License

(c) (i)(e)(0)

Discrete Mathematics

Graphs
H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2016
(C) 2001-2016 T. Uyar, A. Yayımlı, E. Harmancı

You are free to:

- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material

Under the following terms:

- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- NonCommercial - You may not use the material for commercial purposes.
- ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/
Read the full license:
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Topics

Graphs
Introduction
Walks
Connectivity
Planar Graphs

Graph Problems
Graph Coloring
Shortest Path
TSP
Searching Graphs

Graphs

Definition
graph: $G=(V, E)$

- V : node (or vertex) set
- $E \subseteq V \times V$: edge set
- $e=\left(v_{1}, v_{2}\right) \in E:$
- v_{1} and v_{2} are endnodes of e
- e is incident to v_{1} and v_{2}
- v_{1} and v_{2} are adjacent

Directed Graph Example

Directed Graphs

Definition
directed graph (digraph): $D=(V, A)$

- V : node set
- $A \subseteq V \times V:$ arc set
- $a=\left(v_{1}, v_{2}\right) \in A$:
- v_{1} : origin node of a
- v_{2} : terminating node of a

Weighted Graphs

- weighted graph: labels assigned to edges
- weight
- length, distance
- cost, delay
- probability
- ...

Multigraphs

- parallel edges: edges between same node pair
- loop: edge starting and ending in same node
- plain graph: no loops, no parallel edges
- multigraph: a graph which is not plain

Multigraph Example

- parallel edges: (a, b)
- loop: (e, e)

Subgraph

Definition

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$:
$V^{\prime} \subseteq V \wedge E^{\prime} \subseteq E \wedge \forall\left(v_{1}, v_{2}\right) \in E^{\prime}\left[v_{1}, v_{2} \in V^{\prime}\right]$

Incidence Matrix

- rows: nodes, columns: edges
- 1 if edge incident on node, 0 otherwise
example

	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}
v_{1}	1	1	1	0	1	0	0	0
v_{2}	1	0	0	1	0	0	0	0
v_{3}	0	0	1	1	0	0	1	1
v_{4}	0	0	0	0	1	1	0	1
v_{5}	0	1	0	0	0	1	1	0

Adjacency Matrix

- rows: nodes, columns: nodes
- 1 if nodes are adjacent, 0 otherwise
example

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}
v_{1}	0	1	1	1	1
v_{2}	1	0	1	0	0
v_{3}	1	1	0	1	1
v_{4}	1	0	1	0	1
v_{5}	1	0	1	1	0

Adjacency Matrix

- multigraph: number of edges between nodes
example

	a	b	c	d
a	0	0	0	1
b	2	1	1	0
c	0	0	0	0
d	0	1	1	0

Adjacency Matrix

Degree

- degree of node: number of incident edges

Theorem
d_{v} : degree of node v

$$
|E|=\frac{\sum_{v \in V} d_{v}}{2}
$$

Degree in Directed Graphs
in-degree: $d_{v}{ }^{i}$

- out-degree: $d_{v}{ }^{o}$
- node with in-degree 0 : source
- node with out-degree 0: sink
- $\sum_{v \in V} d_{v}{ }^{i}=\sum_{v \in V} d_{V}{ }^{\circ}=|A|$

Multigraph Degree Example

Degree

Theorem
In an undirected graph, there is an even number of nodes which have an odd degree.

Proof.

- t_{i} : number of nodes of degree i $2|E|=\sum_{v \in V} d_{v}=1 t_{1}+2 t_{2}+3 t_{3}+4 t_{4}+5 t_{5}+\ldots$

$$
2|E|-2 t_{2}-4 t_{4}-\cdots=t_{1}+t_{3}+t_{5}+\cdots+2 t_{3}+4 t_{5}+\ldots
$$

$$
2|E|-2 t_{2}-4 t_{4}-\cdots-2 t_{3}-4 t_{5}-\cdots=t_{1}+t_{3}+t_{5}+\ldots
$$

- left-hand side even \Rightarrow right-hand side even

Isomorphism

Definition

$G=(V, E)$ and $G^{\star}=\left(V^{\star}, E^{\star}\right)$ are isomorphic:
$\exists f: V \rightarrow V^{\star}\left[(u, v) \in E \Rightarrow(f(u), f(v)) \in E^{\star}\right] \wedge f$ is bijective

- G and G^{\star} can be drawn the same way

Isomorphism Example

- $f=(a \mapsto d, b \mapsto e, c \mapsto b, d \mapsto c, e \mapsto a)$

Petersen Graph

- $f=(a \mapsto q, b \mapsto v, c \mapsto u, d \mapsto y, e \mapsto r$,

$$
f \mapsto w, g \mapsto x, h \mapsto t, i \mapsto z, j \mapsto s)
$$

Homeomorphism

Definition
$G=(V, E)$ and $G^{\star}=\left(V^{\star}, E^{\star}\right)$ are homeomorphic:

- G and G^{\star} isomorphic, except that
- some edges in E^{\star} are divided with additional nodes

Completely Connected Graphs

- $G=(V, E)$ is completely connected: $\forall v_{1}, v_{2} \in V\left(v_{1}, v_{2}\right) \in E$
- every pair of nodes are adjacent
- K_{n} : completely connected graph with n nodes

