory allocation and deallocation
automatically, definesoerator« so that arrays can be easily printed for debugging, and can dynamically grow by
adding elements to the end. As long as the underlying data structure is adouble array, and a method is provided to
return a pointer to the first element in this array, the use of such a class is entirely compatible with methods that take
double* arguments.

Until recently, Cantera used the Standard Template Libraryvector<double> class for this purpose. It was con-
venient to use, and methodbegin() returned adouble* pointer to the underlying contiguous data array. How-
ever, some recent implementations ofvector<double> define methodbegin() to return an iterator of type
vector<double>::iterator which is not convertible into adouble* pointer. (Methodbegin() returns
an iterator in all implementations, but in older onesvector<double>::iterator is only a typedef for
double* .

The solution to this problem is to move away from usingvector<double> to represent arrays. Cantera now
defines its own lightweight class that defines only those methods that are really needed (far fewer than are defined
in the std::vector template), and guarantees thatbegin() returns adouble* pointer to the first element.
This class is accessed asvector_fp within Cantera, which is simply atypedef for classct::ctvector_fp ,
declared in file ‘ctvector.h’.

This class is used exclusively within Cantera whendouble arrays are needed, and can also be used in user programs.
Some examples of its use are shown below.

#include "Cantera.h"
...
// create an array of length 10 and fill it with 0.0
vector_fp x(10, 0.0);

1“plain old data”
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// create a zero-length array
vector_fp y;

// append array elements
int i;
for (i = 0; i < 10; i++) y.push_back(x[i]);

// stream output
cout << x << end << y << endl;
cout << x.size() << " " << y.size() << endl;

// resizing
x.resize(500);

// passing an array to Fortran
ftnfunction_(x.begin());

28 Chapter 4. Utilities



CHAPTER

FIVE

Writing Functions in C++ for Use in
Fortran and C

Cantera provides an interface for Fortran 90, but you can also write your own interface functions in C++ that can be
called from Fortran and C. This allows you to use Cantera in Fortran 77 applications, for example.

Let’s consider a simple example. Suppose you need a function that returns the species molar production rates, given
the temperature, pressure, and array of mass fractions. If you were writing this in C++ with no consideration of being
able to call it from any other language, you might write something like this:

static IdealGasMix* pGas = 0;

// create the gas object
void setup(string mechfile) {

pGas = new IdealGasMix(mechfile);
}

// call to delete the gas object
void cleanup() {

delete pGas;
}

void getWdot( double t, double p, double * y, double * wdot) {
pGas->setState_TPY(t, p, y);
pGas->getNetProductionRates(wdot);

}

A function setup is first called to create anIdealGasMix object. A pointer to this object is stored in a global
variable for later access by functiongetWdot . A functioncleanup is also provided to destroy this object when it
is no longer needed. (Since the memory will be reclaimed anyway when the program exits, callingcleanup is only
needed if it is desired to reclaim memory before the program finishes.)

These functions, as written, cannot be called from Fortran, or even from C. There are several problems, the first of
which isname mangling. C++ compilers change the names of functions they compile to incorporate information about
the argument types. Since Fortran and C don’t know anything about C++ name mangling, they will be unable to find
the functions in the object file, and the link will fail. This problem can be remedied by surrounding every function that
is to be exported from the object file byextern "C" {...} .

Another problem is that thesetup function takes astring argument, which is a C++ class, and therefore unknown
to Fortran and C. For C, a solution is to rewrite the function to take a pointer to a NULL-terminated array ofchar (a
“C-string”). TheIdealGasMix constructor takes astring argument, but this can be constructed from the C-string
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within the function.

For use in C programs, the following rewrite of the above functions will work:

static IdealGasMix* pGas = 0;

extern "C" {
// create the gas object
void setup( char * mechfile) {

pGas = new IdealGasMix(string(mechfile));
}

// call to delete the gas object
void cleanup() {

delete pGas;
}

void getWdot( double t, double p, double * y, double * wdot) {
pGas->setState_TPY(t, p, y);
pGas->getNetProductionRates(wdot);

}
}

If we want to use these functions in Fortran 77, we still have some work to do, however. Unlike Fortran 90, Fortran
77 does not support theINTERFACEstatement, so it is not possible to tell the compiler that the first two parameters
to getWdot should be passed by value, not by reference. Nor can we specify thatsetup expects a C-string, not a
Fortran string.

So we need to modify these functions to put them in the form Fortran 77 expects to see.

Fortran passes strings to functions by passingtwo arguments — a character array, and a hidden integer length param-
eter. Most Fortran compilers pass all string length parameters at the end of the argument list, but some, including
Compaq Visual Fortran (CVF), pass them immediately after each string argument. (CVF can optionally pass them at
the end, however.)

Finally, most Fortran compilers modify the function names before writing them to the object file by adding a trailing
underscore, and changing the name to lowercase. Functions written in C/C++ for use in Fortran must also have
lowercase names with a trailing underscore.

