
Discrete Mathematics
Graphs

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2016

1 / 105

License

c© 2001-2016 T. Uyar, A. Yayımlı, E. Harmancı

You are free to:

I Share – copy and redistribute the material in any medium or format

I Adapt – remix, transform, and build upon the material

Under the following terms:

I Attribution – You must give appropriate credit, provide a link to the license,
and indicate if changes were made.

I NonCommercial – You may not use the material for commercial purposes.

I ShareAlike – If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Read the full license:

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

2 / 105

Topics

Graphs
Introduction
Walks
Connectivity
Planar Graphs

Graph Problems
Graph Coloring
Shortest Path
TSP
Searching Graphs

3 / 105

Graphs

Definition
graph: G = (V ,E)

I V : node (or vertex) set

I E ⊆ V × V : edge set

I e = (v1, v2) ∈ E :

I v1 and v2 are endnodes of e

I e is incident to v1 and v2

I v1 and v2 are adjacent

4 / 105

Graph Example

V = {a, b, c, d , e, f }
E = {(a, b), (a, c),

(a, d), (a, e),
(a, f), (b, c),
(d , e), (e, f)}

5 / 105

Directed Graphs

Definition
directed graph (digraph): D = (V ,A)

I V : node set

I A ⊆ V × V : arc set

I a = (v1, v2) ∈ A:

I v1: origin node of a

I v2: terminating node of a

6 / 105

Directed Graph Example

7 / 105

Weighted Graphs

I weighted graph: labels assigned to edges

I weight

I length, distance

I cost, delay

I probability

I . . .

8 / 105

Multigraphs

I parallel edges: edges between same node pair

I loop: edge starting and ending in same node

I plain graph: no loops, no parallel edges

I multigraph: a graph which is not plain

9 / 105

Multigraph Example

I parallel edges: (a, b)

I loop: (e, e)

10 / 105

Subgraph

Definition
G ′ = (V ′,E ′) is a subgraph of G = (V ,E):
V ′ ⊆ V ∧ E ′ ⊆ E ∧ ∀(v1, v2) ∈ E ′ [v1, v2 ∈ V ′]

11 / 105

Incidence Matrix

I rows: nodes, columns: edges

I 1 if edge incident on node, 0 otherwise

example

e1 e2 e3 e4 e5 e6 e7 e8

v1 1 1 1 0 1 0 0 0
v2 1 0 0 1 0 0 0 0
v3 0 0 1 1 0 0 1 1
v4 0 0 0 0 1 1 0 1
v5 0 1 0 0 0 1 1 0

12 / 105

Adjacency Matrix

I rows: nodes, columns: nodes

I 1 if nodes are adjacent, 0 otherwise

example

v1 v2 v3 v4 v5

v1 0 1 1 1 1
v2 1 0 1 0 0
v3 1 1 0 1 1
v4 1 0 1 0 1
v5 1 0 1 1 0

13 / 105

Adjacency Matrix

I multigraph: number of edges between nodes

example

a b c d

a 0 0 0 1
b 2 1 1 0
c 0 0 0 0
d 0 1 1 0

14 / 105

Adjacency Matrix

I weighted graph: weight of edge

15 / 105

Degree

I degree of node: number of incident edges

Theorem
dv : degree of node v

|E | =
∑

v∈V dv

2

16 / 105

Degree Example

da = 5
db = 2
dc = 2
dd = 2
de = 3
df = 2

16
|E | = 8

17 / 105

Multigraph Degree Example

da = 6
db = 3
dc = 2
dd = 2
de = 5
df = 2

20
|E | = 10

18 / 105

Degree in Directed Graphs

I in-degree: dv
i

I out-degree: dv
o

I node with in-degree 0: source

I node with out-degree 0: sink

I
∑

v∈V dv
i =

∑
v∈V dv

o = |A|

19 / 105

Degree

Theorem
In an undirected graph, there is an even number of nodes
which have an odd degree.

Proof.

