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Graphs

Definition

graph: G = (V,E)
» V: node (or vertex) set
» EC V x V: edge set

v

e=(vi,wn) € E:

v

v1 and v, are endnodes of e

v

e is incident to v; and v

v

v1 and v, are adjacent
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Graph Example

{a,b,c,d,e, f}
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Directed Graphs

Definition

directed graph (digraph): D = (V,A)
» V: node set
» ACV x V: arc set

v

a=(v1,wn) €A

v

v1: origin node of a

v

vo: terminating node of a
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Directed Graph Example

Weighted Graphs

v

weighted graph: labels assigned to edges

weight
length, distance
cost, delay

probability

vV v v v Y
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Multigraphs

v

parallel edges: edges between same node pair

v

loop: edge starting and ending in same node

v

plain graph: no loops, no parallel edges

v

multigraph: a graph which is not plain
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Multigraph Example

» parallel edges: (a, b)

> loop: (e, e)
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Subgraph

Definition
G' = (V',E’) is a subgraph of G = (V,E):
VICVAECEN V(Vl,VQ) cFE [V1,V2 S \//]
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Incidence Matrix

» rows: nodes, columns: edges

» 1 if edge incident on node, 0 otherwise

example

€1 € €3 € 6 € €7 €3
v|1 1 1 0 1 0 0 0
wl1l 0 0 1 0 0 O0 O
w0 0 1 1 0 0 1 1
v/ 0O 0 O O 1 1 0 1
w0 1 0 0 0 1 1 0
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Adjacency Matrix

» rows: nodes, columns: nodes

» 1 if nodes are adjacent, 0 otherwise

Adjacency Matrix

» multigraph: number of edges between nodes

example

example a d
Vi V2 V3 Va4 Vg ‘a b ¢ d
vi|0 1 1 1 1 al0 0 0 1
w| 1l 0 1 0 O b2 1 1 0
w1l 1 0 1 1 cl0 00O
wll 0 1 0 1 dl0 1 10

w| 1 0 1 1 0
C
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Adjacency Matrix Degree

> weighted graph:

weight of edge

15 /105

» degree of node: number of incident edges

Theorem
dy: degree of node v

|E| — ZVEV dV
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Degree Example

Multigraph Degree Example

. d, 5 ¢ da = 6
(ib = 2 (1b 3
dc = 2 dc = 2
Cﬂj = 2 Cﬂj — 2
Ci — 3 (i = 5
a b € a b e

e df 2 df — 2
16 20
d E| = 8 d |[E| = 10

f f
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Degree in Directed Graphs Degree
Theorem

> in-degree: d,’
> out-degree: d,°

» node with in-degree 0: source

» node with out-degree 0: sink

v

ZVEV dVi = ZVEV dVo = ‘A‘
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In an undirected graph, there is an even number of nodes
which have an odd degree.

Proof.

» t;: number of nodes of degree i
21E| =Y ,cy dv = 1t1 4+ 2tp + 3t3 4+ 4ts + 5t5 + . ...

2QE| —2tp —4tp — - =t +t3+ts+ -+ 23+ 415+ ...
20E| —2tp — 4ty — -+ —2t3 — 4t — - =t +t3+ts+ ...

» left-hand side even = right-hand side even
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Isomorphism

Definition
G =(V,E) and G* = (V*, E*) are isomorphic:
IV — V*[(u,v) € E= (f(u),f(v)) € EX] A f is bijective

» G and G* can be drawn the same way
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Isomorphism Example

a@——eb a2
C?'—.d de
ce

» f=(a—d,b—e,c— b dr— c e a)

ce
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Petersen Graph

o
Ay

d

SN
N/

» f=(a—q,b—v,c—ud—ye—r,
frow,g— x,h—t iz jr—5s)
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Homeomorphism

Definition
G = (V,E) and G* = (V*, E*) are homeomorphic:
» G and G* isomorphic, except that

» some edges in E* are divided with additional nodes
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Homeomorphism Example

a b C a b C
@ L ® o @
de@ d
f
ee e
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Regular Graphs

» regular graph: all nodes have the same degree

» n-regular: all nodes have degree n
examples

a

@y
QO
O

Q

O
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Completely Connected Graphs