The following modified version is now Fortran callable.

static IdealGasMix* pGas = 0;

extern "C" {
// create the gas object
void setup_( char * mechfile, int n) {

string fname(n+1,’\0’);
copy(mechfile, mechfile + n, fname.begin());
delete pGas;
pGas = new IdealGasMix(string(mechfile));

}

// call to delete the gas object
void cleanup_() {

delete pGas;
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pGas = 0;
}

void getwdot_( double *t, double *p, double *y, double *wdot) {
pGas->setState_TPY(*t, *p, y);
pGas->getNetProductionRates(wdot);

}
}

Once compiled, the functions are equivalent to Fortran 77 subroutines with the following interface:

SUBROUTINE SETUP(MECHFILE)
CHARACTER*(*) MECHFILE
END

SUBROUTINE GETWDOT(T, P, Y, WDOT)
DOUBLE PRECISION T, P, Y(1), WDOT(1)
END

SUBROUTINE CLEANUP
END

They may be called from Fortran as follows:

PROGRAM REACT
DOUBLE PRECISION T(1000), P, Y(100), WDOT(100)
...
CALL SETUP(’mech.xml’)
...
DO I = 1,1000

...
CALL GETWDOT(T(I), P, Y, WDOT)
...

END DO

C finished with GETWDOT, so release memory
CALL CLEANUP

These Fortran-callable functions can of course also be used from C. To do so, a header file should be written that
declares these functions as shown below.

#ifndef MY_FUNC_LIB_H
#definE MY_FUNC_LIB_H

void setup_( char * mechfile, int n);
void getwdot_( double * t, double * p, double * y, double * wdot);
void cleanup_();

#endif
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CHAPTER

SIX

Class State — Temperature, Density, and
Composition

6.1 Purpose

The thermodynamic state is uniquely specified by the values of any two thermodynamic properties and the composi-
tion. ClassState stores the the temperature, the mass density, and the mass fractions for this purpose.

It also stores a pointer to a vector of species molecular weights, and provides methods to convert between mole
fractions, mass fractions, and concentrations. ClassState contains no other information about the species.

ClassState is meant to be used only as a base class.

Its methods are not virtual, and are not meant to be overloaded in subclasses. They are defined in the header file, so
that they may be inlined by the compiler.

Classes derived fromState includePhase andIdealGasMix .

6.2 Theory

The thermodynamic state may be specified by any two thermodynamic state variables, but some choices are more
convenient than others. Instances of classState specify the state by storing the temperature, mass density, and mole
fractions for all species. This choice of independent variables is made since many quantities depend onT , andρ is
always independent ofT , unlikeP .

6.3 Construction and Initialization

State ()
The constructor takes no arguments.

initState ( const vector_fp& mw)
Initialize the instance. The argument is a reference to a vector of species molecular weights. A local copy of
this vector is made, and the number of species is set based on the length of this vector.Note: This method is
declaredprotected , and therefore can only be accessed from within subclasses ofState
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6.4 Temperature and Density

double setTemperature ()
Set the temperature [K].

double temperature () const
The temperature [K].

double setDensity ()
Set the density [kg/m3].

double density () const
The mass density [kg/m3].

double molarDensity () const
The molar density [kmol/m3].

double meanMolecularWeight () const
The mean molecular weight [kg/m3].

6.5 Setting the Composition

void setMassFractions ( double* yin) const
Set the species mass fractions to the values in arrayyin after normalizing them so that

∑
k Yk = 1.

void setMassFractions_NoNorm ( double* yin) const
Set the species mass fractions to the values in arrayyin withoutnormalizing them so that

∑
k Yk = 1.

void setMoleFractions ( double* xin) const
Set the species mole fractions to the values in arrayxin after normalizing them so that

∑
k Xk = 1.

void setMoleFractions_NoNorm ( double* xin) const
Set the species mole fractions to the values in arrayxin withoutnormalizing them so that

∑
k Xk = 1.

See also:Sectionphasesetcomp
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6.6 Getting the Composition

These methods retrieve composition data, either for one species or for all of them. For those that take an array
argument, the array must have length of at leastK.

void getConcentrations ( double* c) const
Return the species concentrations [kmol/m3] in arrayc.

void getMassFractions ( double* y) const
Return the species mass fractions inx.

void getMoleFractions ( double* x) const
Return the species mole fractions inx.

double massFraction ( int k) const
Mass fraction of speciesk.

double moleFraction ( int k) const
Mole fraction of speciesk.

