
Lecture 6

Asymptotic Structure for Four-Step Premixed 
Stoichiometric Methane Flames
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Previous lecture:  

Asymptotic description of premixed flames based on an assumed one-step reaction. 

o basic understanding of the flame structure when a large sensitivity to 
temperature was built into the model. 

There is no chemical basis for such a one-step assumption.
o results must be regarded with caution when conclusions are drawn about the 

dependence of the burning velocity on pressure and reactant concentrations, as 
well as flammability and extinction limits.

While numerical calculations based on full and reduced mechanisms are able to 
predict these properties, they contribute little to the understanding of the 
fundamental parameters that influence flame behavior. 
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Therefore there is a need to fill the gap between the numerical calculations based 
on mechanisms with elementary kinetics and asymptotic analysis based on assumed 
chemistry models.

The asymptotic description of stoichiometric methane-air flames based on a four 
step reduced mechanism, shall be presented in this lecture. 

Since the basic chemical parameters were retained, this mechanism has been quite 
successful in describing the dependence of the burning velocity on pressure and
preheat temperature. 
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A similar asymptotic analysis was also carried out for lean methane flames 
(Seshadri 1991). 

This description may, with some modifications, also serve as a model for other 
hydrocarbon flames. 

This will be shown by using analytical approximation formulas (Göttgens 1992)
that are based on the asymptotic description of methane flames for flames of 
C2H6, C2H4, C2H2 and C3H8 in air.
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The Four-Step Model for Methane-Air Flames

The four-step model for methane flames is
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The principle rates governing these global reactions are

They correspond to the elementary reactions
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We neglect the influence of the other reactions here in order to make the algebraic
description more tractable.

Since OH and O appear in this formulation as reactants we need to express them 
in terms of the species in the four-step mechanism by using the partial equilibrium
assumption for the reaction such that

where K2 and K3 are the equilibrium constants of reactions 2 and 3, respectively.
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This leads to the following reaction rates of the global steps I-IV:

which is explicit in terms of the concentrations of species appearing in the four-
step mechanism.
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The equilibrium constants in these rates are given by

We now want to go one step further and assume steady state of the radical H. 

Adding reaction IV to I and III leads to the three steps

with the first three rates given at the previous slide.
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[H] must now be determined from the steady state equation for H

This may be written as

where [Heq ] based on partial equilibrium of reaction IV
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It follows that [CH4]/[O2] must be much smaller than unity, if [H] is to remain real.
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The equation 

shows an interesting structure: 

At temperatures of 1400 K and above the second term in the brackets is small while
the ratio k11 /k1 is much larger than unity.

This will be used to develop an asymptotic description of the inner layer below 
but also shows that the equation cannot be valid in the preheat zone upstream of 
the inner layer where CH4 is entirely consumed.



The structure of the flame

From

it follows that [H] vanishes in the preheat zone which is therefore chemically inert.
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A further approximation that will reduce the three step mechanism

effectively to a two-step mechanism is the assumption of partial equilibrium of II.

Assuming [H2O] and [CO2] to be known
this leads to a coupling between [CO] and [H2] of the form
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By introducing partial equilibrium of reaction II one assumes that the effective           
rate coefficient k9f /K3 in 

tends to infinity while the term in parenthesis  tends to zero and ZII remains              
finite. 

Since ZII is undefined, the rate ZII must be eliminated from the balance equations.
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In order to show this the balance equations for the three-step mechanism are written 
in operator form

In terms of the variable *i = Yi/Wi the balance equations for the concentrations are 
written
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The rate ZII may be eliminated from 

by combining the balance equations of H2, H2O, and CO2 with that of CO
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We will anticipate that in the thin reaction layers to be considered below, the 
diffusive terms dominate for the same reason as in the thin reaction zone for the 
one-step model.

Therefore we will neglect the convective terms in 

for the thin reaction zones and consider only the diffusive terms. 

This suggests that the concentrations should be scaled with the Lewis numbers. 
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We introduce the non-dimensional variables

and redefine the parameter D'
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With xCO =  D xH2 one obtains the following balance equations of the two-step 
mechanism (the asterisks will be removed from here on)
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The stoichiometric coefficients are those of the two global reactions

Here the combination H2 + D CO appears as an intermediate which is formed in I'‘
and consumed in III''.

The rates of these reactions are still the same as of  I and III in the four-step 
mechanism.
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If the balance equations 

are used to determine xCH4 and xH2, all other concentrations and the temperature can 
be determined deriving the following coupling equations in addition using the 
corresponding temperature equation
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Here the reduced heats of reaction are

where Q is the heat of reaction of the global step

In the following we approximate both qH2 and qCO by q = 0.33 for simplicity.
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The Asymptotic Structure of Stoichiometric Methane-Air Flames

Flame structure of the 
two-step mechanism 

It contains three layers
1. a chemically inert preheat zone 

of order 1 upstream,
2. an thin inner layer of order G in which the fuel is consumed and the 

intermediates H2 and CO are formed according to the global step  I'',
3. a thin oxidation layer of order H downstream where H2 and CO are oxidized 

according, to the global step III''.
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At first the inner layer shall be analyzed. 

