
Lecture 10

Turbulent Combustion: The State of the Art
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Engineering applications  are typically turbulent

→ turbulence models 

These models use systematic mathematical derivations based on the Navier-
Stokes equations 

They introduce closure hypotheses that rely on dimensional arguments and 
require empirical input. 

→ semi-empirical  nature of turbulence models
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The apparent success of turbulence models in solving engineering problems for 
non-reactive flows has encouraged similar approaches for turbulent combustion 

→ turbulent combustion models

Problems:

Combustion requires that fuel and oxidizer are mixed at the molecular level. 

How this takes place in turbulent combustion depends on the turbulent mixing 
process. 
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The general view is that once a  range of different size eddies has developed,
strain and shear at the interface between the eddies enhance the mixing. 

During the eddy break-up process and the formation of smaller eddies,  strain and 
shear will increase and thereby steepen the concentration gradients at the interface 
between reactants, which in turn enhances their molecular interdiffusion. 

Molecular mixing of fuel and oxidizer, as a prerequisite of combustion, therefore 
takes place at the interface between small eddies.

There remains, however, the question to what extend we can expect an interaction 
between chemical and turbulent scales.
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Combustion differs from isothermal mixing in chemically reacting flows by 
two specific features:

• heat release by combustion induces an increase of temperature

• increase of temperature accelerates combustion chemistry. Due to the 
competition between chain branching and chain breaking reactions this 
process is very sensitive to temperature changes.

10.-5



Heat release combined with temperature sensitive chemistry leads to typical 
combustion phenomena like ignition and extinction.  

The maximum temperature in a 
homogeneous flow combustor is 
plotted as a function of the 
Damköhler number, which here
represents the ratio of the 
residence time to the chemical time. 

This is called the S-shaped curve. 
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The lower branch corresponds  to a slowly reacting state 
of the combustor prior to ignition. 

The short residence times prevent 
a thermal runaway. 

If the residence time is increased by 
lowering the flow velocity, for example,  
the Damköhler number increases until the 
ignition point I is reached.

For values larger than DaI thermal runaway leads to a rapid unsteady transition to 
the upper close-to-equilibrium branch. 
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If one starts on the upper branch and decreases the Damköhler number 
one reaches the point Q where extinction occurs. 

This is equivalent to a rapid transition 
to the lower branch.  The middle branch 
between the point  I and Q is unstable.

In the range of  Damköhler numbers 
DaQ < Da < DaI, where two stable 
branches exist, any initial state with 
a temperature in the  range between the 
lower and the upper branch is rapidly 
driven to either one of them.
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Due to the temperature sensitivity of combustion reactions the two stable branches 
represent strong attractors.  

Therefore, only regions close to 
chemical equilibrium or close 
to the non-reacting state are 
frequently accessed.
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Statistical Description of Turbulent Flows

The aim of stochastic methods in turbulence is the  description of the fluctuating
velocity and scalar fields in terms of their statistical distributions. 

Distribution function of a single variable of the velocity component u, for instance. 

The distribution function Fu(U) of u is defined by the probability p of finding a
value of u < U:

U is the so-called sample space variable associated with the random stochastic 
variable u.
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The sample space of the random stochastic variable u consists of all possible 
realizations of u. 

The probability of finding a value of u in a certain interval U- < u < U+ is given by

The probability density function pdf of u is now defined as

It follows that Pu(U)dU is the probability of finding u in the range U ≤ u ≤ U+dU. 
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If the possible realizations of u range from -∞ ≤ u ≤ +∞, it follows that

which states that the probability of finding the value u in the range -∞ ≤ u ≤ +∞ is 
certain, i.e. it has the probability unity. 

It also serves as a normalizing condition for Pu.

In turbulent flows the pdf of any stochastic variable depends, in principle, on the
position x and on time t. 

These functional dependencies are expressed by the following notation
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The semicolon used in

indicates that Pu is a probability density in U-space and a function of x and t. 

In stationary turbulent flows it does not depend on t and in homogeneous turbulent 
fields not on x. 

In the following we will, for simplicity of notation, not distinguish between the 
random stochastic variable u and the sample space variable U, drop the index and 
write the pdf as
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Once the pdf of a variable is known one may define its moments by

The overbar denotes the average or mean value, sometimes also called
expectation, of un.  The first moment (n = 1) is called the mean of u

Similarly, the mean value of a function g(u) can  be calculated from
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For flows with large density changes as they occur in combustion, it is often 
convenient to introduce a density-weighted average ũ, called the Favre average, by 
splitting u(x,t) 

This averaging procedure is defined by requiring that the average of the
product of u'' with the density ρ (rather than u'' itself) vanishes

The definition for ũ may then be derived by multiplying
by  the density ρ and averaging
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Here the average of the product ρũ is equal to the product of the averages     and ũ, 
since ũ is already an average defined by

This density-weighted average can be calculated, if simultaneous measurements of 
ρ and u are available. 

Then, by taking the average of the product ρu and dividing it by the average of ρ
one obtains ũ .

While such measurements are often difficult to obtain, Favre averaging has
considerable advantages in simplifying the formulation of the averaged
Navier-Stokes equations in variable density flows. 
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In the momentum equations, but also in the balance equations for the temperature 
and the chemical species, the convective terms are dominant in high
Reynolds number flows.  

Since these contain  products of the dependent variables and the density,  Favre 
averaging is the method of choice. 