6.7 Utilities

bool ready () const
Returntrue if the instance has been initialized and is ready for use.

double mean_X( double* Q) const
Return the mole-fraction-weighted mean of the entries in arrayQ. The return valueR is computed from

R =
∑

k

XkQk. (6.1)

double mean_Y( double* Q) const
Return the mass-fraction-weighted mean of the entries in arrayQ. The return valueR is computed from

R =
∑

k

YkQk. (6.2)

double sum_xlogx () const
ReturnR =

∑
k Xk log Xk.

double sum_xlogQ ( double* Q) const
ReturnR =

∑
k Xk log Qk.
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CHAPTER

SEVEN

Class Constituents — Elements and
Species

7.1 Purpose

ClassConstituents handles basic properties of the elements and species. It is meant to be used as a mix-in class,
and is not usually instantiated directly.

ClassPhase derives fromConstituents , and so the methods described here can be invoked on objects of class
Phase and its subclasses.

7.2 Adding Elements and Species

void addElement ( string name, double atomicWt) const
Add an element. Both the name and the atomic weight must be specified.

void addSpecies ( string name, double* atoms[, double charge]) const
Add a species with namename. The atoms array must contain atom numbers for each element, in the order
the elements were added. The molecular weight is constructed from the atom numbers and the element atomic
weights. If the species is charged, the charge may be entered as an optional third parameter.

Phase s;
s.addElement(’H’, 1.00797);
s.addElement(’O’, 15.9996);
double h2o_atoms[] = {2.0, 1.0};
s.addSpecies(’H2O’, h2o_atoms);
double oh_atoms[] = {1.0, 1.0};
s.addSpecies(’hydroxyl’, oh_atoms);
s.addSpecies(’oh_plus’, oh_atoms, 1.0);

7.3 Element Attributes

double atomicWeight ( int m) const
Atomic weight of element m.
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const vector_fp& atomicWeights () const
Return a read-only reference to the vector of atomic weights.

int elementIndex ( string name) const
Index of element namedname. The index is an integer assigned to each element in the order it was added,
beginning with 0 for the first element. Ifnameis not the name of an element in the set, then the value -1 is
returned.

string elementName ( int m) const
Name of element with indexm. If m < 0 or m >=nElements(), an exception is thrown.

const vector<string>& elementNames () const
Return a read-only reference to the internal vector of element names.

int nElements () const
Number of elements.

int nel = s.nElements();
cout << ’Number of elements: ’ << nel << endl;
for ( int m = 0; m < nel; m++) {

printf(’%d %s %10.4f ’, m,
s.elementName(m), s.atomicWeight(m));

}
}

7.4 Species Attributes

double charge ( int k) const
The electrical charge of speciesk, in multiples of the electron charge (|e| = 1.602× 10−19 Coulombs).

double molecularWeight ( int k) const
Molecular weight of speciesk [kg/kmol].

const vector_fp& molecularWeights () const
Return a read-only reference to the vector of molecular weights [kg/kmol].

double nAtoms ( int k, int m) const
The number of atoms of elementm in speciesk.

int nSpecies () const
Number of species.
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double speciesIndex ( string name) const
Index of species namedname. The index is an integer assigned to each species in the order it is added, beginning
with 0 for the first species. Ifnameis not the name of a species in the set, then the value -1 is returned.

string speciesName ( int k) const
Name of species with indexk. If k < 0 or k >=nSpecies(), an exception is thrown.

const vector<string>& speciesNames () const
Return a read-only reference to the vector of species names.

This program takes an input file name from the command line, and prints a list of species with their molecular weights
and charges, and the elemental composition matrix.

#include ’Cantera.h’
main( int argc, char ** argv) {

if (argc < 2) {
cout << ’missing filename’ << endl;
exit(-1);

}
IdealGasMix g(string(argv[1]));
int nsp = g.nSpecies();
int nel = g.nElements();
cout << ’Number of species: ’ << nsp << endl;
int k, m;
for (k = 0; k < nsp; k++) {

printf(’%d %s %10.4f %10.4f \n’, k,
g.speciesName(k), g.molecularWeight(k),
g.charge(k));

}

// print elemental composition matrix
printf(’ ’);
for (m = 0; m < nel; m++) printf(’%10s’,g.elementName(m));
for (k = 0; k < nsp; k++) {

printf(’%10s’,g.speciesName(k));
for (m = 0; m < nel; m++)

printf(’%10.4f’,g.nAtoms(k,m));
printf(’\n’);

}
}

7.5 Setting the State

Setting the thermodynamic state requires specifying two thermodynamic properties and the chemical composition.

7.5.1 Setting the Full State

These methods specify all state information. The final state is completely determined by the input values, and is
independent of the initial state.
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7.5.2 Updating the Current State

These methods change some properties of the current state, leaving others unchanged. The properties of the current
state that are held constant if not specified are the temperature, density, and mass fractions. Note in particular that the
density, not the pressure, is held constant. If it is desired to hold the pressure fixed, one of the methods of the previous
section should be used instead.

void setTemperature ( double t)
Set the temperatureT [K], holding density and composition fixed.

void setDensity ( double rho)
Set the densityρ [kg/m3], holding temperature and composition fixed.

void setPressure ( double p)
Set the pressureP [Pa], holding temperature and composition fixed.

void setState_PX ( double p, const double* x)
Set the pressure [Pa] and mole fractions, holding the temperature fixed.

void setState_PY ( double p, const double* y)
Set the pressure [Pa] and mass fractions, holding the temperature fixed.

void setState_TP ( double t, double p)
Set the temperature [K] and pressure [Pa], holding the composition fixed.

