
Lecture 9

Laminar Diffusion Flame Configurations
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Different Flame Geometries and Single Droplet Burning

Solutions for the velocities and the mixture fraction fields for some typical 
laminar flame configurations. 
Based on the assumption of fast chemistry we will then be able to calculate the 
flame contour defined by the condition Z(x,t) = Zst.

We will for simplicity always assume  Le = 1 and cp = const. 

1st example: the flame stagnation point boundary layer  (similar to the 
counterflow flow of the previous lecture but with different boundary conditions). 

2nd example : vertical laminar 2D jet diffusion flame without/with buoyancy 

3rd example : combustion of a single droplet surrounded by a diffusion flame.
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Diffusion Flames in a Stagnation Point Boundary Layer: 
The Tsuji Flame

Gaseous fuel from a sinter metal tube 
is injected into the surrounding air 
which flows vertically upwards. 

Below the tube a stagnation point
is formed. 
This burner is known as the Tsuji burner. 

If the Reynolds number based on the 
cylinder radius and the free stream velocity is large, the flow field may be split 
into an inviscid outer flow and a boundary layer close to the surface.
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The potential flow solution for the flow around a cylinder then yields  the velocity 
gradient at the stagnation point

where v∞ is the velocity 
very far from the cylinder. 

The free-stream velocities at 
the edge of the boundary layer
are
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If the kinematic viscosity is small, the boundary layer thickness δ is proportional to 
the viscous length

where νe is the kinematic viscosity
at the edge of the boundary layer. 

In case the boundary layer thickness 
is thin compared to the cylinder radius
the curvature of the cylinder surface 
may be neglected and the boundary 
may be treated as two-dimensional 
allowing the usage of a Cartesian coordinate system.
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Governing equations for the boundary layer flow

continuity

momentum

mixture fraction

Bernoulli's equation for the pressure gradient at the boundary layer edge
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Boundary conditions

and

Here u = 0 is the symmetry condition at the surface. 

The mass flow rate mw of fuel issuing through the porous metal into the boundary 
layer is imposed. 
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The boundary condition for the mixture fraction equation represents the integrated 
mixture fraction balance at the surface of the porous metal by assuming that the 
mixture fraction gradient within the metal is zero.

The continuity equation is satisfied by introducing the stream function ψ such that

Introducing the similarity variable

a non-dimensional stream function f (η) is defined as

9.-8



The velocities are

One obtains the similarity equations

Here Sc = ν/ D is the Schmidt number and C is the Chapman-Rubesin parameter
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Since ν changes with temperature as T1.7 and ρ as T1, this quantity changes less than
the viscosity itself in a flow with strong heat release. 

The boundary conditions for the similar solution are
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The mixture fraction equation may be transformed into

which can formally be solved as

where

The mixture fraction at the surface is given by
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This indicates that the mixture fraction varies between Z = 0 and Z = Zw rather than
between 0 and 1. 

The boundary condition for the fuel and oxidizer fractions satisfy the
Burke-Schumann solution at Zw, as may easily be shown. 

The boundary condition for the temperature at the surface is to be imposed 
at Z = Zw.

If the mass flow rate at the surface is increased and fw takes large negative values, 
the  mixture fraction at the surface tends towards unity. 
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This is the limit of a counter-flow diffusion flame detached from the surface.

The equations 

have been solved numerically using the Burke-Schumann solution for combustion 
of methane in air 

with Zst = 0.055, Tu = 300  K and Tst = Tb(Zst) = 2263 K. 
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Profiles of  u=ax, v
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Profiles of  Z, T
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Profiles of  ρ =ρe and C
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The Round Laminar Diffusion Flame

Fuel enters into the combustion chamber 
as a round jet, either laminar or turbulent. 

To provide an understanding of the 
basic properties of jet diffusion flames, 
we will consider here the easiest case, 
the axisymmetric jet flame without buoyancy. 

This will enable us to determine 
the flame length. 
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The flame length is defined as the distance
from the nozzle to the point on the 
centerline of the flame where for the 
mixture fraction Z=Zst. 

We consider a fuel jet issuing from 
a nozzle with diameter d and exit velocity
u0 into quiescent air.

The indices 0 and ∞ denote conditions 
at the nozzle and in the ambient air. 
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Using the boundary layer assumption  with constant pressure we obtain a system 
of two-dimensional axisymmetric equations, in terms of the axial coordinate x and 
the radial coordinate r:

continuity

momentum in x direction

mixture fraction

Schmidt number is defined as Sc = ν/D.
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The dimensionality of the problem may be reduced by introducing the similarity 
transformation

which contains a density transformation defining the density weighted radial
coordinate. 

The new axial coordinate ξ starts from the virtual origin of the jet located at x = -x0. 

Introducing a stream function by

we can satisfy the continuity equation. 
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The convective terms in the momentum equation and in the equation for the 
mixture fraction may be expressed using the transformation rules

which leads to

For the diffusive terms one obtains

Chapman-Rubesin-parameter

For constant density with μ = μ∞ one obtains C = 1.
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The axial and radial velocity components may now be expressed in terms of the 
nondimensional stream function F(ξ,η) defined by

as

For the mixture fraction the ansatz

is introduced, where ZCL stands for the mixture fraction on the centerline.
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For a jet into still air a similarity solution exists if the nondimensional stream
function F and Chapman Rubesin parameter C are no function of ξ.

