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Graphs

Definition
graph: G = (V ,E )

I V : node (or vertex) set

I E ⊆ V × V : edge set

I e = (v1, v2) ∈ E :

I v1 and v2 are endnodes of e

I e is incident to v1 and v2

I v1 and v2 are adjacent
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Graph Example

V = {a, b, c, d , e, f }
E = {(a, b), (a, c),

(a, d), (a, e),
(a, f ), (b, c),
(d , e), (e, f )}
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Directed Graphs

Definition
directed graph (digraph): D = (V ,A)

I V : node set

I A ⊆ V × V : arc set

I a = (v1, v2) ∈ A:

I v1: origin node of a

I v2: terminating node of a
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Directed Graph Example
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Weighted Graphs

I weighted graph: labels assigned to edges

I weight

I length, distance

I cost, delay

I probability

I . . .
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Multigraphs

I parallel edges: edges between same node pair

I loop: edge starting and ending in same node

I plain graph: no loops, no parallel edges

I multigraph: a graph which is not plain
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Multigraph Example

I parallel edges: (a, b)

I loop: (e, e)
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Subgraph

Definition
G ′ = (V ′,E ′) is a subgraph of G = (V ,E ):
V ′ ⊆ V ∧ E ′ ⊆ E ∧ ∀(v1, v2) ∈ E ′ [v1, v2 ∈ V ′]
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Incidence Matrix

I rows: nodes, columns: edges

I 1 if edge incident on node, 0 otherwise

example

e1 e2 e3 e4 e5 e6 e7 e8

v1 1 1 1 0 1 0 0 0
v2 1 0 0 1 0 0 0 0
v3 0 0 1 1 0 0 1 1
v4 0 0 0 0 1 1 0 1
v5 0 1 0 0 0 1 1 0
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Adjacency Matrix

I rows: nodes, columns: nodes

I 1 if nodes are adjacent, 0 otherwise

example

v1 v2 v3 v4 v5

v1 0 1 1 1 1
v2 1 0 1 0 0
v3 1 1 0 1 1
v4 1 0 1 0 1
v5 1 0 1 1 0

13 / 105

Adjacency Matrix

I multigraph: number of edges between nodes

example

a b c d

a 0 0 0 1
b 2 1 1 0
c 0 0 0 0
d 0 1 1 0
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Adjacency Matrix

I weighted graph: weight of edge
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Degree

I degree of node: number of incident edges

Theorem
dv : degree of node v

|E | =
∑

v∈V dv

2
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Degree Example

da = 5
db = 2
dc = 2
dd = 2
de = 3
df = 2

16
|E | = 8

17 / 105

Multigraph Degree Example

da = 6
db = 3
dc = 2
dd = 2
de = 5
df = 2

20
|E | = 10
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Degree in Directed Graphs

I in-degree: dv
i

I out-degree: dv
o

I node with in-degree 0: source

I node with out-degree 0: sink

I
∑

v∈V dv
i =

∑
v∈V dv

o = |A|
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Degree

Theorem
In an undirected graph, there is an even number of nodes
which have an odd degree.

Proof.

I ti : number of nodes of degree i
2|E | =

∑
v∈V dv = 1t1 + 2t2 + 3t3 + 4t4 + 5t5 + . . .

2|E | − 2t2 − 4t4 − · · · = t1 + t3 + t5 + · · ·+ 2t3 + 4t5 + . . .
2|E | − 2t2 − 4t4 − · · · − 2t3 − 4t5 − · · · = t1 + t3 + t5 + . . .

I left-hand side even ⇒ right-hand side even
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Isomorphism

Definition
G = (V ,E ) and G ? = (V ?,E ?) are isomorphic:
∃f : V → V ? [(u, v) ∈ E ⇒ (f (u), f (v)) ∈ E ?] ∧ f is bijective

I G and G ? can be drawn the same way
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Isomorphism Example

I f = (a 7→ d , b 7→ e, c 7→ b, d 7→ c, e 7→ a)
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Petersen Graph

I f = (a 7→ q, b 7→ v , c 7→ u, d 7→ y , e 7→ r ,
f 7→ w , g 7→ x , h 7→ t, i 7→ z , j 7→ s)
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Homeomorphism

Definition
G = (V ,E ) and G ? = (V ?,E ?) are homeomorphic:

I G and G ? isomorphic, except that

I some edges in E ? are divided with additional nodes
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Homeomorphism Example
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Regular Graphs