7.6 Setting the Composition

The composition may be set by specifying species mole fractions, mass fractions, or concentrations. The methods of
classState described here allow setting the co

This may be done with an array of values for each species, or with a string. The string format is a comma-separated
list of name/value pairs, as shown below:

gas1.setMoleFractions("N2:2.1, NH3:0.3, OH:0.002");
gas2.setMassFractions("AR:0.5, HE:0.5");

Species not listed in the string are set to zero. The string format is patrticularly convenient for setting the initial or
inlet composition, where only a few species are non-zero.

If a large number of species values must be specified, then the array format may be used. This is also the most
convenient form when the composition information is taken from external flowfield data.

void setMassFractions ( double* yin) const
Set the species mass fractions to the values in arrayyin after normalizing them so that

∑
k Yk = 1.

void setMassFractions ( string yin) const
Set the species mass fractions to the values specified in stringyin after normalizing them so that

∑
k Yk = 1.
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void setMassFractions_NoNorm ( double* yin) const
Set the species mass fractions to the values in arrayyin withoutnormalizing them so that

∑
k Yk = 1.

void setMoleFractions ( double* xin) const
Set the species mole fractions to the values in arrayxin after normalizing them so that

∑
k Xk = 1.

void setMoleFractions ( string xin) const
Set the species mole fractions to the values specified in stringxin after normalizing them so that

∑
k Xk = 1.

void setMoleFractions_NoNorm ( double* xin) const
Set the species mole fractions to the values in arrayxin withoutnormalizing them so that

∑
k Xk = 1.

See also:Section7.5

7.7 Getting the Composition

These methods retrieve composition data, either for one species or for all of them. For those that take an array
argument, the array must have length of at leastK.

void getConcentrations ( double* c) const
Return the species concentrations [kmol/m3] in arrayc.

void getMassFractions ( vector_fp& y) const
Return the species mass fractions inx.

void getMoleFractions ( vector_fp& x) const
Return the species mole fractions inx.

double massFraction ( int k) const
Mass fraction of speciesk.

double moleFraction ( int k) const
Mole fraction of speciesk.
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CHAPTER

EIGHT

Class Thermo — Thermodynamic
Properties

8.1 Purpose

ClassThermo is the base class for the family ofthermodynamic property managerclasses. ClassThermo only
defines the interface — if any of its methods are actually called, an exception is thrown. The virtual public methods
should be overloaded in derived classes to implement specific models.

These classes may be used as mix-in classes to provide thermodynamic properties. For an example of how to do this,
see Chapter??.

8.2 Subclasses

IdealGasThermo , ConstDensityThermo .

8.3 Theory

This section is under construction.
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8.3.1 Solution Properties

The thermodynamic properties must satisfy the following relationships.

P = −
(

∂f

∂v

)
T

(8.1)

s = −
(

∂f

∂T

)
v

(8.2)

u = f + Ts (8.3)

h = u + Pv (8.4)

g = f + Pv (8.5)

cv = T

(
∂s

∂T

)
v

(8.6)

β =
1
v

(
∂v

∂T

)
P

(8.7)

κT = −1
v

(
∂v

∂P

)
T

(8.8)

cp = cv +
Tvβ2

κT
(8.9)

These relationships are written for the specific properties, but analogous expressions apply for the molar properties.

8.3.2 Partial Molar Properties

For any extensive thermodynamic propertyB(T, P,N1, . . . , NK), the partial molar propertybk for speciesk is defined
by

bk =
(

∂B

∂Nk

)
T,P,Nj 6=k

, (8.10)

It may be shown1 that
B =

∑
k

bkNk (8.11)

The chemical potentialµk is identical to the partial molar Gibbs function.

µk =
(

∂G

∂Nk

)
T,P,Nj 6=k

. (8.12)

8.4 Construction and Destruction

Thermo ( phase_t* phase)
A pointer is stored to objectphase . The properties are evaluated for the temperature, density, and composition
stored in this object. Note that while classThermo can be instantiated if desired, its virtual methods throw
exceptions if called. This constructor is meant to be called by the constructor of a subclass that overloads
the virtual methods with ones that return property values. See the subclass documentation for its constructor
parameters.

1Use the fact thatB is extensive to write

B(T, P, λN1, . . . , λNK) = λB(T, P, N1, . . . , NK).

Now Taylor-expand the left hand side in lambda, and equate the linear terms.
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Table 8.1: Values returned by methodeosType .