We will denote quantities at the inner layer with a subscript 0 but the inner layer 
temperature as T0. 
In this layer all concentrations except that of the fuel, which is depleted may be 
assumed constant to leading order.
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Introducing 

into 

leads to

Where the Damköhler number is
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The small parameter G was defined as

It denotes the ratio of the rate coefficients of reaction I and II 

Thereby it describes the competition of these two reactions in producing and 
consuming H-radicals according to the global steps IV and I. 

Since it happens that the reaction rate k1 is typically smaller than k11, 
and since also XO2 in the inner layer XO2 < 1,  G § 0.1 and sufficiently small for 
an asymptotic expansion. 
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If  G is small, since ZI must be real it follows from 

the term in paranthesis that xCH4 must not exceed the value of G. 

The flame structure shows that the fuel is of order 1 in the preheat zone but 
decreases rapidly towards the inner layer.
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In the inner xCH4 is then of order G and one may introduce the scaling

and the stretched variable

Introducing these into 

it leads to the differential equation that governs the structure of the inner layer
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The downstream boundary condition of this equation is

since reaction I is irreversible. 

The matching with the preheat zone should, as for the one-step asymptotic problem, 
provide the second boundary condition. 

The solution for the fuel concentration in the preheat zone is

which leads to the expansion xCH4 = - x around x = 0.
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It is shown in (Peters 1987), however, that the inner layer and the preheat zone are 
separated by an additional thin layer, the radical consumption layer. 

In this layer the steady state approximation for the H-radical breaks down.

This layer occurs at y = 1, ] = -1 in terms of the inner layer variables. 

Since the fuel is not consumed in this radical layer the slope of the fuel concentration 
is continuous and matching across this layer leads to
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With the boundary conditions 

and 

the equation 

can be integrated once to obtain the eigenvalue
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With 

one could now determine the burning velocity sL if the temperature T0 and all other 
properties at the inner layer were known. 

In order to determine these, the structure of the oxidation layer also must be resolved. 
In the oxidation layer xCH4 = 0$ and therefore ZI = 0. 

The temperature varies only slowly in this layer and since the activation
energy of k5 is small, temperature variations may be neglected.
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Since most of the chemical activity takes place in the vicinity of the inner layer, all 
properties shall be evaluated at x = 0. 

Choosing xH2 as the dependent variable in the oxidation layer and scaling it in
terms of a new variable z as

one may use the coupling relations 

to show that the downstream boundary  conditions are satisfied by
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In these expansions H is the small parameter related to the thickness of the 
oxidation layer.

Introducing                                        and 

into

leads to

where the Damköhler number of reaction III is defined as
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The concentration of the third body in reaction 5 may be determined 
approximately by using the third body efficiencies evaluated at the burnt 
gas conditions.

This leads to

which introduces a pressure dependence of DaIII and will finally determine 
the pressure dependence of the burning velocity. 
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Introduction of a stretched coordinate

then leads with ZI = 0 from 

to the governing equation of the oxidation layer

This suggests the definition

It turns out that for p � 1 atm H is smaller than unity but typically larger than G.
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Even though G is not very small, we will consider it as small enough to justify an 
asymptotic description of the oxidation layer. 

The downstream boundary condition of equation

is

since reaction III is irreversible. 

The upstream boundary condition must be determined from jump conditions across 
the inner layer.
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Since the fuel is depleted and H2 is formed in the inner layer following reaction  I'', 
the stoichiometry of this reaction also determines the change of slopes of the H2 in 
comparison of those of the fuel. 

This is written as

Since the thickness of the preheat zone is of order 1 and that of the oxidation layer
of order H the upstream slope of the H2 concentration  can be neglected compared to 
the downstream slope 
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It then follows with                                  and

that the upstream boundary condition of 
reads

Then the solution is

with
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The profile shows a very slow decrease  of z towards K o f. 

This may explain why in numerically and experimentally obtained concentration
and temperature profiles the downstream  conditions are approached only very far 
behind the flame.
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An Analytic Expression for the Burning Velocity

The result 

may now be used in 

and 

to determine the quantities required in 

and thereby the burning velocity sL. 
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By dividing (\ref{7.23}) 

by 

one can eliminate sL and obtain a relation of the form

Here the universal gas constant must be used as     = 82.05 atm cm3/mol/K in order to 
be consistent with the units of the reaction rates and the pressure.
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The equation

Shows that with the rate coefficients fixed, the inner layer temperature is function 
of the pressure only. 

It does not depend on the preheat temperature, the dilution of the fuel 
concentration in the unburnt mixture and thereby the adiabatic flame temperature.
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After some algebraic manipulations the expression for the burning velocity reads

where                                                  and 

were used to relate H to the difference between Tb and T0
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Burning velocity 

Pressure
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For an undiluted flame 
with Tu = 300 K as a function 
of T0 choosing p = 1 atm one
obtains a laminar burning
velocity of 54 cm/s for
stoichiometric methane flames.



This value is satisfactory in view of the many approximations that were made 
and the few kinetic rates that were retained. 