I regular graph: all nodes have the same degree

I n-regular: all nodes have degree n

examples
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Completely Connected Graphs

I G = (V ,E ) is completely connected:
∀v1, v2 ∈ V (v1, v2) ∈ E

I every pair of nodes are adjacent

I Kn: completely connected graph with n nodes
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Completely Connected Graph Examples

K4 K5
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Bipartite Graphs

I G = (V ,E ) is bipartite: V1 ∪ V2 = V , V1 ∩ V2 = ∅
∀(v1, v2) ∈ E [v1 ∈ V1 ∧ v2 ∈ V2]

example

I complete bipartite: ∀v1 ∈ V1 ∀v2 ∈ V2 (v1, v2) ∈ E

I Km,n: |V1| = m, |V2| = n
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Complete Bipartite Graph Examples

K2,3 K3,3
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Walk

I walk: sequence of nodes and edges
from a starting node (v0) to an ending node (vn)

v0
e1−→ v1

e2−→ v2
e3−→ v3 −→ · · · −→ vn−1

en−→ vn

where ei = (vi−1, vi )

I no need to write the edges if not weighted

I length: number of edges

I v0 = vn: closed
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Walk Example

c
(c,b)−−−→ b

(b,a)−−−→ a
(a,d)−−−→ d

(d ,e)−−−→ e
(e,f )−−−→ f

(f ,a)−−−→ a
(a,b)−−−→ b

c → b → a→ d → e
→ f → a→ b

length: 7
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Trail

I trail: edges not repeated

I circuit: closed trail

I spanning trail: covers all edges
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Trail Example

c
(c,b)−−−→ b

(b,a)−−−→ a
(a,e)−−−→ e

(e,d)−−−→ d
(d ,a)−−−→ a

(a,f )−−−→ f

c → b → a→ e → d →
a→ f
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Path

I path: nodes not repeated

I cycle: closed path

I spanning path: visits all nodes
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Path Example

c
(c,b)−−−→ b

(b,a)−−−→ a
(a,d)−−−→ d

(d ,e)−−−→ e
(e,f )−−−→ f

c → b → a→ d → e → f
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Connected Graphs

I connected: a path between every pair of nodes

I a disconnected graph can be divided
into connected components
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Connected Components Example

I disconnected:
no path between a and c

I connected components:
a, d , e
b, c
f
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Distance

I distance between vi and vj :
length of shortest path between vi and vj

I diameter of graph: largest distance in graph
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Distance Example

I distance between a and e: 2

I diameter: 3
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Cut-Points

I G − v : delete v and all its incident edges from G

I v is a cut-point for G :
G is connected but G − v is not
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Cut-Point Example

G G − d
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Directed Walks

I ignoring directions on arcs: semi-walk, semi-trail, semi-path

I if between every pair of nodes there is:

I a semi-path: weakly connected

I a path from one to the other: unilaterally connected

I a path: strongly connected
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Directed Graph Examples

weakly unilaterally strongly
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Bridges of Königsberg

I cross each bridge exactly once
and return to the starting point
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Graphs
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Traversable Graphs

I G is traversable: G contains a spanning trail

I a node with an odd degree must be either the starting node
or the ending node of the trail

I all nodes except the starting node and the ending node
must have even degrees
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Bridges of Königsberg

I all nodes have odd degrees: not traversable
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Traversable Graph Example

I a, b, c: even

I d , e: odd

I start from d , end at e:
d → b → a→ c → e
→ d → c → b → e
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Euler Graphs

I Euler graph: contains closed spanning trail

I G is an Euler graph ⇔ all nodes in G have even degrees
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Euler Graph Examples

Euler not Euler
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Hamilton Graphs

I Hamilton graph: contains a closed spanning path
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Hamilton Graph Examples

Hamilton not Hamilton
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Connectivity Matrix

I A: adjacency matrix of G = (V ,E )

I Ak
ij : number of walks of length k between vi and vj

I maximum distance between two nodes: |V | − 1

I connectivity matrix:
C = A1 + A2 + A3 + · · ·+ A|V |−1

I connected: all elements of C are non-zero
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Warshall’s Algorithm

I very expensive to compute the connectivity matrix

I easier to find whether there is a walk between two nodes
rather than finding the number of walks

I for each node:

I from all nodes which can reach the current node
(rows that contain 1 in current column)