For instance, the average of the product of the density ρ with the velocity 
components u and v would lead with conventional averages to four terms

Using Favre averages one writes

Here fluctuations of the density do not appear.
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Taking the average leads to two terms only

This expression is much simpler than 

and has formally the same structure as the conventional average of uv for constant 
density flows

Difficulties arising with Favre averaging in the viscous and diffusive transport 
terms are of less importance since these terms are usually neglected in high
Reynolds number turbulence.

The introduction of density weighted averages requires the knowledge of the 
correlation between the density and the other variable of interest.
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A Favre pdf of u can  be derived from the joint pdf P(ρ,u) as

Multiplying both sides with u and integrating yields

which is equivalent to

The Favre mean value of u therefore is defined as
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Navier-Stokes Equations and Turbulence Models

The classical approach to model turbulent flows. 

It is based on single point averages of the Navier-Stokes equations. 

These are commonly called Reynolds Averaged Navier-Stokes Equations (RANS).

We will formally extend this formulation to non-constant density by introducing 
Favre averages.

In addition we will present  the most simple  model for turbulent flows, the
k-ε model. 
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Even though it certainly is the best compromise for engineeringdesign using 
RANS, the predictive power of the k-ε model is, except for simple shear flows, 
often found to be disappointing. 

We will present it here, mainly to be able to define turbulent length and time 
scales.

For non-constant density flows the Navier-Stokes equations are written in
conservative form (cf. Lecture 3)

Continuity

Momentum
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The two terms on the left hand side (l.h.s.) of 

represent the local rate of change and convection of momentum, respectively, while the 
first term on the right hand side (r.h.s.) is the pressure gradient and the second term on 
the r.h.s. represents molecular transport due to viscosity. 

Here τ is the viscous stress tensor (cf. Lecture 3)

with the rate of strain tensor

calculated from the velocity gradient and its transpose and the dynamic viscosity μ =ρν. 
The last term in represents forces due to buoyancy.

10.-22



Using Favre averaging and one obtains

This equation is similar to 

except for the third term on the l.h.s. containing the correlation 

which is called the Reynolds stress tensor.

10.-23



An important simplification is obtained by introducing the 
kinematic eddy viscosity νt

which leads to the following expression for the Reynolds stress tensor

Here I is the unit tensor.

The kinematic eddy viscsity is related to the Favre average turbulent kinetic energy

and its dissipation by
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This requires that modeled equations are available for          .

These equations are given here in their most simple form

Turbulent kinetic energy

Turbulent dissipation

In these equations the two terms on the l.h.s. represent the local rate of change and
convection, respectively. 
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The first term on the r.h.s. represents the turbulent transport, 
the second one turbulent production and 
the third one turbulent dissipation. 

As in the standard k-ε model, the constants 
σk=1.0,  σε = 1.3, cε1= 1.44 and cε2= 1.92 

are generally used. 

A more detailed discussion concerning additional terms in the Favre averaged 
turbulent kinetic equation may be found in Libby and Williams (1994) .
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Two-Point Velocity Correlations and Turbulent Scales

A characteristic feature of turbulent flows is the occurrence of eddies of different 
length scales. 

If a turbulent jet enters with a high 
velocity into initially quiescent 
surroundings, the large velocity 
difference between the jet and the 
surroundings generate a 
shear layer instability which after 
a transition, becomes turbulent further downstream from the nozzle exit. 
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The two shear layers merge into a fully developed turbulent jet.

In order to characterize the distribution of eddy length scales at any position within 
the jet, one  measures at point x and time t the axial velocity u(x,t), and 
simultaneously at a second point (x+r,t) with distance r apart from
the first one, the velocity u(x+r,t). 
Then the correlation between these 
Two velocities is defined by the 
average
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For homogeneous isotropic turbulence the location x is arbitrary and r may
be replaced by its absolute value r=|r|. 

For this case the normalized 
correlation

is plotted schematically here.

Kolmogorov's 1941 theory for homogeneous isotropic turbulence assumes that   
there is a steady transfer of kinetic energy from the large scales to the small scales 
and that this energy is being consumed at the small scales by viscous dissipation. 

This is the eddy cascade hypothesis. 
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By equating the energy transfer rate (kinetic energy per eddy turnover time) with the 
dissipation it follows that this quantity is independent of the size of the eddies within 
the inertial range. 

For  the inertial subrange, extending from the integral scale to the Kolmogorov scale η, 
the dissipation ε is the only dimensional quantity apart from the correlation co-ordinate 
r that is available for the scaling of f(r,t). 

Since ε has the dimension m2/s3, the second order structure function defined by

with the dimension m2/s2 must therefore scale as

where  C is a universal constant called the Kolmogorov constant.
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There are eddies of a characteristic size which contain most of the kinetic energy. 

At these eddies there still is a relatively large correlation f(r,t) before it decays to zero. 

The length scale of these eddies is called the integral length scale defined by
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We denote the root-mean-square (r.m.s.) velocity fluctuation by

which represents the turnover velocity of integral scale eddies. 

The turnover time 

of these eddies is then proportional to the integral time scale

For very small values of r only very small eddies fit into the distance 
between x and x+r. 
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The motion of these small eddies is influenced by viscosity which provides an 
additional dimensional quantity for scaling. 