I ti : number of nodes of degree i
2|E | =

∑
v∈V dv = 1t1 + 2t2 + 3t3 + 4t4 + 5t5 + . . .

2|E | − 2t2 − 4t4 − · · · = t1 + t3 + t5 + · · ·+ 2t3 + 4t5 + . . .
2|E | − 2t2 − 4t4 − · · · − 2t3 − 4t5 − · · · = t1 + t3 + t5 + . . .

I left-hand side even ⇒ right-hand side even

20 / 105

Isomorphism

Definition
G = (V ,E) and G ? = (V ?,E ?) are isomorphic:
∃f : V → V ? [(u, v) ∈ E ⇒ (f (u), f (v)) ∈ E ?] ∧ f is bijective

I G and G ? can be drawn the same way

21 / 105

Isomorphism Example

I f = (a 7→ d , b 7→ e, c 7→ b, d 7→ c, e 7→ a)

22 / 105

Petersen Graph

I f = (a 7→ q, b 7→ v , c 7→ u, d 7→ y , e 7→ r ,
f 7→ w , g 7→ x , h 7→ t, i 7→ z , j 7→ s)

23 / 105

Homeomorphism

Definition
G = (V ,E) and G ? = (V ?,E ?) are homeomorphic:

I G and G ? isomorphic, except that

I some edges in E ? are divided with additional nodes

24 / 105

Homeomorphism Example

25 / 105

Regular Graphs

I regular graph: all nodes have the same degree

I n-regular: all nodes have degree n

examples

26 / 105

Completely Connected Graphs

I G = (V ,E) is completely connected:
∀v1, v2 ∈ V (v1, v2) ∈ E

I every pair of nodes are adjacent

I Kn: completely connected graph with n nodes

27 / 105

Completely Connected Graph Examples

K4 K5

28 / 105

Bipartite Graphs

I G = (V ,E) is bipartite: V1 ∪ V2 = V , V1 ∩ V2 = ∅
∀(v1, v2) ∈ E [v1 ∈ V1 ∧ v2 ∈ V2]

example

I complete bipartite: ∀v1 ∈ V1 ∀v2 ∈ V2 (v1, v2) ∈ E

I Km,n: |V1| = m, |V2| = n

29 / 105

Complete Bipartite Graph Examples

K2,3 K3,3

30 / 105

Walk

I walk: sequence of nodes and edges
from a starting node (v0) to an ending node (vn)

v0
e1−→ v1

e2−→ v2
e3−→ v3 −→ · · · −→ vn−1

en−→ vn

where ei = (vi−1, vi)

I no need to write the edges if not weighted

I length: number of edges

I v0 = vn: closed

31 / 105

Walk Example

c
(c,b)−−−→ b

(b,a)−−−→ a
(a,d)−−−→ d

(d ,e)−−−→ e
(e,f)−−−→ f

(f ,a)−−−→ a
(a,b)−−−→ b

c → b → a→ d → e
→ f → a→ b

length: 7

32 / 105

Trail

I trail: edges not repeated

I circuit: closed trail

I spanning trail: covers all edges

33 / 105

Trail Example

c
(c,b)−−−→ b

(b,a)−−−→ a
(a,e)−−−→ e

(e,d)−−−→ d
(d ,a)−−−→ a

(a,f)−−−→ f

c → b → a→ e → d →
a→ f

34 / 105

Path

I path: nodes not repeated

I cycle: closed path

I spanning path: visits all nodes

35 / 105

Path Example

c
(c,b)−−−→ b

(b,a)−−−→ a
(a,d)−−−→ d

(d ,e)−−−→ e
(e,f)−−−→ f

c → b → a→ d → e → f

36 / 105

Connected Graphs

I connected: a path between every pair of nodes

I a disconnected graph can be divided
into connected components

37 / 105

Connected Components Example

I disconnected:
no path between a and c

I connected components:
a, d , e
b, c
f

38 / 105

Distance

I distance between vi and vj :
length of shortest path between vi and vj

I diameter of graph: largest distance in graph

39 / 105

Distance Example

I distance between a and e: 2

I diameter: 3

40 / 105

Cut-Points

I G − v : delete v and all its incident edges from G

I v is a cut-point for G :
G is connected but G − v is not

41 / 105

Cut-Point Example

G G − d

42 / 105

Directed Walks

I ignoring directions on arcs: semi-walk, semi-trail, semi-path

I if between every pair of nodes there is:

I a semi-path: weakly connected

I a path from one to the other: unilaterally connected

I a path: strongly connected

43 / 105

Directed Graph Examples

weakly unilaterally strongly

44 / 105

Bridges of Königsberg

I cross each bridge exactly once
and return to the starting point

45 / 105

Graphs

46 / 105

Traversable Graphs

I G is traversable: G contains a spanning trail

I a node with an odd degree must be either the starting node
or the ending node of the trail

I all nodes except the starting node and the ending node
must have even degrees

47 / 105

Bridges of Königsberg

I all nodes have odd degrees: not traversable

48 / 105

Traversable Graph Example

I a, b, c: even

I d , e: odd

I start from d , end at e:
d → b → a→ c → e
→ d → c → b → e

49 / 105

Euler Graphs

I Euler graph: contains closed spanning trail

I G is an Euler graph ⇔ all nodes in G have even degrees

50 / 105

Euler Graph Examples

Euler not Euler

51 / 105

Hamilton Graphs

I Hamilton graph: contains a closed spanning path

52 / 105

Hamilton Graph Examples

Hamilton not Hamilton

53 / 105

Connectivity Matrix

I A: adjacency matrix of G = (V ,E)

I Ak
ij : number of walks of length k between vi and vj

I maximum distance between two nodes: |V | − 1

I connectivity matrix:
C = A1 + A2 + A3 + · · ·+ A|V |−1

I connected: all elements of C are non-zero

54 / 105

Warshall’s Algorithm

I very expensive to compute the connectivity matrix

I easier to find whether there is a walk between two nodes
rather than finding the number of walks

I for each node:

I from all nodes which can reach the current node
(rows that contain 1 in current column)

I to all nodes which can be reached from the current node
(columns that contain 1 in current row)

55 / 105

Warshall’s Algorithm Example

a b c d

a 0 1 0 0
b 0 1 0 0
c 0 0 0 1
d 1 0 1 0

56 / 105

Warshall’s Algorithm Example

a b c d

a 0 1 0 0
b 0 1 0 0
c 0 0 0 1
d 1 1 1 0

57 / 105

Warshall’s Algorithm Example

a b c d

a 0 1 0 0
b 0 1 0 0
c 0 0 0 1
d 1 1 1 0

58 / 105

Warshall’s Algorithm Example

a b c d

a 0 1 0 0
b 0 1 0 0
c 0 0 0 1
d 1 1 1 1

59 / 105

Warshall’s Algorithm Example

a b c d

a 0 1 0 0
b 0 1 0 0
c 1 1 1 1
d 1 1 1 1

60 / 105

Planar Graphs

Definition
G is planar:
G can be drawn on a plane without intersecting its edges

I a map of G : a planar drawing of G

61 / 105

Planar Graph Example

62 / 105

Regions

I map divides plane into regions

I degree of region: length of closed trail that surrounds region

Theorem
dri : degree of region ri

|E | =
∑

i dri

2

63 / 105

Region Example

dr1 = 3
dr2 = 3
dr3 = 5
dr4 = 4
dr5 = 3

= 18
|E | = 9

64 / 105

Euler’s Formula

Theorem (Euler’s Formula)

G = (V ,E): planar, connected graph
R: set of regions in a map of G

|V | − |E |+ |R| = 2

65 / 105

Euler’s Formula Example

I |V | = 6, |E | = 9, |R| = 5

66 / 105

Planar Graph Theorems

Theorem
G = (V ,E): connected, planar graph where |V | ≥ 3
|E | ≤ 3|V | − 6

Proof.