Subclass Value
Thermo 0
IdealGasThermo 1
IdealSolnThermo 2

Thermo ()
Destructor. Does nothing.

8.5 Utilities

virtual int eosType () const
An integer flag identifying the equation of state type. ClassThermo returns zero. Subclasses should return a
unique value. The values for currently-implemented classes are listed in Table??

phase_t& phase ()
Return a reference to thePhase object.

const phase_t& phase () const
Return a read-only reference to thePhase object.

8.6 Partial Molar Properties

The methods that get the partial molar properties are listed below. In all cases, the output array must be supplied as an
argument, and must have length greater than or equal to the number of species.

virtual void getPartialMolarVolumes ( double* vbar) const
Get the array of species partial molar volumes [m3/kmol],

V k =
(

∂V

∂Nk

)
T,P,Nj 6=k

. (8.13)

virtual void getPartialMolarEnthalpies ( double* hbar) const
Get the array of species partial molar enthalpies [J/kmol],

Hk =
(

∂H

∂Nk

)
T,P,Nj 6=k

. (8.14)
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virtual void getPartialMolarEntropies ( double* sbar) const
Get the array of species partial molar entropies [J/kmol/K]

Sk =
(

∂S

∂Nk

)
T,P,Nj 6=k

. (8.15)

virtual void getPartialMolarCp ( double* cpbar) const
Get the array of species partial molar heat capacities at constant pressure [J/kmol/K]

Cp,k =
(

∂Cp

∂Nk

)
T,P,Nj 6=k

. (8.16)

virtual void getChemPotentials ( double* mu) const
Get the array of chemical potentials (partial molar Gibbs functions) [J/kmol/K].

8.6.1 Limits

The parameterizations used to evaluate the properties may only be valid for a limited range of temperature, density, or
pressure. These methods return those limits. These methods accept an optional species index parameter. If supplied,
then the returned values represent the limits for the data for that species. Otherwise, the limits are for all species.

double maxTemp( [ int k]) const
The highest temperature for which the parameterization(s) are valid.

double minTemp( [ int k]) const
The lowest temperature for which the parameterization(s) are valid.

8.7 Molar Thermodynamic Properties

These methods return molar properties. They are all virtual methods, and must be overloaded in subclasses.

virtual double enthalpy_mole () const
Molar enthalpŷh [J/kmol].

virtual double intEnergy_mole () const
Molar internal energŷu [J/kmol].

virtual double entropy_mole () const
Molar entropyŝ [J/kmol-K].

virtual double gibbs_mole () const
Molar Gibbs function̂g [J/kmol].
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virtual double cp_mole () const
Molar heat capacity at constant pressureĉp [J/kmol-K].

virtual double cv_mole () const
Molar heat capacity at constant volumeĉv [J/kmol-K].

8.8 Specific Thermodynamic Properties

These methods return property values per unit mass. They are evaluated by dividing the corresponding molar property
by the mean molecular weight. The are not declared virtual, and do not need to be overloaded in subclasses.

double enthalpy_mass () const
Specific enthalpyh [J/kg].

double intEnergy_mass () const
Specific internal energyu [J/kg].

double entropy_mass () const
Specific entropys [J/kg-K].

double gibbs_mass () const
Specific Gibbs functiong [J/kg].

double cp_mass () const
Specific heat at constant pressurecp [J/kg-K].

double cv_mass () const
Specific heat at constant volumecv [J/kg-K].

8.9 Setting the State

For classes that derive from bothPhase andThermo , these methods add to the set ofsetState_XYZ methods
defined inPhase . These methods are defined here, since they involve setting the pressure, which requires the pressure
equation of state. These methods are not virtual, and should not be overridden in subclasses.

void setState_TPX ( double t, double p, const double* x)
Set the temperature [K], pressure [Pa], and mole fractions.

void setState_TPX ( double t, double p, string x)
Set the temperature [K], pressure [Pa], and mole fractions.
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void setState_TPY ( double t, double p, double* y)
Set the temperature [K], pressure [Pa], and mass fractions.

void setState_TPY ( double t, double p, string y)
Set the temperature [K], pressure [Pa], and mass fractions.

8.10 Setting the Enthalpy, Internal Energy, or Entropy

These methods set the specific enthalpy, specific internal energy, or specific entropy at specified pressure or specific
volume. These are implemented using Newton iteration in temperature to find the state with the desired property. The
optionaltol argument specifies the error tolerance to use in the Newton iteration (default value =10−8).

void setState_HP ( double h, double p[, double tol])
et the specific enthalpy [J/kg] and pressure [Pa].

void setState_UV ( double u, double v[, tol])
et the specific internal energy [J/kg] and specific volume [m3/kg].

void setState_SP ( double s, double p[, tol])
et the specific entropy [J/kg-K] and pressure [Pa].

void setState_SV ( double s, double v,[, tol])
et the specific entropy [J/kg-K] and specific volume [m3/kg].