Dimensional analysis then yields the Kolmogorov length scale

The range of length scales between the integral scale and the Kolmogorov scale is 
called the inertial range. 
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In addition to η a Kolmogorov time and a velocity scale may be defined as

According to Kolmogorov's 1941 theory the energy transfer from the large eddies 
of the integral scale is equal to the dissipation of energy at the Kolmogorov scale. 

Therefore we will relate ε directly to the turnover velocity and the length scale of 
the integral scale eddies
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We now define a discrete sequence of eddies within the inertial subrange by

Since ε is constant within the inertial subrange, dimensional analysis relates the 
turnover time and the velocity difference across the eddy size to ε in that range as

This relation includes the integral scales and also holds for the Kolmogorov scales as
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A Fourier transform of the isotropic two-point correlation function leads to a
definition of the kinetic energy spectrum E(k), which is the density of
kinetic energy per unit wave number k. 

Here, rather than to present a formal derivation, we relate the wave number k to the 
inverse of the eddy size as

The kinetic energy vn
2 is then

and its density in wave number space is proportional to

This is the well-known k-5/3 law for the kinetic energy spectrum\label in the inertial 
subrange.
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If the energy spectrum is measured in the entire wave number range one obtains the
behavior  shown schematically in the log-log plot . 

For small wave numbers 
Corresponding to large 
scale eddies the energy per 
unit wave number increases 
with a power law between 
k2 and k4. 

This range is not universal
and is determined by large scale instabilities which depend on the boundary conditions 
of the flow. 
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The spectrum attains a maximum at a wave number that corresponds to the integral 
scale, since eddies of that scale contain most of the kinetic energy. 

For larger wave numbers 
corresponding to the inertial 
subrange the energy spectrum
decreases following the k-5/3 law. 

There is a cut-off due to viscous 
effects at the Kolmogorov scale η. 

Beyond this cut-off, in the range 
called the viscous subrange, the 
energy per unit wave number decreases exponentially due to viscous effects.
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In one-point averages the energy containing eddies at the integral length scale
contribute the most to the kinetic energy. 

Therefore RANS averaged 
Mean quantities essentially 
represent averages over regions
in physical space that are of the
order of the integral scale. 

In Large Eddy Simulations (LES)
the filtering over smaller regions 
than the integral length scale leads 
to different mean values and, 
in particular, to smaller variances.
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Balance Equations for Reactive Scalars

For simplicity, we will assume that the specific heat capacities cp,i are all equal and 
constant, the pressure is constant and the heat transfer due to radiation is neglected.

Then the temperature equation for unity Lewis number becomes (cf. Lecture 3)

The heat release due to chemical  reactions is written as
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This form of the temperature equation is similar to that for the mass fractions of
species i (cf. Lecture 3), which becomes with the binary diffusion approximation

If, in addition, a one-step reaction and equal diffusivities (Di=D) were assumed, 
coupling relations between the temperature and the species mass fractions can be 
derived (cf. Williams, 1985). 

These assumptions are often used in mathematical analyzes of combustion problems.
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In the following we will use the term "reactive scalars" for the mass fraction of
all chemical species and  temperature and  introduce the vector

Here k is the number of reactive species. 
For simplicity of notation, the balance equation for the reactive scalar ψi will be written

where i=1,2,… ,k+1. The diffusivities Di (i=1,2,… ,k) are the mass diffusivities for the 
species and Dk+1=D denotes the thermal diffusivity. 

Similarly, σi (i=1,2,… ,k) are the species source terms                                 and
σk+1 is defined as ωT . 
The chemical source term will also be written as si=ρSi
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Moment Methods for Reactive Scalars

Favre averaged equations for the mean and the variance of the reactive scalars can be 
derived by splitting ψi(x,t) into a Favre mean and a fluctuation

When this is introduced into 

one obtains in a similar way as for the momentum equation after averaging

In this equation the terms on the l.h.s. are closed, while those on the r.h.s. must be 
modeled.
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In high Reynolds number flows the molecular transport term containing the molecular
diffusivities Di are small and can be neglected. 

Closure is required for the second term on the r.h.s., the turbulent transport term, and 
for the last term, the mean chemical source term.

The modeling of the mean chemical source term has often been considered as the main 
problem of moment methods in turbulent combustion. 

In order to discuss the difficulties associated with the closure of this term, we assume 
that coupling relations exist between the chemical species and the temperature. 
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As noted before, such coupling relations can easily be derived for the case of a one step 
reaction and equal diffusivities.  

With this assumption we consider the following form of the heat release rate

Here B contains the frequency factor and the heat of reaction, Tb is the adiabatic flame 
temperature, E the activation energy. 

Introducing                        the argument of the exponential term may be expanded 
around                              as 
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If the expansion is also introduced into the preexponential term, the quantity ST

becomes

Typically, in the reaction zone of a flame

Therefore the exponential term causes enhanced fluctuations of the chemical source 
term maround its mean value evaluated with the mean temperature. 

It may be concluded that moment methods for reactive scalars will fail due to the strong 
nonlinearity of the chemical source term.
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Dissipation and Scalar Transport of Non-Reacting Scalars

As an example for a nonreactive scalar we will use the mixture fraction Z.

It is general practice in turbulent combustion to employ the gradient transport 
assumption for non-reacting scalars. 

The scalar flux then takes the form

Here Dt is a turbulent diffusivity which is modeled by analogy to the eddy viscosity as

where Sct is a turbulent Schmidt number. 
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The equation for the mean mixture fraction then reads

where the molecular term has been neglected. 