I sum of region degrees: 2|E |
I degree of a region ≥ 3
⇒ 2|E | ≥ 3|R| ⇒ |R| ≤ 2

3 |E |
I |V | − |E |+ |R| = 2
⇒ |V | − |E |+ 2

3 |E | ≥ 2 ⇒ |V | − 1
3 |E | ≥ 2

⇒ 3|V | − |E | ≥ 6 ⇒ |E | ≤ 3|V | − 6

67 / 105

Planar Graph Theorems

Theorem
G = (V ,E): connected, planar graph where |V | ≥ 3:
∃v ∈ V [dv ≤ 5]

Proof.

I assume: ∀v ∈ V [dv ≥ 6]
⇒ 2|E | ≥ 6|V |
⇒ |E | ≥ 3|V |
⇒ |E | > 3|V | − 6

68 / 105

Nonplanar Graphs

Theorem
K5 is not planar.

Proof.

I |V | = 5

I 3|V | − 6 = 3 · 5− 6 = 9

I |E | ≤ 9 should hold

I but |E | = 10

69 / 105

Nonplanar Graphs

Theorem
K3,3 is not planar. Proof.

I |V | = 6, |E | = 9

I if planar then |R| = 5

I degree of a region ≥ 4
⇒

∑
r∈R dr ≥ 20

I |E | ≥ 10 should hold

I but |E | = 9

70 / 105

Kuratowski’s Theorem

Theorem

G contains a subgraph homeomorphic to K5 or K3,3.
⇔

G is not planar.

71 / 105

Platonic Solids

I regular polyhedron: a 3-dimensional solid
where faces are identical regular polygons

I projection of a regular polyhedron onto the plane:
a planar graph

I corners: nodes

I sides: edges

I faces: regions

72 / 105

Platonic Solid Example

73 / 105

Platonic Solids

I |V |: number of corners (nodes)

I |E |: number of sides (edges)

I |R|: number of faces (regions)

I n: number of faces meeting at a corner (node degree)

I m: number of sides of a face (region degree)

I m, n ≥ 3

I 2|E | = n · |V |
I 2|E | = m · |R|

74 / 105

Platonic Solids

I from Euler’s formula:

2 = |V |−|E |+|R| = 2|E |
n
−|E |+2|E |

m
= |E |

(2m −mn + 2n

mn

)
> 0

I |E |,m, n > 0:

2m −mn + 2n > 0⇒ mn − 2m − 2n < 0

⇒ mn − 2m − 2n + 4 < 4⇒ (m − 2)(n − 2) < 4

I only 5 solutions

75 / 105

Tetrahedron

m = 3, n = 3

76 / 105

Hexahedron

m = 4, n = 3

77 / 105

Octahedron

m = 3, n = 4

78 / 105

Dodecahedron

m = 5, n = 3

79 / 105

Icosahedron

m = 3, n = 5

80 / 105

Graph Coloring

I G = (V ,E), C : set of colors

I proper coloring of G : find an f : V → C , such that
∀(vi , vj) ∈ E [f (vi) 6= f (vj)]

I chromatic number of G : χ(G)
minimum |C |

I finding χ(G) is a very difficult problem

I χ(Kn) = n

81 / 105

Chromatic Number Example

I Herschel graph: χ(G) = 2

82 / 105

Graph Coloring Example

I a company produces chemical compounds

I some compounds cannot be stored together

I such compounds must be placed in separate storage areas

I store compounds using minimum number of storage areas

83 / 105

Graph Coloring Example

I every compound is a node

I two compounds that cannot be stored together are adjacent

84 / 105

Graph Coloring Solution

I pick a node and assign a color

I assign same color to all nodes with no conflict

I pick an uncolored node and assign a second color

I assign same color to all uncolored nodes with no conflict

I pick an uncolored node and assign a third color

I . . .

