
Lecture 8

Laminar Diffusion Flames:

Diffusion Flamelet Theory
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Mixing takes place by convection and diffusion. 

Only where fuel and oxidizer are mixed 
on the molecular level, chemical reactions
can occur. 
The time scale of reaction is much shorter 
than the time scale for diffusion.
→ diffusion is rate determining

This is why flames in non-premixed combustion are
called diffusion flames. Candle flame:

A classical example of a 
diffusion flame
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Systems, where fuel and oxidizer enter separately into the combustion chamber.



The paraffin of the candle first melts due to radiative
heat from the flame to the candle.

It mounts by capillary forces into the wick and 
evaporates to become paraffin vapor, a gaseous fuel.

The combustion zones in a diffusion flame are best 
described by an 
asymptotic expansion for very fast chemistry
starting from the limit of complete combustion. 

The flow entraining the air into the flame is driven by buoyancy.
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To leading order one obtains the adiabatic flame temperature which is a function 
of mixture fraction only.

The asymptotic expansion around this limit will then describe the 
influence of finite rate chemistry. 

If the expansion takes the temperature sensitivity of the chemistry into account
diffusion flame quenching can also be described. 

By introducing the mixture fraction as an independent coordinate for all reacting 
scalars, a universal coordinate transformation leads in the limit of sufficiently 
fast chemistry to a one-dimensional problem for the reaction zone. 

This is the basis of the flamelet formulation for non-premixed combustion.
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Flamelet Structure of a Diffusion Flame

Assumptions: equal diffusivities of chemical species and temperature

The balance equation for mixture fraction, temperature and species read:

Here the low Mach number limit that leads to zero spatial pressure gradients has 
been employed, but the temporal pressure change has been retained.
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Flamelet Structure of a Diffusion Flame

The equation for the mixture fraction 

does not contain a chemical source term, since elements are conserved in 
chemical reactions.

We assume the mixture fraction Z to be given in the flow field as a  function of 
space and time:      Z=Z(xα,t)
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Then the surface of the stoichiometric mixture can be determined from

Combustion occurs in a thin layer in the vicinity 
of this surface if the local mixture fraction gradient 
is sufficiently high. 

Let us locally introduce an 
orthogonal coordinate system 
x1, x2, x3 attached to the surface 
of stoichiometric mixture.
x1 points normal to the surface Zst ,   x2 and x3 lie within the surface. 

We replace the coordinate x1 by the mixture fraction Z and x2, x3 and t by Z2 = x2, Z3 = 
x3 and t = τ . This is a coordinate transformation of the Crocco type.
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Here the temperature T, and similarly the mass fractions Yi, will be expressed as 
a function of the mixture fraction Z. 

By definition, the new coordinate Z is locally normal to the surface of the 
stoichiometric mixture. With the transformation rules

we obtain the temperature equation in the form

The transformation of the equation for the mass fraction is similar.
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If the flamelet is thin in the Z direction, an order-of-magnitude analysis similar 
to that for a boundary layer shows that 

is the dominating term of the spatial derivatives.  
This term must balance the terms on the right-hand side. 

All other terms containing spatial derivatives can be neglected to leading order. 

This is equivalent to the assumption that the temperature derivatives normal to 
the flame surface are much larger than those in tangential direction. 
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The term containing the time derivative               is important if very rapid changes, 
such as extinction, occur. 

Formally, this can be shown by introducing the stretched coordinate ξ and the fast 
time scale σ

ε is a small parameter, the inverse of a large Damköhler number or a large 
activation energy, for example, representing the width of the reaction zone.
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If the time derivative term is retained, the flamelet structure is to leading order 
described by the one-dimensional time-dependent equations

Here

is the instantaneous scalar dissipation rate at stoichiometric conditions. 
It has the dimension 1/s and may be interpreted as the inverse of a characteristic 
diffusion time. 

It may depend on t and Z and acts as a prescribed parameter, representing the 
flow and the mixture field.
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As a result of the transformation, the scalar dissipation rate 

implicitly incorporates the influence of convection and diffusion normal to the 
surface of the stoichiometric mixture. 

In the limit χst → 0, equations for the homogeneous reactor, are obtained.

The neglect of all spatial derivatives tangential to the flame front is formally 
only valid in the thin reaction zone around Z = Zst. 
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There are, however, a number of typical flow configurations where 

is valid in the entire Z-space. 

As example, we will analyze here the planar counterflow diffusion flame.
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The Planar Counterflow Diffusion Flame

Counterflow diffusion flames are very often used experimentally because 
they represent an essentially one-dimension diffusion flame structures. 