In order to derive an equation for mean mixture fraction variance we first must 
derive an equation for the fluctuation Z '' by subtracting 

from 

we obtain:
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If derivatives of  ρ and D and their mean values are neglected for simplicity,  
the first two terms on the r.h.s. of 

can be combined to obtain a term proportional to Di ΔZ''.

Introducing this and multiplying the equation by 2ρZ '' one obtains an equation 
for Z ''2. 
With the use of the continuity equation  and averaging one obtains
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As before, the terms on the r.h.s. describe the local change and convection. 

The first term on the r.h.s. is the turbulent transport term. 

The second term on the r.h.s. accounts for the production of  scalars fluctuations. 

The  mean molecular transport term has been neglected for simplicity but the molecular 
diffusivity still appears in the dissipation term. 

The Favre scalar dissipation rate  is defined as
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An integral scalar time scale can be defined by

It is often set proportional to the flow time 

The constant of proportionality cχ is of order unity but varies:

A value cχ=2.0 is often used. 

Combining                        and 

leads to the model
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The Eddy Break Up and the Eddy Dissipation Model

An early attempt to provide a closure for the chemical source term is due to
Spalding (1971). 

Turbulent mixing may be viewed as a cascade process from the integral down to 
the molecular scales, 
the cascade process also controls the chemical reactions as long as mixing rather 
than reaction is the rate determining process. 

This model was called the Eddy-Break-Up model (EBU).
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The turbulent mean reaction rate of products was expressed as

is the  variance of the product mass fraction and CEBU is the Eddy-Break-Up 
constant.

This model has been modified by Magnussen and Hjertager (1977) who replaced 
simply by the mean mass fraction of the deficient species  

(fuel for lean or oxygen for rich mixtures) 
calling it the Eddy Dissipation Model (EDM).
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The Eddy Dissipation Model takes the minimum of three rates, those defined with 
the mean fuel mass fraction with the mean oxidizer mass fraction

and with the product mass fraction

in order to calculate the mean chemical source term.

A and B are modeling constants and ν is the stoichiometric oxygen to fuel mass 
ratio defined by
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The Eddy Break-Up model and its modifications are based on intuitive arguments.

The main idea is to replace the  chemical time scale of an assumed one-step 
reaction by the turbulent time scale τ = k/ε.

Thereby the model eliminates the influence of chemical kinetics, representing the 
fast chemistry limit only. 

When these models  are used in CFD calculations, it turns out that the constants
CEBU or A and B must be "tuned"  within a wide range in order to obtain
reasonable results for a particular problem.
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The Pdf Transport Equation Model

Similar to moment methods,  models based on a pdf transport equation for the 
velocity and the reactive scalars are usually formulated for one-point statistics. 

Within that framework, however, they represent a general statistical description of 
turbulent reacting flows, applicable to premixed, nonpremixed and partially 
premixed combustion. 

A joint pdf transport equation for the velocity and the reactive scalars can be 
derived, which is equivalent to an infinite hierarchy of one-point moment
equations for these quantities, Pope (1990).
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For simplicity, we will consider here the transport equation for the joint pdf of 
velocity and reactive scalars only. 

Denoting the set of reactive scalars, such as the temperature  and the mass fraction 
of reacting species by the vector ψ,   

is  the probability of finding at point x and time t the velocity components and the 
reactive scalars within the intervals
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There are several ways to derive a transport equation for the probability density
P(v, ψ ; x, t)  (cf. O'Brien, 1980) . 

We refer here to the presentation in Pope (1985, 2000), but write the convective 
terms in conservative form

In deriving this equation, the equations for all reactive scalars, including that
for temperature this equation have been cast into the form 

for simplicity. 

10.-58



The symbol      denotes the divergence operator with respect to the three 
components of velocity.

The  angular brackets denote conditional averages, conditioned with respect to 
fixed values of  v and ψ . 

For simplicity of presentation we do not use different symbols for the random
variables describing the stochastic fields and the corresponding sample space
variables which are the independent variables in the pdf equation.
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The first two terms on the l.h.s. of 

are the local changeand convection of the probability density function in physical 
space. 

The third term represents transport in velocity space by gravity and the mean 
pressure gradient. 

The last term on the l.h.s. contains the chemical source terms.

All these terms are in closed form, since they are local in physical space. 
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Note that the mean pressure gradient does not present a closure problem, since the 
pressure is calculated independently of the pdf equation using the mean velocity 
field. 

For chemical reacting flows it is of particular interest that the chemical source 
terms can be treated exactly for arbitrarily complex chemical kinetics. 

It has often been argued that in this respect the transported pdf formulation has a 
considerable advantage compared to other formulations.
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However, on the r.h.s. of the transport equation 

there are two terms that contain gradients of quantities conditioned on the values 
of velocity and composition.

Therefore, if gradients are not included as sample space variables in the pdf
equation, these terms occur in unclosed form and have to be modeled. 
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The first unclosed term on the r.h.s. describes transport of the probability density 
function in velocity space induced by the viscous stresses and the fluctuating 
pressure gradient. 

The second term represents transport in reactive scalar space by molecular fluxes. 

This term represents molecular mixing.
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When chemistry is fast, mixing and reaction take place in thin layers where 
molecular transport and the chemical source term balance each other. 