85 / 105

Graph Coloring Example

86 / 105

Graph Coloring Example

87 / 105

Graph Coloring Example

88 / 105

Graph Coloring Example

89 / 105

Heuristic Solutions

I heuristic solution: based on intuition

I greedy solution: doesn’t look ahead

I doesn’t produce optimal results

90 / 105

Graph Coloring Example: Sudoku

I every cell is a node

I cells of the same row
are adjacent

I cells of the same column
are adjacent

I cells of the same 3× 3 block
are adjacent

I every number is a color

I problem: properly color a graph
that is partially colored

91 / 105

Region Coloring

I coloring a map by assigning different colors to adjacent regions

Theorem (Four Color Theorem)

The regions in a map can be colored using four colors.

92 / 105

Shortest Path

I finding shortest paths from a starting node
to all other nodes: Dijkstra’s algorithm

93 / 105

Dijkstra’s Algorithm Example

I starting node: c

a (∞,−)

b (∞,−)

c (0,−)

f (∞,−)

g (∞,−)

h (∞,−)

94 / 105

Dijkstra’s Algorithm Example

I from c: base distance=0

I c → f : 6, 6 <∞
I c → h : 11, 11 <∞

a (∞,−)

b (∞,−)

c (0,−)
√

f (6, cf)

g (∞,−)

h (11, ch)

I closest node: f

95 / 105

Dijkstra’s Algorithm Example

I from f : base distance=6

I f → a : 6 + 11, 17 <∞
I f → g : 6 + 9, 15 <∞
I f → h : 6 + 4, 10 < 11

a (17, cfa)

b (∞,−)

c (0,−)
√

f (6, cf)
√

g (15, cfg)

h (10, cfh)

I closest node: h

96 / 105

Dijkstra’s Algorithm Example

I from h: base distance=10

I h→ a : 10 + 11, 21 ≮ 17

I h→ g : 10 + 4, 14 < 15

a (17, cfa)

b (∞,−)

c (0,−)
√

f (6, cf)
√

g (14, cfhg)

h (10, cfh)
√

I closest node: g

97 / 105

Dijkstra’s Algorithm Example

I from g : base distance=14

I g → a : 14 + 17, 31 ≮ 17

a (17, cfa)

b (∞,−)

c (0,−)
√

f (6, cf)
√

g (14, cfhg)
√

h (10, cfh)
√

I closest node: a

98 / 105

Dijkstra’s Algorithm Example

I from a: base distance=17

I a→ b : 17 + 5, 22 <∞
a (17, cfa)

√

b (22, cfab)

c (0,−)
√

f (6, cf)
√

g (14, cfhg)
√

h (10, cfh)
√

I last node: b

99 / 105

Traveling Salesperson Problem

I start from a home town

I visit every city exactly once

I return to the home town

I minimum total distance

I find Hamiltonian cycle

I very difficult problem

100 / 105

TSP Solution

I heuristic: nearest-neighbor

101 / 105

Searching Graphs

I searching nodes of graph G = (V ,E) starting from node v1

I depth-first

I breadth-first

102 / 105

Depth-First Search

1. v ← v1,T = ∅, D = {v1}
2. find smallest i in 2 ≤ i ≤ |V | such that (v , vi) ∈ E and vi /∈ D

I if no such i : go to step 3
I if found: T = T ∪ {(v , vi)}, D = D ∪ {vi}, v ← vi ,

go to step 2

3. if v = v1: result is T

4. if v 6= v1: v ← backtrack(v), go to step 2

103 / 105

Breadth-First Search

1. T = ∅, D = {v1}, Q = (v1)

2. if Q empty: result is T

3. if Q not empty: v ← front(Q), Q ← Q − v
for 2 ≤ i ≤ |V | check edges (v , vi) ∈ E :

I if vi /∈ D : Q = Q + vi , T = T ∪ {(v , vi)}, D = D ∪ {vi}
I go to step 3

104 / 105

References

Required Reading: Grimaldi

I Chapter 11: An Introduction to Graph Theory
I Chapter 7: Relations: The Second Time Around

I 7.2. Computer Recognition: Zero-One Matrices
and Directed Graphs

I Chapter 13: Optimization and Matching
I 13.1. Dijkstra’s Shortest Path Algorithm

105 / 105