8.11 Setting to Equilibrium

MethodsetToEquilState is used by classChemEquil to compute the chemical equilibrium state.

For a chemical equilibrium state (only), the species chemical potentials may be computed from a set of potentials
associated with each element – theelement potentials. For any element potential vector[λ1, . . . , λM ], the chemical
potential vector[µ1, . . . , muK ] defined by

µk =
∑
m

Ak,mλm, (8.17)

along with the temperature, defines a chemical equilibrium state. This method sets the state to the equilibrium state so
defined.

void setToEquilState ( double* lambda_RT)
Set to the chemical equilibrium state at the current temperature and nondimensional element potentials.
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CHAPTER

NINE

Class IdealGasThermo — Ideal Gas

9.1 Purpose

ClassIdealGasThermo is the thermodynamic property manager class for ideal gas mixtures.

9.2 Base Classes

Thermo (Chapter8).

9.3 Subclasses

None.

9.4 Theory

The pressure is computed using the ideal gas law

P = nR̂T, (9.1)

wheren = ρ/M andR̂ = 8314.0 J/kmol/K.

For an ideal gas, the heat capacities, internal energy, and enthalpy are functions only of temperature, and are linear
combinations of the pure-species values.

ĉp(T ) =
∑

k

ĉp,k(T )Xk, (9.2)

ĥ(T ) =
∑

k

ĥk(T )Xk, (9.3)

û(T ) = ĥ(T )− R̂T, (9.4)

ĉv(T ) = cp(T )− R̂. (9.5)

(9.6)

The entropy and Gibbs function have a logarithmic dependence on partial pressure:

ŝ(T, P ) =
∑

k

s0
k(T )− R̂

∑
k

Xk log Xk − R̂ log(P/P0), (9.7)
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ĝ(T, P ) =
∑

k

g0
k(T ) + R̂T

∑
k

Xk log Xk + R̂T log(P/P0), (9.8)

The pure species properties are related by

ĥk(T ) = ĥk(T0) +
∫ T

T0

ĉp(T ′)dT ′ (9.9)

ŝ0
k(T ) = ŝk(T0, P0) +

∫ T

T0

ĉp(T ′)
T ′ dT ′ (9.10)
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CHAPTER

TEN

Species Thermodynamic Properties

The classes discussed in this chapter manage the standard-state properties of the pure species. These classes are
designed for internal use by thermodynamic property managers (classes derived fromThermo ).

Many models of the thermodynamic properties of solutions express solution properties in terms of properties for
the pure species that depend on temperature but are evaluated at a specified reference or standard-state pressure.
The temperature dependence is typically parameterized as a function of temperature for some temperature range
(Tmin, Tmax). The parameterization might be a polynomial inT , for example.

10.1 Class SpeciesThermo

ClassSpeciesThermo is the base class that defines the interface. Subclasses ofSpeciesThermo implement
specific parameterizations.

virtual void install ( int index, int type, const double* coeffs,
double minTemp, double maxTemp, double refPressure)

Install a parameterization for the standard-state thermodynamic properties of the species with index number
index. The parameterization type is indicated by thetype flag, and must correspond to a parameterization
suppported by the subclass. The coefficients of the parameterization must be provided in arraycoeffs. The
parameterization is valid in the temperature range (minTemp,maxTemp), and is for pressurerefPressure.

virtual void update ( double t, vector_fp& cp_R,
vector_fp& h_RT, vector_fp& s_R) const=0

Compute the species non-dimensional standard-state properties at temperaturet. On return,

cp_R[k] =
ĉp,k(T )

R̂
, (10.1)

h_RT[k] =
ĥk(T )
R̂T

, (10.2)

s_R[k] =
ŝk(T )

R̂
, (10.3)

double maxTemp( [ int k]) const
The highest temperature for which the parameterization(s) are valid.
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double minTemp( [ int k]) const
The lowest temperature for which the parameterization(s) are valid.

double refPressure () const
The lowest temperature for which the parameterization(s) are valid.

10.2 Class NasaThermo — the NASA Polynomial Parameterization

A widely-used parameterization is the one first used in the NASA chemical equilibrium program, which consists of
two fourth-order polynomials inT for cp. The first one is used forTmin ≤ T < Tmid, and the second one for
Tmid ≤ T ≤ Tmax.

The midpoint temperatureTmid must be specified along with the two sets of coefficients.