Therefore, the closed chemical source term and the unclosed molecular mixing 
term, being leading order terms in a asymptotic description of the flame structure,   
are closely linked to each other. 

Pope and Anand (1984) have illustrated this for the case of premixed turbulent
combustion by comparing a standard pdf closure for the molecular mixing term 
with a formulation, where the molecular diffusion term was combined with the 
chemical source term to define a modified reaction rate. 

They call the former distributed combustion and the latter flamelet combustion and 
find considerable differences in the Damköhler number dependence of the 
turbulent burning velocity normalized with the turbulent intensity.
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From a numerical point of view, the most apparent property of the pdf transport
equation is its high dimensionality. 

Finite-volume and finite-difference techniques are not very attractive for this type 
of problem, as memory requirements increase roughly exponentially with 
dimensionality. 

Therefore, virtually all numerical implementations of pdf methods for turbulent 
reactive flows employ Monte-Carlo simulation techniques (cf. Pope, 1981, 1985), 

The advantage of Monte-Carlo methods is that their memory requirements depend 
only linearly on the dimensionality of the problem. 
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Monte-Carlo methods employ a large number, N, of particles. 

In the Lagrangian algorithm (Pope, 1985)) the particles are not bound to grid 
nodes. 
Instead, each particle has its own position and moves through the computational 
domain with its own instantaneous velocity. 

The particles should be considered as different realizations of the turbulent reactive 
flow problem under investigation. 

The state of the particle is described by its position and velocity, and by the values 
of the reactive scalar that it represents as a function of time.

These particles should not be confused with real fluid elements, which behave 
similarly in a number of respects.

10.-66



The Laminar Flamelet Concept

The view of a turbulent diffusion flame as an ensemble of stretched laminar 
flamelets is due to Williams (1975). 

Flamelet equations based on the mixture fraction as independent variable, using
the scalar dissipation rate for the mixing process, were independently derived by
Peters (1980) and Kuznetsov (1982). 

A first review of diffusion flamelet models was given by Peters (1984). 

For premixed and diffusion flames the flamelet concept was reviewed by Peters 
(1986) and Bray and Peters (1994).
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Flamelets are thin reactive-diffusive layers embedded within an otherwise non-
reacting turbulent flow field.

Once ignition has taken place, chemistry accelerates as the temperature increases
due to heat release. 

When the temperature reaches values 
that are of the order of magnitude of 
those of the close-to-equilibrium branch, 
the  reactions that determine 
fuel consumption become very fast. 

For methane combustion, for example, the time scale of the rate determining 
reaction in the fuel consumption layer was estimated in Lecture 1.
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Since the chemical time scale of this reaction is short,  chemistry is active only 
within a thin layer, namely the fuel consumption or inner layer.

If this layer is thin compared to the size of a Kolmogorov eddy, it is embedded 
within the quasi-laminar flow field of such an eddy and the assumption
of a laminar flamelet structure is justified. 

If, on the contrary, turbulence is  so intense, that Kolmogorov eddies become 
smaller than the inner layer and can penetrate into it, they are able to destroy its 
structure. 

Under these conditions the entire flame is likely to extinguish.
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The location of the inner layer defines the flame surface. 

Differently from moment methods or methods based on a pdf transport equation, 
statistical considerations in the flamelet concep focus on the location of the flame 
surface and not on the reactive scalars themselves. 

That location is defined as an iso-surface of a non-reacting scalar quantity, for
which a suitable field equation is derived. 

For nonpremixed combustion the mixture fraction Z is that scalar quantity, for 
premixed combustion the scalar G will be introduced. 

Once equations that describe the statistical distributions of Z and G aresolved, the 
profiles of the reactive scalars normal to the surface are calculated using flamelet
equations.
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These profiles are assumed to be attached to the flame surface and are convected
with it in the turbulent flow field. 

Therefore the statistical moments of the reactive scalars can be obtained from the 
statistical distribution of the scalar quantities Z and G.

Details of this procedure will be discussed in Lecture 12.
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The BML-Model and the Coherent Flamelet Model

For premixed combustion, flamelet models are typically based  on the progress
variable c. 

The progress variable c is defined as a normalized temperature or normalized 
product mass fraction

which implies a one-step reaction A to P and a corresponding heat release raising 
the temperature from Tu to Tb. 

In flamelet models based on the progress variable the flame structure is assumed to 
be infinitely thin and no intermediate values of temperature are resolved. 
This corresponds to the fast chemistry limit.
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The progress variable therefore is  a step function that separates unburnt mixture 
and burnt gas in a given flow field.

The classical model for premixed turbulent combustion, the Bray-Moss-Libby 
(BML) model, was initiated by Bray and Moss (1977) by assuming the pdf of the 
progress variable c to be a two delta function distribution. 

This assumption only allows  for entries at c = 0 and c = 1 in a turbulent premixed 
flame, but it illustrates important features, like counter-gradient diffusion of the 
progress variable. 

This appears in the equation for the Favre mean progress variable

where the molecular diffusion term has been neglected. 
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This equation 

requires the modeling of the turbulent transport term and the mean reaction term

Libby and Bray (1981) and Bray et al. (1981)  have shown that a gradient
transport assumption like

is not applicable to         .

This is due to gas expansion effects at the flame surface and is called counter-
gradient diffusion.
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Counter-gradient diffusion  has been found in many experiments and in many one-
dimensional numerical analyzes. 