I to all nodes which can be reached from the current node
(columns that contain 1 in current row)
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Warshall’s Algorithm Example

a b c d

a 0 1 0 0
b 0 1 0 0
c 0 0 0 1
d 1 0 1 0
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Warshall’s Algorithm Example

a b c d

a 0 1 0 0
b 0 1 0 0
c 0 0 0 1
d 1 1 1 0
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Warshall’s Algorithm Example

a b c d

a 0 1 0 0
b 0 1 0 0
c 0 0 0 1
d 1 1 1 0
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Warshall’s Algorithm Example

a b c d

a 0 1 0 0
b 0 1 0 0
c 0 0 0 1
d 1 1 1 1
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Warshall’s Algorithm Example

a b c d

a 0 1 0 0
b 0 1 0 0
c 1 1 1 1
d 1 1 1 1
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Planar Graphs

Definition
G is planar:
G can be drawn on a plane without intersecting its edges

I a map of G : a planar drawing of G
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Planar Graph Example
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Regions

I map divides plane into regions

I degree of region: length of closed trail that surrounds region

Theorem
dri : degree of region ri

|E | =
∑

i dri

2
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Region Example

dr1 = 3
dr2 = 3
dr3 = 5
dr4 = 4
dr5 = 3

= 18
|E | = 9
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Euler’s Formula

Theorem (Euler’s Formula)

G = (V ,E ): planar, connected graph
R: set of regions in a map of G

|V | − |E |+ |R| = 2
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Euler’s Formula Example

I |V | = 6, |E | = 9, |R| = 5
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Planar Graph Theorems

Theorem
G = (V ,E ): connected, planar graph where |V | ≥ 3
|E | ≤ 3|V | − 6

Proof.

I sum of region degrees: 2|E |
I degree of a region ≥ 3
⇒ 2|E | ≥ 3|R| ⇒ |R| ≤ 2

3 |E |
I |V | − |E |+ |R| = 2
⇒ |V | − |E |+ 2

3 |E | ≥ 2 ⇒ |V | − 1
3 |E | ≥ 2

⇒ 3|V | − |E | ≥ 6 ⇒ |E | ≤ 3|V | − 6
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Planar Graph Theorems

Theorem
G = (V ,E ): connected, planar graph where |V | ≥ 3:
∃v ∈ V [dv ≤ 5]

Proof.

I assume: ∀v ∈ V [dv ≥ 6]
⇒ 2|E | ≥ 6|V |
⇒ |E | ≥ 3|V |
⇒ |E | > 3|V | − 6
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Nonplanar Graphs

Theorem
K5 is not planar.

Proof.

I |V | = 5

I 3|V | − 6 = 3 · 5− 6 = 9

I |E | ≤ 9 should hold

I but |E | = 10
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Nonplanar Graphs

Theorem
K3,3 is not planar. Proof.

I |V | = 6, |E | = 9

I if planar then |R| = 5

I degree of a region ≥ 4
⇒

∑
r∈R dr ≥ 20

I |E | ≥ 10 should hold

I but |E | = 9
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Kuratowski’s Theorem

Theorem

G contains a subgraph homeomorphic to K5 or K3,3.
⇔

G is not planar.
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Platonic Solids

I regular polyhedron: a 3-dimensional solid
where faces are identical regular polygons

I projection of a regular polyhedron onto the plane:
a planar graph

I corners: nodes

I sides: edges

I faces: regions
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Platonic Solid Example
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Platonic Solids

I |V |: number of corners (nodes)

I |E |: number of sides (edges)

I |R|: number of faces (regions)

I n: number of faces meeting at a corner (node degree)

I m: number of sides of a face (region degree)

I m, n ≥ 3

I 2|E | = n · |V |
I 2|E | = m · |R|
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Platonic Solids

I from Euler’s formula:

2 = |V |−|E |+|R| = 2|E |
n
−|E |+2|E |

m
= |E |

(2m −mn + 2n

mn

)
> 0

I |E |,m, n > 0:

2m −mn + 2n > 0⇒ mn − 2m − 2n < 0

⇒ mn − 2m − 2n + 4 < 4⇒ (m − 2)(n − 2) < 4

I only 5 solutions
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Tetrahedron

m = 3, n = 3
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Hexahedron

m = 4, n = 3
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Octahedron

m = 3, n = 4
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Dodecahedron

m = 5, n = 3
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Icosahedron

m = 3, n = 5
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Graph Coloring

I G = (V ,E ), C : set of colors

I proper coloring of G : find an f : V → C , such that
∀(vi , vj) ∈ E [f (vi ) 6= f (vj)]