Then one obtains the ordinary differential equations, valid in the similarity
region of the jet:

To derive an analytical solution we must assume that C is a constant in the
entire jet. The solution is:
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The axial velocity profile then is obtained from 

as

with the jet spreading parameter
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The jet spreading parameter

is obtained from the requirement of integral momentum conservation along the
axial direction:

Here ρ0 is the density of the fuel and Re = ρ∞ u0 d / μ∞ is the Reynolds number.
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Similarly, conservation of the mixture fraction integral across the jet yields the 
mixture fraction on the centerline

such that the mixture fraction profile is given by

From this equation the flame length L can be calculated by setting Z = Zst at x = L, 
r = 0:

This shows that the flame length of a laminar round jet increases linearly with 
increasing exit velocity u0.
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Single Droplet Combustion

In many practical applications liquid fuel is injected into the combustion chamber
resulting in a fuel spray. 

By the combined action of aerodynamical shear, strain, and surface tension the 
liquid spray will decompose into a large number of single droplets of
different diameters. 

The fuel will then evaporate and a non-homogeneous fuel air mixture will be 
formed in the flow field surrounding the droplets. 
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When the spray is ignited, the droplets will burn either as a cloud surrounded by a 
enveloping flame or as single droplets, each being surrounded by its own diffusion 
flame. 

The former will the case if the fuel air mixture between different droplets is fuel 
rich such that the surface of stoichiometric mixture will surround the droplet cloud. 

We will consider here the latter case, where the surface of stoichiometric mixture 
surrounds the single droplet. 

We will furthermore consider very small droplets which follow the flow very 
closely and assume that the velocity difference between the droplet and the 
surrounding fuel is zero. 
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Therefore we may consider the case of a spherically symmetric droplet in a quiescent 
surrounding. 

We assume the evaporation and combustion process as quasi-steady and can therefore 
use the steady state

continuity

mixture fraction

temperature

In these equations r is the radial coordinate, and v is the flow velocity in radial 
direction.
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Here again Le = 1 leading to λ =  ρ cp D and a one step reaction with fast chemistry 
will be assumed. 

The reaction rate ω is then a δ-function at the flame surface located at Z = Zst. 

Expected temperature and 
mixture fraction profiles
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The boundary conditions at the droplet surface r = R are obtained by integrating the 
balance equations once in radial direction.

Since temperature and concentration gradients within the droplet are assumed 
negligible, the convective flux through the surface equals the diffusive flux in the 
gas phase at the droplet surface. 

The convective heat flux through the boundary involves a change of enthalpy, 
namely the enthalpy of evaporation hL. 

Therefore

Here (ρv)R is the convective mass flux through the surface.
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The mixture fraction of the convective flux involves the difference between the 
mixture fraction within the droplet, which is unity by definition, and that in the 
gas phase at the droplet surface, where Z = ZR. 

This leads to

The boundary conditions in the surrounding air are
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In addition, we assume that the temperature T at the droplet surface is equal to 
the boiling temperature of the liquid T = TL.

Then the temperature equation must satisfy three boundary conditions. 

This leads to an eigenvalue problem for the mass burning rate

of the droplet which thereby can be determined. 
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Integration of the continuity equation leads to

We will now introduce the nondimensional coordinate

where

Between η and ζ there is the relation
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may be integrated with the boundary conditions at r → ∞: ζ = 0, η = 0 to yield

and at r = R

9.-35



Transformation of 

with their boundary conditions leads to
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The solution of the mixture fraction equation with its boundary condition is readily 
seen to be

This and the scalar dissipation rate defined here as

is introduced into the temperature equation.
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This equation

compares to the flamelet equation derived in the previous lecture

if steady state, negligible heat loss, and one-step chemistry are assumed. 

→ The one-dimensional droplet combustion problem satisfies the laminar flamelet
assumptions exactly.
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Here we want again consider the Burke-Schumann-solution 

Then, in the fuel rich region between 
r = R and r = rF we have

Here T1 is by definition the temperature at Z = 1, which does not exist in the present
problem. 
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We know, however, from the boundary conditions 

the slope and the value at Z = ZR where

Introducing this and

into the boundary condition above one obtains
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T1 is a hypothetical temperature corresponding to the fuel if one considers the 
droplet as a point source of gaseous fuel. 

The heat of vaporization then decreases the temperature of the liquid fuel by the 
amount hL/cp. 

It should be used in flamelet calculations if one wishes to calculate flamelet
profiles in the range 0 < Z < 1 rather than 0 < Z < ZR.
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The boundary condition

may also be used with 

and 

to calculate the non-dimensional mass burning rate
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From this, the mass burning rate may be determined using 

We will introduce radially averaged properties

to obtain
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Now it is possible to determine the time needed to burn a droplet with 
initial radius R0 at time t = 0. 

The droplet mass is 

where ρL is the density of the liquid.

Its negative time rate of change equals the mass loss due to the mass burning rate

Introducing                          one obtains with constant mean properities by 
separation of variables
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Integrating of 

from R = R0 to R = 0 one obtains the 
burnout time

where d = 2 R0 is the 
initial droplet diameter. 

This is called the d2-law of 
droplet combustion.

It represents a very good first approximation for the droplet combustion time and 
has often be confirmed by experiments.
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Finally, we want to calculate the radial position of the surrounding flame. 

Evaluating

For Z = Zst = ηst one obtains

where with                                   and 

Here 
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If                                                      and   

are assumed equal one may use

to determine the flame radius as

For sufficiently small values of Zst the denominator may be approximated by
Zst itself showing that ratio rst / R may take quite large values.
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Exercise

Determine the non-dimensional mass burning rate and rst / R for a Diesel fuel 
where

and
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Solution

Using the Burke-Schumann solution the non-dimensional mass burning rate may be 
written as

The ratio of the flame radius to the droplet radius is then
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Exercise

Compare the evaporation rate for the same droplet as in the previous problem to 
that of the mass burning rate.

Solution

The non-dimensional evaporation rate of a droplet may be obtained in a similar way 
as
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It follows from 

in the limit Q = 0, therefore

The combustion rate is approximately three times faster than the evaporation rate.
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