The standard-state properties are given by

ĉ0
p(T )

R̂
= a0 + a1T + a2T

2 + a3T
3 + a4T

4, (10.4)

ĥ0(T )
R̂T

= a0 +
a1

2
T +

a2

3
T 2 +

a3

4
T 3 +

a4

5
T 4 + a5, (10.5)

ŝ0(T )
R̂

= a0 lnT + a1T +
a2

2
T 2 +

a3

3
T 3 +

a4

4
T 4 + a6. (10.6)

The coefficient array supplied to methodinit must set up as shown in the Table below.

coefficient value
coef[0] Tmid

coef[1]-coef[7] a0, . . . , a6 for the low temperature range
coef[8]-coef[14] a0, . . . , a6 for the high temperature range

// coefficients for O2
double o2data[15] = {1000.0, // Tmid

3.78245636e+00, -2.99673416e-03, 9.84730201e-06, // low T a0-a6
-9.68129509e-09, 3.24372837e-12, -1.06394356e+03,

3.65767573e+00,
3.28253784e+00, 1.48308754e-03, -7.57966669e-07, // high T a0-a6
2.09470555e-10, -2.16717794e-14, -1.08845772e+03,
5.45323129e+00};

NasaThermo nasa; // constructor takes no parameters

// install a parameterization for O2 as species 12
nasa.install(12, NASA, o2data, 200.0, 3500.0, OneAtm);

10.3 Class ShomateThermo — the Shomate Parameterization

This parameterization is used in the NIST Chemistry WebBook.
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Seven coefficients(a0, . . . , a6) are used to representc0
p(T ), h0(T ), ands0(T ) as polynomials inT :

ĉ0
p(T ) = A + Bt + Ct2 + Dt3 +

E

t2
, (10.7)

ĥ0(T ) = At +
Bt2

2
+

Ct3

3
Dt4

4
− E

t
+ F, (10.8)

s0(T ) = A log t + Bt +
Ct2

2
+

Dt3

3
− E

2t2
+ G. (10.9)

Heret = T/1000.0.

The coefficient array supplied to methodinit must set up as shown in the Table below.

coefficient value
coef[0] Tmid

coef[1]-coef[7] a0, . . . , a6 for the low temperature range
coef[8]-coef[14] a0, . . . , a6 for the high temperature range

// coefficients for CH4
double ch4data[15] = {1300.0,

-0.703029, 108.4773, -42.52157, 5.862788,
0.678565, -76.84376, 158.7163,
85.81217, 11.26467, -2.114146, 0.138190,

-26.42221, -153.5327, 224.4140};

ShomateThermo sh; // constructor takes no parameters

// install a parameterization for CH4 as species 5
sh.install(5, NASA, ch4data, 298.0, 6000.0, OneAtm);
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APPENDIX

A

Glossary

closed
A system that does not exchange mass with the environment. Since mass is conserved, the total mass of a closed
system is constant in time. If nuclear reactions can be neglected, the total mass of each element is also constant
for a closed system.See also:isolated.

isolated
A system is isolated if it is closed and in addition does not exchange energy in any form with the environment.
The total mass and the total energy are both constant for an isolated system.See also:closed.

open
A system that exchanges mass with the environment.

substance
A macroscopic sample of matter with a precise, characteristic composition. Pure water is a substance, since it is
always made up of H2O molecules; any pure element is also a substance.

compound
A substance containing more than one element. Sodium chloride, water, and silicon carbide are all compounds.

mixture
A macroscopic sample of matter made by combining two or more substances, usually (but not necessarily)
finely-divided and intermixed. Liquid water with dissolved oxygen and nitrogen is a mixture, as are sand,
air, wood, beer, and most other everyday materials. In fact, since even highly-purified “substances” contain
measurable trace impurities, it is exceptionally rare to encounter anything that isnot a mixture, i.e., anything
that istruly a substance.

solution
A mixture in which the constituents are fully mixed on a molecular scale. In a solution, all molecules of a
given constituent (or all sites of a given type) are statistically equivalent, and the configurational entropy of the
mixture is maximal. Mixtures of gases are solutions, as are mixtures of mutually-soluble liquids or solids. For
example, silicon and germanium form a crystalline solid solution SixGe1−x, wherex is continuously variable
over a range of values.

phase
A macroscopic sample of matter with a homogeneous composition and structure that is stable to small perturba-
tions. Example: water at a temperature below its critical temperature and above its triple point can exist in two
stable states: a low-density state (vapor) or a high-density one(liquid). There is no stable homogeneous state
at intermediate densities, and any attempt to prepare such a state will result in its spontaneous segregation into
liquid and vapor regions. Liquid water and water vapor are two phases of water below its critical temperature.
(Above it, these two phases merge, and there is only a single phase.)

Note that a phase does not need to bethermodynamically(globally) stable. Diamond is a valid phase of carbon
at atmospheric pressure, even though graphite is the thermodynamically stable phase.
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APPENDIX

B

Web Resources

under construction

B.1 Reaction Mechanism Files

Prof. J. E. Shepherd’s Mechanism Library. Professor J. E. Shepherd at Caltech has posted a number of
combustion-related reaction mechanism files at
http://www.galcit.caltech.edu/EDL/mechanisms/library/library.html .