However, there is no model available that could be used in three-dimensional 
calculations solving 

With counter-gradient diffusion  included.

Models for the mean reaction rate by Bray et al.(1984) and Bray and Libby (1986) 
focus on a time series of step function events of the progress variable. 

This makes the mean source term proportional to the flamelet crossing frequency. 
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Further modeling, discussed in more detail in Bray and Libby (1994), then leads to 
the expression

where sL is the laminar burning velocity, I0 is  a stretch factor and Σ is the flame 
surface density (flame surface per unit volume).

A model for Σ has been proposed by Candel et al. (1990).

This is called the Coherent Flame Model (CFM).

10.-76



A comparison of the performance of different formulations of the model for one-
dimensional turbulent flames was made by Duclos et al. (1993).

Modeling based on DNS data has led Trouve and Poinsot (1994) to the following
equation for the flame surface density Σ:

The terms on the l.h.s. represent the local change and convection, the first term on 
the r.h.s. represents turbulent diffusion, the second term production by flame 
stretch and the last term flame surface annihilation. 

The stretch term is proportional to the inverse of the integral time scale τ = k/ε
which is to be evaluated in the unburnt gas.
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Combustion Models used in LargeEddy Simulation

Turbulence models based on Reynolds Averaged Navier-Stokes Equations
(RANS)  employ turbulent transport approximations with an effective turbulent
viscosity that is by orders of magnitude larger than the molecular viscosity. 

In particular if steady state versions of these equations are used, this tends to 
suppress large scale instabilities which occur in flows with combustion even more 
frequently than in non-reacting flows.  

If those instabilities are to be resolved in numerical simulations, it is necessary to 
recur to more advanced, but computationally more expensive methods such as 
Large Eddy Simulation (LES).
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Large Eddy Simulation does not intend to numerically resolve all turbulent length 
scales, but only a fraction of the larger energy containing scales within the inertial 
subrange. 

Modeling is then applied to represent the smaller unresolved scales which contain 
only a small fraction of the turbulent kinetic energy.

Therefore the computed flows are usually less sensitive to modeling assumptions. 

The distinction between the resolved large scales  and the modeled small scales is 
made by the grid resolution that can be afforded. 
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The model for the smaller scales is called the subgrid model. 

In deriving the basic LES equations, the  Navier-Stokes equations are spatially 
filtered with a filter of size Δ, which is of the size of the grid cell (or a multiple 
thereof) in order to remove the direct effect of the small scale fluctuations (cf. 
Ghosal and Moin, 1995).

These show up indirectly through nonlinear terms in  the subgrid-scale stress
tensor as subgrid-scale Reynolds stresses, Leonard stresses, and
subgrid-scale cross stresses. 

The latter two contributions result from the fact that, unlike with the traditional 
Reynolds averages, a second filtering changes an already filtered field. 
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In a similar way, after filtering the equations for non-reacting scalars like the
mixture fraction, one has to model the filtered scalar flux vectors which contain
subgrid scalar fluxes, Leonard fluxes, and subgrid-scale cross fluxes.

The reason why LES still provides substantial advantages for modeling turbulent
combustion is that the scalar mixing process is of paramount importance in 
chemical conversion. 

Nonreactive and reactive system studies show that LES predicts the scalar
mixing process and dissipation rates with considerably improved accuracy 
compared to RANS, especially in complex flows. 
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For example, to study the importance of turbulent scalar dissipation rate 
fluctuations on the combustion process and to highlight the differences between 
RANS and LES, Pitsch (2002), compared the results of two different LES 
simulations using unsteady flamelet models in which the scalar dissipation
rate appears as a parameter. 

The only difference between the simulations was that only the Reynolds-averaged 
dissipation rate was used in one simulation, Pitsch (2000), whereas the other 
considered the resolved fluctuations of the filtered scalar dissipation rate predicted 
by LES. 

The results show substantially improved predictions, especially for minor species, 
when fluctuations are considered. 
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Another such example is the simulation of a bluff-body stabilized flame,  Raman 
(2005), where a simple steady-state diffusion flamelet model in the context of
an LES with a recursive filter refinement method led to excellent results. 

Such accuracy has not been achieved with RANS simulations of the same 
configuration , Kim (20020}, Muradoglu (2003).

Both studies are discussed in more detail below. Similar arguments can be made 
for premixed turbulent combustion LES.
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In RANS modeling it has long been realized that the direct closure of the mean
chemical source term in the averaged species transport equations can hardly be 
accomplished, and conserved scalar methods have been used in many applications. 

Using so-called coupling functions, the rate of mixing of fuel and oxidizer can be 
described by a nonreactive scalar, the mixture fraction. Different definitions have 
been used for the mixture fraction, Bilger (1976}, Pitsch (1998), but essentially the 
mixture fraction is a measure of the local equivalence ratio. 

Hence, the mixture fraction is a conserved scalar, independent of the chemistry. 

This leads to the so-called conserved scalar method, which forms the basis for 
most of the combustion models for nonpremixed turbulent combustion. 
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Considering the simplest case of infinitely fast chemistry, all species mass 
fractions and the temperature are a function of mixture fraction only. 

If the subfilter probability distribution of the mixture fraction is known,
the Favre-filtered mass fractions, for instance, can then be obtained as

where Z is the mixture fraction and f(Z) is the marginal density-weighted filter
probability density function (FPDF) of the mixture fraction. 

