
Lecture 3

Fluid Dynamics and Balance Equations for 
Reacting Flows
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Basics:   equations of continuum mechanics 

- balance equations for mass and momentum
- balance equations for the energy and the chemical species

Associated with the release of thermal energy and the increase in temperature is a 
local decrease in density which in turn affects the momentum balance. 

Therefore, all these equations are closely coupled to each other. 

Nevertheless, in deriving these equations we will try to point out 
how they can be simplified and partially uncoupled

under certain assumptions.
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Balance Equations

A time-independent control volume V
for a balance quality F(t)

The scalar product between the surface flux If and the normal vector  n determines 
the outflow through the surface A, a source sf the rate of production of F(t)

Let us consider a general quality per unit volume f(x, t). 
Its integral over the finite volume V, with the time-independent boundary A is given 
by
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The temporal change of F

is then due to the following three effects:

1.  by the flux If across the boundary A. This flux may be due to convection or 
molecular transport.

By integration over the boundary A we obtain the net contribution

which is negative, if the normal vector is assumed to direct outwards.
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2. by a local source Vf within the volume. 
This is an essential production of 
partial mass by chemical reactions. 
Integrating the source term over the volume 
leads to

3. by an external induced source s. 
Examples are the gravitational force or thermal radiation.
Integration of sf over the volume yields
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We therefore have the balance equation

Changing the integral over the boundary A into a volume integral using Gauss' 
theorem

and realizing that the balance must be independent of the volume, we obtain the 
general balance equation in differential form
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Mass Balance

Set the partial mass per 
unit volume Ui = U Yi = f. 

The partial mass flux across 
the boundary is Uivi = If , where vi is called the diffusion velocity.

Summation over all components yields the mass flow
where v is the mass average velocity. 

The difference between vi defines the diffusion flux
where the sum satisfies
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Setting the chemical source term

one obtains the equation for the partial density

The summation over i leads to the continuity equation
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Introducing the total derivative of a quantity

a combination with the continuity equation yields

Then                                                            using

may also be written 
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Momentum Balance

Set the momentum per unit volume Uv = f. 

The momentum flux is the sum of the convective momentum in flow Uvv and the 
stress tensor

where I is the unit tensor and W�is the viscous stress tensor.

Therefore Uvv + P = If .

There is no local source of momentum, but the gravitational force from outside

where g denotes the constant of gravity. 
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The momentum equation then reads

or with                                                  for 

we obtain
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Kinetic Energy Balance

The scalar product of the momentum equation 

with v provides the balance for the kinetic energy

where v2 =  v . v.
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Potential Energy Balance

The gravitational force may be written as the derivative of the 
time-independent potential

Then with the continuity equation 

the balance for the potential energy is
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Total and Internal Energy and Enthalpy Balance

The first law of thermodynamics states that the total energy must be conserved, 
such that the local source  Vf = 0. 

We set Ue = f , where the total energy per unit mass is

This defines the internal energy introduced in 
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The total energy flux                is

which defines the total heat flux  jq. 

The externally induced source due to radiation is

Then the total energy balance

may be used to derive an equation for the internal energy
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Using 

this may be written with the total derivative

With the continuity equation 

we may substitute

to find

illustrating the equivalence with the first law introduced in a global thermodynamic 
balance.
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With the enthalpy  h = u + p/U the energy balance equation can be formulated 
for the enthalpy
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Transport Processes

In its most general form Newton's law states that the viscous stress tensor is 
proportional to the symmetric, trace-free part of the velocity gradient

Here the suffix sym denotes that only the symmetric part is taken
and  the second term in the brackets subtracts the trace elements from the tensor. 

Newton's law thereby defines the dynamic viscosity.
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Similarly Fick's law states that the diffusion flux is proportional to the concentration 
gradient.

Due to thermodiffusion it is also proportional to the temperature gradient.
The most general form for multicomponent diffusion is written as

For most combustion processes thermodiffusion can safely be neglected. 

For a binary mixture Fick’s law reduces to

where                   is the binary diffusion coefficient.
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For multicomponent mixtures, where one component occurs in large amounts, as for 
the combustion in air where nitrogen is abundant, all other species may be treated as 
trace species and 

with the binary diffusion coefficient with respect to the abundant component may be 
used as an approximation

A generalization for an effective diffusion coefficient Di to be used for the minor 
species is
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Note that the use of 

does not satisfy the condition 

Finally, Fourier's law of thermal conductivity states that the heat flux should be 
proportional to the negative temperature gradient. 