» G =(V,E) is completely connected:
Yvi,vo € V (v1,w) € E

> every pair of nodes are adjacent

> K,: completely connected graph with n nodes

Completely Connected Graph Examples
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Bipartite Graphs

» G =(V,E)is bipartite: ViUV =V, ViNnVo=10
V(Vl, VQ) cE [V1 ceViAw e V2]

Complete Bipartite Graph Examples

example Ka3 K3
}ﬁb‘ a b a b c
X y z
» complete bipartite: Yvi € Vi Yvo € Vi (vi,vn) € E X y 7 X y 7
> Kmn: [Vi|=m, |Va| =n
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Walk Walk Example
» walk: sequence of nodes and edges C

from a starting node (vp) to an ending node (v,)

€1 €2 €3 €n
Vo — Vi—V2—V3— = Vp1—Vp

where € = (V,'_l, V,')

> no need to write the edges if not weighted

> length: number of edges

> Vo = Vj: closed
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c (c,b) b (b,2) 3 (a,d) d

(dse) e (e:f) £ (f,a) 3

(@b)

c—b—a—-d—e

e —f—a—b

length: 7
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Trail

Trail Example

(o
» trail: edges not repeated c (c,b) b (b,a) 3 (a,e) e
» circuit: closed trail (e.d) d (d.a) a2 (af) f
» spanning trail: covers all edges a b e boabe—bdo
€ a—f
d
f
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Path Path Example
C
» path: nodes not repeated (.b) i (ba)  (ad) J
» cycle: closed path ¢ (de)  (ef) a
. .. ——e—>f
» spanning path: visits all nodes a b
e c—ob—a—->d—oe—f
d
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Connected Graphs

Connected Components Example

Cc
] » disconnected:
> connected: a path between every pair of nodes no path between a and ¢
» a disconnected graph can be divided > connected components:
into connected components a b 2de '
K )
€ b,c
d f
of
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Distance Distance Example
b e
» distance between v; and v;:
|ength of shortest path between Vi and Vj d » distance between a and e: 2
: . . a
» diameter of graph: largest distance in graph g
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» diameter: 3
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Cut-Points

» G — v: delete v and all its incident edges from G

>

v is a cut-point for G:
G is connected but G — v is not
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Cut-Point Example

G G—d
b e b e
a o] a g
c f c f
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Directed Walks

> ignoring directions on arcs: semi-walk, semi-trail, semi-path

>

>

> a path from one to the other: unilaterally connected

| 2

if between every pair of nodes there is:

a semi-path: weakly connected

a path: strongly connected
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Directed Graph Examples

weakly unilaterally strongly
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Bridges of Konigsberg

» cross each bridge exactly once
and return to the starting point
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Graphs

7
& '7
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Traversable Graphs

> G is traversable: G contains a spanning trail

> a node with an odd degree must be either the starting node
or the ending node of the trail

» all nodes except the starting node and the ending node
must have even degrees

Bridges of Konigsberg

N
& '7’

» all nodes have odd degrees: not traversable
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Traversable Graph Example

a
» a, b, c: even
» d,e: odd
b C » start from d, end at e:
d—b—a—c—e
—d—c—b—e
d e
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Euler Graphs

» Euler graph: contains closed spanning trail

» G is an Euler graph < all nodes in G have even degrees
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Euler Graph Examples

Euler not Euler

a e a C
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Hamilton Graphs

» Hamilton graph: contains a closed spanning path
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Hamilton Graph Examples Connectivity Matrix

Hamilton not Hamilton » A: adjacency matrix of G = (V, E)
> Af.‘.: number of walks of length k between v; and v;
a C e a e ’
» maximum distance between two nodes: |V|—1
C
» connectivity matrix:
C=A'+ A2 L A3 ...4 AlVI?
b d f b f » connected: all elements of C are non-zero
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Warshall's Algorithm Warshall's Algorithm Example
> very expensive to compute the connectivity matrix a d
> easier to find whether there is a walk between two nodes
rather than finding the number of walks ‘ a b c d
al0 1 00
» for each node: b0 1 0O
. c|0 0 0 1
» from all nodes which can reach the current node
d{l1 010