Applications of simple conserved scalar models in LES have been based on 
infinitely fast irreversible chemistry Pierce (1998) and equilibrium chemistry Cook 
(1994}.
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The flamelet model is a conserved scalar model that can account for finite-rate 
chemistry effects. 

Many models that have been formulated for LES are variants of these and some 
are discussed below.

These models essentially provide state relationships for the reactive scalars as 
functions of mixture fraction and other possible parameters, such as the scalar 
dissipation rate. 

Filtered quantities are then obtained by a relation similar to 

but using a presumed joint FPDF of the mixture fraction and, for example, the 
scalar dissipation rate.
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Because the probability density function (PDF) plays a central role in most models
for nonpremixed combustion, it is necessary to emphasize the special meaning of
the FPDF in LES. 

Here, the example of the marginal FPDF of the mixture fraction is discussed, but 
similar arguments can be made for the joint composition FPDF. 

In Reynolds-averaged methods, a one-point PDF can be determined by repeating 
an  experiment many times and recording the mixture fraction at a given time and 
position in space. 

For a sufficiently large number of samples, the PDF of the ensemble can be 
determined with good accuracy. 
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In LES, assuming a simple box filter, the data of interest is a one-time, one-point 
probability distribution in a volume corresponding to the filter size surrounding the 
point of interest. 

If an experimentally observed spatial mixture fraction distribution is considered at 
a given time, the FPDF cannot simply be evaluated from these data, because the 
observed distribution is characteristic of this particular realization and it is not a 
statistical property. 

As a statistical property, the FPDF must be defined by an ensemble that can 
potentially have an arbitrary large number of samples. In the context of transported 
PDF model formulations for LES, which are discussed below, Pope (1990) 
introduced the notion of the filtered density function (FDF), which describes the 
local subfilter state of the considered experiment. 
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The FDF is not an FPDF, because it describes a single realization. 

The FPDF is defined only as the average of the FDF of many realizations given the 
same resolved field,  Fox (2003). 

It is important to distinguish between the FDF and the FPDF, especially in using 
direct numerical simulation (DNS) data to evaluate models, and in the transported 
FDF models discussed below. 

Only the FDF can be evaluated from typical DNS data, whereas the FPDF is 
required for subfilter modeling.
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For conserved scalar models, a presumed shape of the FPDF has to be provided.

Similar to RANS models, a beta-function distribution is usually assumed for the
marginal FPDF of the mixture fraction, and parameterized by the first two 
moments of the mixture fraction. 

The filtered mixture fraction is determined by the solution of a transport equation, 
whereas algebraic models are mostly used for the subfilter scalar variance. 

The beta-function is expected to be a better model for the FPDF in LES
than for the PDF in RANS, because the FPDF is generally more narrow, and hence
the exact shape is less important. It can also be expected that intermittency, which 
is a main source of error when using the beta-function in RANS, will mostly occur 
on the resolved scales. 
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The validity of the beta-function representation of the FPDF of the mixture 
fraction has been investigated by several authors using DNS data of nonpremixed
reacting flows of both constant and variable density Cook (1994), Jimenez (1997),
Wall (2000). 

The main conclusion of these studies is that the beta-function distribution provides 
a good estimate for the FPDF of the mixture fraction and that this estimate is even 
better in LES than in RANS models. 

Furthermore, the model is particularly good when evaluated using the mixture 
fraction variance.taken from DNS data, suggesting that the beta-function as a 
model for the statistical distribution of the mixture fraction performs much better 
than the commonly used subgrid-scale models for the mixture fraction variance. 
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However, recent studies by Tong (2001, 2005) show that the FPDF often 
substantially deviates from the beta-function. This is discussed in more detail 
below.

In the following, different variants of the flamelet model are discussed. 

Because all such models require the scalar dissipation rate, modeling of this 
quantity is discussed first. 

We follow the presentation in Pitsch (2006).
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Modeling the Scalar Dissipation Rate

Although different conceptual ideas and assumptions are used in the combustion
models discussed here, most of them need a model for the scalar dissipation rate.

The dissipation rate of the mixture fraction is a fundamental parameter in 
nonpremixed combustion, which determines the filtered reaction rates, if 
combustion is mixing controlled. 

High rates of dissipation can also lead to local or global flame extinction.

Models based on presumed FPDFs also require a model for the subfilter scalar
variance. 
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Here, the most commonly used model formulations for LES are reviewed
briefly, differences with the typical RANS models are pointed out, and potential 
areas of improvement are discussed.

An illustration of the importance of the scalar variance and dissipation rate in
LES of nonpremixed combustion modeling is given by the following example.

Pope (2004) pointed out that LES is an incomplete model if the filter size can be 
arbitrarily specified. 

This is an important issue, especially for combustion LES, because of the 
importance of the subfilter models. 
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To fix the arbitrariness of the filter, Raman (2005) proposed a recursive filter 
refinement method, where the local filter width is determined such that the ratio of 
subfilter scalar variance to the maximum possible variance is smaller than a 
specified value. 