The heat flux  jq includes the effect of partial enthalpy transport by diffusion and
is written

which defines the thermal conductivity O.
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In  Fourier’s law

the Dufour heat flux has been neglected.

Transport coefficients for single components can be calculated on the basis of the 
theory of rarefied gases.
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Different forms of the energy equation

We start from the enthalpy equation 

and neglect in the following the viscous dissipation term and the radiative heat 
transfer term.

Then, differentiating                             yields

where cp is the heat capacity at constant pressure of the mixture.
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We can write the heat flux as

If the diffusion flux can be approximated by 

with an effective diffusion coefficient Di , we introduce the Lewis number

and write the last term as

This term vanishes if the Lewis numbers of all species can be assumed equal to unity.

3.-24



This is an interesting approximation because it leads to the following form of the 
enthalpy

If the p= const as it is approximately the case in all applications except in reciprocating 
engines, the enthalpy equation would be very much simplified.

The assumption Le=1 for all species is not justified in many combustion applications.

In fact, deviations from that assumption lead to a number of interesting phenomena
that have been studied recently in the context of flame stability and the response
of flames to external disturbances. 

We will address these questions in some of the lectures below.
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Another important form of the energy equation is that in terms of the temperature.

With 

and 

the total derivative of the enthalpy can be written as
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Then with 

the enthalpy equation

without the second last term yields the temperature equation

Here the last term describes the temperature change due to chemical reactions.
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It may be written as

where the definition 

has been used for each reaction. 

The second term on the right hand side may be neglected, if one assumes that all 
specific heats cpi are equal. 

This assumption is very often justified since this term does not contribute as much 
to the change of temperature as the other terms in the equation, in particular the 
chemical source term.
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If one also assumes that spatial gradients of  cp may be neglected for the same 
reason, the temperature equation takes the form

For a constant pressure it is very similar to the equation for the mass fraction Yi

with an equal diffusion coefficient D=O/U/cp for all reactive species and a spatially 
constant Lewis number may be written as
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Lewis numbers of some reacting species occurring in methane-air flames

For Lei=1 the species transport equation and the temperature equation are easily
combined to obtain the enthalpy equation. 

Since the use of 

and 

does not require the Le=1 assumption, this formulation is often used when non-
unity Lewis number effects are to be analyzed. 
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For flame calculations a sufficiently accurate approximation for the transport
properties is [Smooke]

a constant Prandtl number

and constant Lewis numbers.
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A first approximation for other hydrocarbon species can be based on the
assumption that the binary diffusion coefficients of species i with respect to 
nitrogen is approximately proportional to

Then the ratio of its Lewis number to that of methane is
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Balance Equations for Element Mass Fractions

Summation of the balance equations for the mass fractions

according to 

leads to the balance equations for Zj :

Here the summation over the chemical source terms vanishes

since the last sum vanishes for each reaction.
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The diffusion term simplifies if one assumes that the diffusion coefficients of all 
species are equal. 

If one further more assumes Lei=1 this leads to
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A similar equation may be derived for the mixture fraction Z. 

Since Z is defined according to 

as the mass fraction of the fuel stream, it represents the sum of element mass
fractions contained in the fuel stream. 

The mass fraction of the fuel is the sum of the element mass fractions

where
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With                            the mixture fraction may therefore be expressed as a sum of 
element mass fractions

Then, with the assumption of Lei=1, a summation over 

leads to a balance equation for the mixture fraction
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For a one-step reaction with the reaction rate Z this equation can also be derived 
using

and 

for YF and YO2 with LeF = LO2 = 1 as
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Dividing the first of these by Q‘O2WO2 and subtracting yields a source-free balance 
equation for the combination

which is a linear function of Z according to 

This leads again to
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For constant pressure the enthalpy equation

has the same form as

and a coupling relation between the enthalpy and the mixture fraction may 
be derived

where h1 is the enthalpy of the fuel stream and h2 that of the oxidizer stream. 
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Similarly,  using

and 

the element mass fractions may be expressed in terms of the mixture fraction

where Zj,1 and Zj,2 are the element mass fractions in the fuel and oxidizer stream.
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It should be noted that the coupling relations 

and 

required a two feed system with equivalent boundary conditions for the 
enthalpy and the mass fractions. 
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A practical example is a single jet as fuel stream with co-flowing air as oxidizer 
stream into an open atmosphere, such that zero gradient boundary conditions apply 
everywhere except at the input streams.
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Once the mixture fraction field 
has been obtained
by numerical solution of 

the adiabatic flame temperature 
may be calculated using
the methods of lecture 2 as a 
local function of Z.