(rows that contain 1 in current column)

to all nodes which can be reached from the current node
(columns that contain 1 in current row)

v

55 /105 56 /105




Warshall's Algorithm Example Warshall's Algorithm Example
a d a d
a b c d a b c d
al0 1 00 al01 0 o0
b0 1 0 O b0 1 0 O
c|0 0 0 1 c|0 0 0 1
d{l1 110 d|i1 110
C C
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Warshall's Algorithm Example Warshall's Algorithm Example
a b c d a b c d
al0 1 00 al01 0O
b0 1 0 O b0 1 0 O
c|0 0 0 1 c|l 1 11
djl1 1 11 di1 111
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Planar Graphs

Planar Graph Example

a
Definition a
G is planar:
G can be drawn on a plane without intersecting its edges
» a map of G: a planar drawing of G
Cc
C
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Regions Region Example
» map divides plane into regions d, = 3
> degree of region: length of closed trail that surrounds region dp, = 3
d, = 5
Theorem d, = 4
dy,: degree of region r; dy = 3
= 18
El = 9

_ Zidfi
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Euler's Formula

Theorem (Euler's Formula)

G = (V, E): planar, connected graph
R: set of regions in a map of G

VI —|E|+|R] =2
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Euler's Formula Example

> [V|=6, |E|=9,|R| =5
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Planar Graph Theorems

Theorem

G = (V, E): connected, planar graph where |V| > 3
[E| <3|]V|-6

Proof.

» sum of region degrees: 2|E]|

> degree of a region > 3
= 2|E| > 3|R| = |R| < 3|E]|

> V|- |E|+|R| =2
= |V| ~ |E|+ 3|E| > 2= |V| - 3|E| > 2
=3|V|-|E|>6=|E| <3|V|]-6
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Planar Graph Theorems

Theorem
G = (V, E): connected, planar graph where |V| > 3:
dv eV [d, <5]

Proof.

» assume: Vv € V [d, > 6]
= 2|E| > 6|V
= |E| > 3|V|
= |E| >3|V| -6
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Nonplanar Graphs

Theorem
Ks is not planar.

Proof.

|V|=5
3lV|[-6=3-5-6=9
|E| <9 should hold

but |E| = 10

C

(=2
o
vV VY
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Nonplanar Graphs

Theorem
K33 is not planar. Proof.
» |V|=6,|E| =9
a b C » if planar then |R| =5
> degree of a region > 4
=Y crdr > 20
» |E| > 10 should hold
> but |[E|=9
X Yy Z
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Kuratowski's Theorem

Theorem

G contains a subgraph homeomorphic to Ks or K3 3.
=
G is not planar.
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Platonic Solids

» regular polyhedron: a 3-dimensional solid
where faces are identical regular polygons

» projection of a regular polyhedron onto the plane:
a planar graph

» corners: nodes

> sides: edges

> faces: regions
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Platonic Solid Example

Platonic Solids

» |V|: number of corners (nodes)
» |E|: number of sides (edges)
» |R|: number of faces (regions)
» n: number of faces meeting at a corner (node degree)
» m: number of sides of a face (region degree)
» mn>3
» 2|E|=n-|V|
» 2|E| =m-|R|
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Platonic Solids Tetrahedron
» from Euler’s formula:
2|E 2|E 2m — mn+2n
2= V|- [El+|R| = 2EL g 2l gy (2ot
n m mn
> |E|,m,n>0:
2Zm—mn+2n> 0= mn—-2m—-2n<0
=mn—-2m-2n+4<4=(m-2)(n-2)<4 m=3,n=3
» only 5 solutions
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Hexahedron Octahedron
' m=4,n=3 m=3n=4
77105 78 /105
Dodecahedron lcosahedron
m=3,n=>5

. S
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Graph Coloring

» G=(V,E), C: set of colors
» proper coloring of G: find an f : V — C, such that
V(vi, vj) € E [f(vi) # f(v))]

» chromatic number of G: x(G)
minimum |C|

v

finding x(G) is a very difficult problem
x(Kn) =n

v
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Chromatic Number Example

» Herschel graph: x(G) =2
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Graph Coloring Example