I chromatic number of G : χ(G )
minimum |C |

I finding χ(G ) is a very difficult problem

I χ(Kn) = n
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Chromatic Number Example

I Herschel graph: χ(G ) = 2
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Graph Coloring Example

I a company produces chemical compounds

I some compounds cannot be stored together

I such compounds must be placed in separate storage areas

I store compounds using minimum number of storage areas
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Graph Coloring Example

I every compound is a node

I two compounds that cannot be stored together are adjacent
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Graph Coloring Solution

I pick a node and assign a color

I assign same color to all nodes with no conflict

I pick an uncolored node and assign a second color

I assign same color to all uncolored nodes with no conflict

I pick an uncolored node and assign a third color

I . . .
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Graph Coloring Example
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Graph Coloring Example
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Graph Coloring Example
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Graph Coloring Example
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Heuristic Solutions

I heuristic solution: based on intuition

I greedy solution: doesn’t look ahead

I doesn’t produce optimal results
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Graph Coloring Example: Sudoku

I every cell is a node

I cells of the same row
are adjacent

I cells of the same column
are adjacent

I cells of the same 3× 3 block
are adjacent

I every number is a color

I problem: properly color a graph
that is partially colored
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Region Coloring

I coloring a map by assigning different colors to adjacent regions

Theorem (Four Color Theorem)

The regions in a map can be colored using four colors.
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Shortest Path

I finding shortest paths from a starting node
to all other nodes: Dijkstra’s algorithm
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Dijkstra’s Algorithm Example

I starting node: c

a (∞,−)

b (∞,−)

c (0,−)

f (∞,−)

g (∞,−)

h (∞,−)
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Dijkstra’s Algorithm Example

I from c: base distance=0

I c → f : 6, 6 <∞
I c → h : 11, 11 <∞

a (∞,−)

b (∞,−)

c (0,−)
√

f (6, cf )

g (∞,−)

h (11, ch)

I closest node: f
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Dijkstra’s Algorithm Example

I from f : base distance=6

I f → a : 6 + 11, 17 <∞
I f → g : 6 + 9, 15 <∞
I f → h : 6 + 4, 10 < 11

a (17, cfa)

b (∞,−)

c (0,−)
√

f (6, cf )
√

g (15, cfg)

h (10, cfh)

I closest node: h
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Dijkstra’s Algorithm Example

I from h: base distance=10

I h→ a : 10 + 11, 21 ≮ 17

I h→ g : 10 + 4, 14 < 15

a (17, cfa)

b (∞,−)

c (0,−)
√

f (6, cf )
√

g (14, cfhg)

h (10, cfh)
√

I closest node: g
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Dijkstra’s Algorithm Example

I from g : base distance=14

I g → a : 14 + 17, 31 ≮ 17

a (17, cfa)

b (∞,−)

c (0,−)
√

f (6, cf )
√

g (14, cfhg)
√

h (10, cfh)
√

I closest node: a
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Dijkstra’s Algorithm Example

I from a: base distance=17

I a→ b : 17 + 5, 22 <∞
a (17, cfa)

√

b (22, cfab)

c (0,−)
√

f (6, cf )
√

g (14, cfhg)
√

h (10, cfh)
√

I last node: b
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Traveling Salesperson Problem

I start from a home town

I visit every city exactly once

I return to the home town

I minimum total distance

I find Hamiltonian cycle

I very difficult problem
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TSP Solution

I heuristic: nearest-neighbor

101 / 105

Searching Graphs

I searching nodes of graph G = (V ,E ) starting from node v1

I depth-first

I breadth-first
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Depth-First Search

1. v ← v1,T = ∅, D = {v1}
2. find smallest i in 2 ≤ i ≤ |V | such that (v , vi ) ∈ E and vi /∈ D

I if no such i : go to step 3
I if found: T = T ∪ {(v , vi )}, D = D ∪ {vi}, v ← vi ,

go to step 2

3. if v = v1: result is T

4. if v 6= v1: v ← backtrack(v), go to step 2
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Breadth-First Search

1. T = ∅, D = {v1}, Q = (v1)

2. if Q empty: result is T

3. if Q not empty: v ← front(Q), Q ← Q − v
for 2 ≤ i ≤ |V | check edges (v , vi ) ∈ E :

I if vi /∈ D : Q = Q + vi , T = T ∪ {(v , vi )}, D = D ∪ {vi}
I go to step 3
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