If one assumes that the 
flow velocities of both streams 
are sufficiently large and 
sufficiently removed from the 
stagnation plane, 
the flame is embedded between 
two potential flows, one coming 
from the oxidizer and one from 
the fuel side. 
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Prescribing the potential flow velocity gradient in the oxidizer stream 

the velocities and the mixture fraction are there

Equal stagnation point pressure for both streams requires that the velocities in the 
fuel stream are
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The equations for continuity, momentum and mixture fraction are given by
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Introducing the similarity transformation

one obtains the system of ordinary differential equations

in terms of the non-dimensional stream function

and the normalized tangential velocity
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Furthermore the Chapman-Rubesin parameter C and the Schmidt number Sc are 
defined

The boundary equations are

An integral of the Z-equation is obtained as

where the integral I(η) is defined as
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For constant properties ρ = ρ∞, C = 1   f = η satisfies 

and

The instantaneous scalar dissipation rate is here

where 

and     have been used.
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When the scalar dissipation rate is evaluated with the assumptions that led to 

one obtains

For small Z one obtains with l‘ Hospital's rule

Therefore, in terms of the velocity gradient a the scalar dissipation rate becomes

showing that χ increases as Z2 for small Z.
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Steady State Combustion and Quenching of Diffusion Flames 
with One-Step Chemistry

If the unsteady term is neglected

we obtain an ordinary differential equation that describes the structure of a steady 
state flamelet normal to the surface of stoichiometric mixture. 

It can be solved for general reaction rates either numerically or by asymptotic 
analysis. 
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In the following we will express the chemistry by a one-step reaction with a large 
activation energy, assume constant pressure and the radiative heat loss to be 
negligible. 

We will analyze the upper branch of the S-shaped curve.

We will introduce an asymptotic
analysis for large Damköhler numbers 
and large activation energies. 

In the limit of large Damköhler numbers 
which corresponds to complete combustion the chemical reaction is confined to an 
infinitely thin sheet around Z = Zst. 
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Assuming constant cp the temperature and the fuel, oxidizer, and product mass 
fraction profiles are piecewise linear functions of Z.

This is called the Burke-Schumann solution. 
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We define the reaction rate as

to show that

is able to describe diffusion flame quenching. 

For simplicity we will assume T1 = T2 = Tu. 

Then, for one reaction with
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We define the reaction rate as

and 

to show that

is able to describe diffusion flame quenching. 

For simplicity we will assume T1 = T2 = Tu. 

We obtain the differential equation
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The temperature and the fuel and oxygen mass fraction are
expanded around Zst as

where ε is a small parameter to be defined during the analyses.

The exponential term in the reaction rate may be expanded as

where the Zeldovich number is defined as
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If all other quantities in 

are expanded around their value at the stoichiometric flame temperature one
obtains

where

is the Damköhler number.
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The differential equation

is cast into the same form as the one that governs Liñán's diffusion flame regime
by using the further transformation

to yield
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There are evidently two ways to define the expansion parameter ε.

Either by setting

or by setting

The first one would be called a large activation energy expansion and 
the second one a large Damköhler number expansion. 

Both formulations are interrelated if we introduce the distinguished limit,
where the rescaled Damköhler number

is assumed to be of order one. 
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Thus a definite relation between the Damköhler number and the activation energy
is assumed as ε → 0. 

We set

to obtain Liñán's equation for the diffusion flame regime

The boundary conditions are obtained by matching to the outer flow solution
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The essential property of this equation, as compared to the large Damköhler
number limit δ → ∞ is that the exponential term remains, since δ was assumed
to be finite. 

This allows extinction to occur if the parameter δ decreases below a critical
value δq. 

Liñán gives an approximation of δq in terms of  | γ |. 

For small values of  Zst extinction occurs at the transition to the premixed-flame 
regime. He obtains



Characteristic profiles for the temperature over Z with δ as a parameter. 

There is a limiting profile Tq(Z)  
corresponding to δq. 

Any solution below this profile is unstable,  and the flamelet would be extinguished.
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The extinction condition δ = δq defines with 

and 

a maximum dissipation rate χq at 
the surface of stoichiometric mixture 
for a flamelet to be burning, namely
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We may interpret χst as the inverse of a characteristic diffusion time. 

If χst is large, heat will be conducted
to both sides of the flamelet at a rate 
that is not balanced by the 
heat production due to 
chemical reaction. 

Thus the maximum temperature 
will decrease until the flamelet
is quenched at a 
value of χst = χq .



8.-36

Burning of the flamelet corresponds to the upper branch of the S-shaped curve. 

If χst is increased, the curve is 
traversed to the left until χq is 
reached, beyond which value only 
the lower, nonreacting branch exists. 

Thus at χst = χq the quenching of the 
diffusion flamelet occurs.

The transition from the point Q to the lower state corresponds to the unsteady 
transition.

Quenching
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Auto-ignition, which would correspond to an unsteady transition from the point I to 
the upper curve, is unlikely to occur 
in open diffusion flames, since the 
required very large residence times 
(very small values of χst) are not 
reached.
An example for auto-ignition in 
non-premixed systems is the 
combustion in a Diesel engine. 

Here interdiffusion of the fuel from 
the Diesel spray with the surrounding 
hot air leads to continuously  decreasing mixture fraction gradients  and therefore to 
decreasing scalar dissipation rates. 
This corresponds to a shift on the lower branch of the S-shaped curve up to the point 
I where ignition occurs.