» a company produces chemical compounds
» some compounds cannot be stored together

> such compounds must be placed in separate storage areas

> store compounds using minimum number of storage areas
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Graph Coloring Example

» every compound is a node

» two compounds that cannot be stored together are adjacent
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Graph Coloring Solution

pick a node and assign a color

assign same color to all nodes with no conflict

pick an uncolored node and assign a second color

assign same color to all uncolored nodes with no conflict

pick an uncolored node and assign a third color

vV Vv v v Y
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Graph Coloring Example
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Graph Coloring Example
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Graph Coloring Example
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Graph Coloring Example
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Heuristic Solutions

» heuristic solution: based on intuition

» greedy solution: doesn't look ahead

» doesn’t produce optimal results

90 /105

Graph Coloring Example: Sudoku

> every cell is a node

5|3 7
6 1195 > cells of the same row

9|8 6 are adjacent
£81 3 6 3 i’ > cells of the same column
7 > 6 are adjacent

6 218 > cells of the same 3 x 3 block

4119 5 are adjacent
8 719 > every number is a color

» problem: properly color a graph
that is partially colored
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Region Coloring

» coloring a map by assigning different colors to adjacent regions

Theorem (Four Color Theorem)

The regions in a map can be colored using four colors.
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Shortest Path Dijkstra’'s Algorithm Example

> starting node: ¢

» finding shortest paths from a starting node ;EZZ’:;
to all other nodes: Dijkstra’s algorithm Tﬁ
Cf[ (o0, -)

8| (%)

h (007 _)
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Dijkstra’'s Algorithm Example Dijkstra's Algorithm Example

> from c: base distance—0 » from f: base distance=6
»C_>f'_66<oo > f—a:6+11,17 <
L > f—g:6+915<
f > c— h:11,11 < o0 ;
TN . o) » f—h:6+4,10< 11
a | (o0, —
g b | (o0, —) a | (17, cfa)
/ cl (0, | b | (o0, )
a 16, cf) c](0-) |V
g (OO,—) f (6’ Cf) \/
h | (11, ch) g | (15, cfg)
h | (10, cfh)

» closest node: f
closest node: h

v
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Dijkstra’'s Algorithm Example

» from h: base distance=10

(17, cfa)

> h—a:10+11,21 £ 17
> h—g:10+4,14 < 15

(OO,—)

(07 _)

(6, cf)

<<

(14, cfhg)

SR | O|T|L

(10, cth)

> closest node: g
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Dijkstra’'s Algorithm Example

» from g: base distance=14

» g —a:14417,31 £ 17

(17, cfa)

(OO, _)

(07 _)

(6, cf)

(14, cfhg)

SR | |0 |T|w

(10, cfh)

» closest node: a

A A
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Dijkstra’'s Algorithm Example

» from a: base distance=17

> a— b:

17+5,22 < o0

(17, cfa)

v

(22, cfab)

0, _)

14, cfhg)

SR |—Hw O|T|L

(
(6, cf)
(
(

10, cfh)

> last node: b

=
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Traveling Salesperson Problem

vV v. vy

v

start from a home town
visit every city exactly once
return to the home town

minimum total distance

find Hamiltonian cycle

» very difficult problem
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TSP Solution Searching Graphs

» searching nodes of graph G = (V, E) starting from node v;

» heuristic: nearest-neighbor
» depth-first

» breadth-first
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Depth-First Search Breadth-First Search

1L.vew, T=0,D={w}

2. find smallest i in 2 < j < |V] such that (v,v;) € E and v; ¢ D
> if no such i: go to step 3
» if found: T=TU{(v,vi)}, D=DU{vi}, v, 3. if Q not empty: v < front(Q), Q — Q — v
go to step 2 for 2 < i < |V/| check edges (v, v;) € E:
»ifv,édD: Q=Q+v, T=TU{(v,v)}, D=DU{v}
> go to step 3

1. T=0, D={wvi}, Q=(wn)
2. if @ empty: resultis T

3. ifv=wvy: resultis T

4. if v # v1: v < backtrack(v), go to step 2
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