GRI-Mech 3.0. (description)

59

http://www.galcit.caltech.edu/EDL/mechanisms/library/library.html


60



APPENDIX

C

Thermodynamic Property Managers

These classes are derived from classThermo , and implement thermodynamic properties for particular equations of
state.

C.1 Class IdealGasThermo — Ideal Gas

C.2 Purpose

ClassIdealGasThermo is the thermodynamic property manager class for ideal gas mixtures.

C.3 Base Classes

Thermo (Chapter8).

C.4 Subclasses

None.

C.5 Theory

The pressure is computed using the ideal gas law

P = nR̂T, (C.1)

wheren = ρ/M andR̂ = 8314.0 J/kmol/K.

For an ideal gas, the heat capacities, internal energy, and enthalpy are functions only of temperature, and are linear
combinations of the pure-species values.
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ĉp(T ) =
∑

k

ĉp,k(T )Xk, (C.2)

ĥ(T ) =
∑

k

ĥk(T )Xk, (C.3)

û(T ) = ĥ(T )− R̂T, (C.4)

ĉv(T ) = cp(T )− R̂. (C.5)

(C.6)

The entropy and Gibbs function have a logarithmic dependence on partial pressure:

ŝ(T, P ) =
∑

k

s0
k(T )− R̂

∑
k

Xk log Xk − R̂ log(P/P0), (C.7)

ĝ(T, P ) =
∑

k

g0
k(T ) + R̂T

∑
k

Xk log Xk + R̂T log(P/P0), (C.8)

The pure species properties are related by

ĥk(T ) = ĥk(T0) +
∫ T

T0

ĉp(T ′)dT ′ (C.9)

ŝ0
k(T ) = ŝk(T0, P0) +

∫ T

T0

ĉp(T ′)
T ′ dT ′ (C.10)
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Thermo()

Thermo:: , 49
addElement()
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addSpecies()
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State:: , 37
intEnergy_mass()

Thermo:: , 51
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Thermo:: , 50
massFraction()

State:: , 39, 45
maxTemp()

Constituents:: , 50
SpeciesThermo:: , 55

meanMolecularWeight()
State:: , 38

mean_X()
State:: , 39

mean_Y()
State:: , 39

minTemp()
Constituents:: , 50
SpeciesThermo:: , 56

molarDensity()
State:: , 38

moleFraction()
State:: , 39, 45
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Constituents:: , 42

molecularWeights()
State:: , 42
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Constituents:: , 42

nElements()
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nSpecies()
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phase()
Thermo:: , 49

ready()
State:: , 39

refPressure()
SpeciesThermo:: , 56

setDensity()
State:: , 38, 44

setMassFractions()
State:: , 38, 44

setMassFractions_NoNorm()
State:: , 38, 45
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Thermo:: , 44
setState_PY()

Thermo:: , 44
setState_SP()

S:: , 52
setState_SV()

S:: , 52
setState_TP()

Thermo:: , 44
setState_TPX()

Thermo:: , 51
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State:: , 39
sum_xlogx()

State:: , 39
temperature()

State:: , 38

addElement() , 41
addSpecies() , 41
atomicWeight() , 41
atomicWeights() , 42

CANTERA_ROOT, 9, 10, 18
charge() , 42
chemical

potential, 50
cp_mass() , 51
cp_mole() , 51
cv_mass() , 51
cv_mole() , 51

density() , 38

element potentials, 52

elementIndex() , 42
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elementNames() , 42
enthalpy

partial molar, 49
enthalpy_mass() , 51
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entropy
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entropy_mass() , 51
entropy_mole() , 50
environment variables

CANTERA_ROOT, 9, 10, 18
PATH, 10

eosType() , 49
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index number, 19
initState() , 37
install() , 55
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intEnergy_mole() , 50

massFraction() , 39, 45
maxTemp() , 50, 55
mean_X() , 39
mean_Y() , 39
meanMolecularWeight() , 38
minTemp() , 50, 56
molarDensity() , 38
molecularWeight() , 42
molecularWeights() , 42
moleFraction() , 39, 45

name mangling, 31
nAtoms() , 42
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heat capacity, 50
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PATH, 10
phase() , 49
potential

chemical, 50

ready() , 39
refPressure() , 56

setDensity() , 38, 44
setMassFractions() , 38, 44
setMassFractions_NoNorm() , 38, 45
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setMoleFractions_NoNorm() , 38, 45
setPressure() , 44
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setState_SP() , 52
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setState_TP() , 44
setState_TPX() , 51
setState_TPY() , 52
setState_UV() , 52
setTemperature() , 38, 44
setToEquilState() , 52
speciesIndex() , 43
speciesName() , 43
speciesNames() , 43
State() , 37
sum_xlogQ() , 39
sum_xlogx() , 39

temperature() , 38
Thermo() , 48
thermodynamic property manager, 47
thermodynamic state, 20

update() , 55

volume
partial molar, 49
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