Auto-ignition
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Time and Length Scales in Diffusion Flames

We will define the chemical time scale at extinction as

This definition is motivated by expression 

By comparing this with the time scale of a premixed flame with the same chemical 
source term one obtains



8.-39

Here ρu s_L has been calculated from 

and 

for a stoichiometric premixed flame.



This indicates that there is a fundamental relation between a premixed flame and
a diffusion flame at extinction: 

In a diffusion flame at extinction the heat conduction out of the reaction zone 
towards the lean and the rich side just balances the heat generation
by the reaction. 

In a premixed flame the heat conduction towards the unburnt mixture is
such that it balances the heat generation by the reaction for a particular burning 
velocity.

These two processes are equivalent. 
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A diffusion flame, however, can exist at lower scalar dissipation rates and therefore 
at lower characteristic flow times. 

The flow time in a premixed flow is fixed by the burning velocity, which is an 
eigenvalue of the problem.

Therefore combustion in diffusion flame offers an additional degree of freedom: 
that of choosing the ratio of the convective to the reactive time, represented by the 
Damköhler number defined in 

as long as χst < χq. 
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This makes non-premixed combustion to be better controllable and 
diffusion flames more stable. 

It is also one of the reasons why combustion in Diesel engines which 
operate in the non-premixed regime is more robust and less fuel quality 
dependent than that in spark ignition engines where fuel and air are 
premixed before ignition.
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Equations 

and 

may now be used to calculate chemical time scales for diffusion flames:

Extinction of the hydrogen-air diffusion flame occurs at a strain rate aq =14260/s 
and that of the methane-air flame at 420/s. 

8.-43



The latter estimate is of the same order of magnitude as tc for stoichiometric
premixed methane flames.

In diffusion flames, in contrast to premixed flames, there is no velocity scale, such 
as the burning velocity, by which a characteristic length scale such as the 
premixed flame thickness could be defined. 

There is, however, the velocity gradient a, the inverse of which may be interpreted 
as a flow time.

Based on this flow time one may define an appropriate diffusive length scale. 
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Based on this flow time 1/a one may define an appropriate diffusive length scale. 

Dimensional analysis leads to a diffusive flame thickness

Here the diffusion coeffcient D should be evaluated at a suitable reference 
condition, conveniently chosen at stoichiometric mixture. 

Assuming a one-dimensional mixture fraction profile in y-direction as for the 
insteady mixing layer the flame thickness in mixture fraction space may be defined
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Here              is the mixture fraction gradient normal to the flamelet. 

This flamelet thickness contains the reaction zone and the surrounding diffusive 
layers. 
The equation

leads with 

and  

to

where χref represents the scalar dissipation rate at the reference condition. 
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If χref is evaluated at Zst and                                   is used, it is seen that 

ΔZF is of the order of Zst, if Zst is small. 

With an estimate ΔZF = 2 Zst the flame thickness would cover the 

reaction zone and the surrounding diffusive layers in a plot of the 

flamelet structure in mixture fraction

space.
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Diffusion Flame Structure of Methane-Air Flames

The one-step model with a 
large activation energy is able 
to predict important features 
such as extinction, but for small 
values of Zst it predicts the 
leakage of  fuel through the 
reaction zone. 

Experiments of methane flames, on the contrary, show leakage of oxygen rather 
than of fuel through the reaction zone. 
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A numerical calculation with the four-step reduced mechanism

has been performed for the counter-flow diffusion flame in the stagnation region of 
a porous cylinder. 

This flow configuration, initially used by Tsuji and Yamaoka, will
be presented in the next lecture.
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Temperature profiles for methane-air flames

The second value of the strain rate corresponds to a condition close to extinction. 
It is seen that the temperature in the reaction zone decreases
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Fuel and oxygen mass fractions profiles for methane-air flames

The oxygen leakage increases as extinction is approached.
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An asymptotic analysis by Seshadri (1988) based on the four-step model shows a 
close correspondence between the different layers identified in the premixed methane 
flame and those in the diffusion flame. 
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The outer structure of the diffusion flame is the classical Burke-Schumann structure
governed by the overall one-step reaction 

with the flame sheet positioned at Z = Zst. 

The inner structure consists of a thin H2 - CO oxidation layer of thickness of order ε
toward the lean side and a thin inner layer of thickness of order δ slightly toward the 
rich side of  Z = Zst. 

Beyond this layer the rich side is chemically inert because all radicals are consumed 
by the fuel.
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The comparison of the diffusion 
flame structure with that of a 
premixed flame shows that the
rich part of the diffusion flame 
corresponds to the upstream preheat 
zone of the premixed flame while 
its lean part corresponds to 
the downstream oxidation layer.

The maximum temperature 
corresponds to the inner layer 
temperature of the asymptotic 
structure.
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The plot of the maximum temperature also corresponds to the  upper branch of the  
S-shaped curve. 
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The calculations agree well 
with numerical and experimental 
data and they also show the vertical 
slope of  T0 versus χ-1

st which 
corresponds to extinction.