In fact, it is seen from 

and 

that only the rates of reactions 1, 5, and 11 influence the burning velocity in 
this approximation.
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With Tb = 2320 K the 
pressure is larger than 
approximately 20 atm.

A further consequence of equation

is that the burning velocity vanishes as T0 reaches Tb.
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Different values of Tb would been obtained for a diluted or preheated flame.

The fact that at a fixed pressure T0 is fixed by the rate of rate coefficients points 
towards the possibility to explain flammability limits at least in terms of
dilution for stoichiometric flames: 

If the amount of fuel is so low that in the unburnt mixture the corresponding
adiabatic flame temperature is lower than T0, a premixed flame cannot be
established.
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Relation to the Activation Energy of the One-step Model

Using the burning velocity expression from the preceding lecture

one may plot the burning velocity in an Arrhenius diagram over 1/Tb.
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Then in the limit of a large activation energy the slope in this diagram is given 

or

Applying this form to 

with T0 fixed leads to
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Since the second of the terms is much smaller then the first, one obtains with 

when T0 approaches Tb and H is small

Therefore the Zeldovich number 

introduced in the previous lecture may be expressed as
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In the one-step model the thickness of the reaction zone was of the order of the 
inverse of the Zeldovich number. 

This corresponds for the two-step model for methane flames to the thickness of the 
oxidation layer. 

Therefore the oxidation layer seems to play a similar role in hydrocarbon flames as 
the reaction zone in one-step asymptotics.
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Values of the Zeldovich number for 
lean to stoichiometric methane 
flames, obtained by asymptotic
analysis in Seshadri 1991.

The Zeldovich number measures 
the sensitivity of the burning velocity 
to perturbations of the maximum 
temperature.

This sensitivity increases when the mixture becomes leaner and the pressure increases.

The flame will then become very sensitive to heat loss and flame stretch effects.
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Analytic Approximations of Burning Velocities for Lean CH4, C2H6, C2H4, 
C2H2, and C3H8 Flames

The burning velocity expression 

presented may be generalized by writing an approximation formula for burning 
velocities as

where the functions A(T0) and P(T0) are determined by fitting numerical or 
experimental data and the values m = 1/2 and n = 2 would correspond to the 
previous expressions for premixed methane flames.
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assumes that the inner layer temperature is a function of pressure only, 
and it does not depend, for instance, on the equivalence ratio.
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This is a fairly crude  
approximation as may be seen  
when inner layer temperatures  
obtained from asymptotic analysis  
(Seshadri 1991) are plotted  
together with the adiabatic  
temperatures as a function of the  
equivalence ratio. 



If the structure of any other hydrocarbon fuel is similar to that of methane, these
exponents should not differ very much from these numbers. 

Since A(T0) and B(T0) contain essentially the temperature dependence due to rate  
coefficients, we express them in Arrhenius form

This concept was tested by Göttgens 1992.

The basis of the approximation was a data set of 197, 223, 252, 248, and 215  
premixed flames for CH4, C2H6, C2H4, C2H2 and C3H8,
in the range between p = 1 atm and 40 atm, Tu between 298  K and 800 K, and the   
fuel-air equivalence ratio between I = 0.4 and 1.0. 
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A nonlinear approximation procedure was employed, yielding the following values  
for the coefficients:

The approximation was surprisingly the best for C2H2, yielding a standard     
deviation for sL of 2.3%, followed by C2H4 with 3.2%, C2H6 and C3H8 with 6.2%,       
and CH4 with 7.4%.
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These deviations may be considered extremely small in view of the fact that such a       
large range of equivalence ratios, pressures and preheat temperatures has been  
covered with an approximation formula containing only six coefficients. 

A closer look at the exponents m and n shows that m is close to 1/2 for CH4 and  
C3H8, but close to unity for C2H2 and C2H4.

This suggests that the asymptotic model for these flames should differ from the 
one for CH4 in some important details. 

The exponent m lies around 2.5 and thereby sufficiently close to 2 for all fuels.
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are plotted as a function of       
equivalence ratio for different  
pressures at Tu = 298 K and  
compared with the values obtained  
from the numerical computations. 

Generally the largest derivations
from the numerical computations  
occur around I = 1.

Burning velocities for methane calculated from 
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The pressure and unburnt
temperature variation of sL at  
stoichiometric mixture are  
plotted for propane.

Burning velocities for methane calculated from 
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Example

From the approximation 

calculate in comparison with 

those activation energy, which describes the change of the reaction rate as 
function of the change in Tb. 
Thereby Tu and  T0 should be considered constant.
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Solution

If one writes 

approximately as

and logarithmizes this expression

one can determine the activation energy by differentiation with respect to 1/Tb .
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This leads to

Using this in 

for Uu =  const, it follows

Therefore one obtains for the Zeldovich number Ze
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Here, following 

T0 is only dependent on pressure, while Tb following

depends both on Tu and on the fuel-air ratio I = 1/O.

If the difference Tb-T0 is small compared with  Tb-Tu, the second term in the
parenthesis can be neglected..
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