The maximum possible variance can be expressed in terms of the resolved mixture 
fraction as

It was demonstrated in the simulation of a bluff-body stabilized flame that this 
method better resolves high scalar variance and dissipation regions, which leads to 
significant improvement in results. 
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Results from large-eddy simulation of the Sydney bluff-body flame Raman (2005)
Flame representation from simulation results (left) and time-averaged radial 
profiles of temperature and CO mass fraction.
The left figure shows computed chemiluminescence emissions of CH collected in 
an observation plane with a ray tracing technique.
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In RANS models, typically a transport equation is solved for the scalar variance, in 
which the Reynolds-averaged scalar dissipation rate χ appears as an unclosed
sink term that requires modeling. 

The additional assumption of a constant ratio of the integral timescale of the 
velocity τt and the scalar fields leads to the expression

where cφ is the so-called timescale ratio.
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In the models most commonly used in LES  Girimaji (1996), Pierce (1998),
the scalar variance transport equation and the timescale ratio assumption are
actually used in the opposite sense. 

Instead of solving the subfilter variance equation, the assumption that the scalar 
variance production appearing in that equation equals the dissipation term leads to 
an algebraic model for the dissipation rate of the form

where an eddy diffusivity model was used for the subfilter scalar flux in the 
production term. 

is the eddy diffusivity, where cZ can be determined using a dynamic procedure and 

is the characteristic Favre-filtered rate of strain. 
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Writing                               for the subfilter scales and combining it with 

then leads to the model for the scalar variance

is assumed, and a new coefficient cV is introduced, which can be determined 
dynamically following Pierce (1998). 

From                            ,     and the dynamically determined 
coefficients of the eddy diffusivity and the scalar variance, the timescale ratio  cφ

can be determined as
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Pitsch (2000) used the Lagrangian flamelet model (LFM), Pitsch (1998) as a
subfilter combustion model for LES in an application to a piloted
methane/air diffusion flame Barlow (1998) using a 20-step reduced chemical
scheme based on the GRI 2.11 mechanism Bowman (1995). 

The unsteady flamelet equations are solved coupled with the LES solution to 
provide the filtered density and other filtered scalar quantities using a presumed 
FPDF of the mixture fraction. 

The scalar dissipation rate χ required to solve the flamelet equation

is determined from the LES fields as a cross-sectional conditionally averaged value 
using a model similar to the conditional source term estimation method by Bushe
(1999),  which is described below. 
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The unconditional scalar dissipation rate was determined from a dynamic model Pierce 
(1998). 
This study is the first demonstration of combustion LES of a realistic configuration 
using a detailed description of the chemistry.

The results are promising, especially for NO, but because of the cross sectional
averaging of the scalar dissipation rate, local fluctuations of this quantity
are not considered and the potential of LES is not fully realized. 

Also, this model cannot be easily applied in simulations of more complex flow fields. 

In a more recent formulation, the Eulerian flamelet model Pitsch (2002), the flamelet
equations are rewritten in an Eulerian form, which leads to a full coupling with the LES 
solver, and thereby enables the consideration of the resolved fluctuations of the scalar 
dissipation rate in the combustion model. 
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Results from large-eddy simulation of Sandia flame D (Pitsch, 2002,2000), using the Eulerian
flamelet model (solid lines) and the Lagrangian flamelet model (dashed lines) compared with 
experimental data of Barlow (1998).  Temperature distribution (left), scalar dissipation rate 
distribution (center), and comparison of mixture fraction–conditioned averages of temperature 
and mass fractions of NO, CO, and H2 at x/D = 30. Courtesy of  Pitsch (2006)
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The resolved scalar dissipation rate field is dominated by features occurring on the 
large scale of the turbulence. Layers of high dissipation rate alternate with low 
dissipation rate regions.

In the LFM results, as well as in several earlier RANS-type modeling
studies Barlow (2000), where these fluctuations are not considered, some heat
release occurs on the rich partially premixed side of the flame, which leads to 
strong CO formation in these regions. 

Accounting for the richness of the predicted spatial distribution of the scalar 
dissipation rate substantially improves the comparison with the experimental data 
by suppressing the heat release in the rich regions, and hence the formation of CO.
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LES of real Combustion Devices

Several investigators have reported simulations of real combustion devices with 
LES.

Most of these use either structured or block-structured curvi-linear meshes, which
cannot deal with very complex geometries. Simulations of gas turbines, for 
instance,typically require unstructured meshing strategies, for which the 
formulation of energy conserving and accurate numerical algorithms, of particular 
importance for combustion
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LES, proves to be even more difficult. Among the few fully unstructured
multiphysics LES codes are the AVBP code of CERFACS, which has been applied
in many studies on combustion instabilities and flashback in premixed gas turbines
Selle (2004),  Sommerer (2004), and the Stanford CDP code1 CDP solves
both low-Ma number variable-density and fully compressible LES equations using
the unstructured collocated finite volume discretization of  Mahesh (2004) and
its subsequent improvements by Ham (2004). 

It applies Lagrangian particle tracking with adequate models for breakup, particle 
drag, and evaporation for liquid fuel sprays. 
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Closure for subfilter transport terms and other turbulence statistics is accomplished
using dynamic models. 

The FPV combustion model is applied to model turbulence/chemistry interactions. 

The code is parallelized with advanced load balancing procedures for both gas and 
particle phases.

Computations have been conducted with over two billion cells using several thousand 
processors.

A state-of-the-art simulation of a section of a modern Pratt \& Whitney gas turbine
combustor that uses all these capabilities has been performed Mahesh (2005),  Apte
(2005). 
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The figure shows the spray and temperature distribution and demonstrates the 
complexity of the geometry and the associated flow physics.
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