Regular Graphs

- regular graph: all nodes have the same degree
- n-regular: all nodes have degree n
examples

K_{4}

Bipartite Graphs

- $G=(V, E)$ is bipartite: $V_{1} \cup V_{2}=V, V_{1} \cap V_{2}=\emptyset$ $\forall\left(v_{1}, v_{2}\right) \in E\left[v_{1} \in V_{1} \wedge v_{2} \in V_{2}\right]$
example

- complete bipartite: $\forall v_{1} \in V_{1} \forall v_{2} \in V_{2}\left(v_{1}, v_{2}\right) \in E$
- $K_{m, n}:\left|V_{1}\right|=m,\left|V_{2}\right|=n$

Complete Bipartite Graph Examples

Walk

- walk: sequence of nodes and edges from a starting node $\left(v_{0}\right)$ to an ending node $\left(v_{n}\right)$

$$
v_{0} \xrightarrow{e_{1}} v_{1} \xrightarrow{e_{2}} v_{2} \xrightarrow{e_{3}} v_{3} \rightarrow \cdots \rightarrow v_{n-1} \xrightarrow{e_{n}} v_{n}
$$

where $e_{i}=\left(v_{i-1}, v_{i}\right)$

- no need to write the edges if not weighted
- length: number of edges
- $v_{0}=v_{n}$: closed

Walk Example

$c \xrightarrow{\xrightarrow[(d, e)]{(c, b)}} b \underset{\xrightarrow{(b, a)}}{\xrightarrow[(e, f)]{(a)}} f \xrightarrow{(a, d)} d$
$c \rightarrow b \rightarrow a \rightarrow d \rightarrow e$
$\rightarrow f \rightarrow a \rightarrow b$
length: 7

Trail

- trail: edges not repeated
- circuit: closed trail
- spanning trail: covers all edges

Trail Example

$c \xrightarrow{c \xrightarrow{(c, b)}} b \xrightarrow{(b, d)} d \xrightarrow{(d, a)} a \xrightarrow{(a, e)} e{ }^{(a, f)} f$
$c \rightarrow b \rightarrow a \rightarrow e \rightarrow d \rightarrow$ $a \rightarrow f$

Path

- path: nodes not repeated
- cycle: closed path
- spanning path: visits all nodes

Path Example

$c \xrightarrow{(d, e)} b \xrightarrow{(c, b)} b \xrightarrow{(b, a)} d \xrightarrow{(a, d)} d$ $c \rightarrow b \rightarrow a \rightarrow d \rightarrow e \rightarrow f$

Connected Graphs

- connected: a path between every pair of nodes
- a disconnected graph can be divided into connected components

Connected Components Example

- disconnected: no path between a and c
- connected components:
a, d, e
b, c
f

Distance

- distance between v_{i} and v_{j} : length of shortest path between v_{i} and v_{j}
- diameter of graph: largest distance in graph

Distance Example

- distance between a and e: 2
- diameter: 3

Cut-Points

Cut-Point Example

- $G-v$: delete v and all its incident edges from G
- v is a cut-point for G :
G is connected but $G-v$ is not
G

$$
G-d
$$

Directed Walks

- ignoring directions on arcs: semi-walk, semi-trail, semi-path
- if between every pair of nodes there is:
- a semi-path: weakly connected
- a path from one to the other: unilaterally connected
- a path: strongly connected

Directed Graph Examples

weakly

unilaterally

strongly

Bridges of Königsberg

- cross each bridge exactly once and return to the starting point

Graphs

Traversable Graphs

- G is traversable: G contains a spanning trail
- a node with an odd degree must be either the starting node or the ending node of the trail
- all nodes except the starting node and the ending node must have even degrees

Bridges of Königsberg

- all nodes have odd degrees: not traversable

Traversable Graph Example

- a, b, c : even
- d, e: odd
- start from d, end at e : $d \rightarrow b \rightarrow a \rightarrow c \rightarrow e$

$$
\rightarrow d \rightarrow c \rightarrow b \rightarrow e
$$

Euler Graphs

- Euler graph: contains closed spanning trail
- G is an Euler graph \Leftrightarrow all nodes in G have even degrees

Euler Graph Examples

Euler

not Euler

Hamilton Graphs

- Hamilton graph: contains a closed spanning path

Hamilton Graph Examples

Hamilton

not Hamilton

Connectivity Matrix

- A: adjacency matrix of $G=(V, E)$
- $A_{i j}^{k}$: number of walks of length k between v_{i} and v_{j}
- maximum distance between two nodes: $|V|-1$
- connectivity matrix:

$$
C=A^{1}+A^{2}+A^{3}+\cdots+A^{|V|-1}
$$

- connected: all elements of C are non-zero

Warshall's Algorithm

- very expensive to compute the connectivity matrix
- easier to find whether there is a walk between two nodes rather than finding the number of walks
- for each node:
- from all nodes which can reach the current node (rows that contain 1 in current column)
- to all nodes which can be reached from the current node (columns that contain 1 in current row)

Warshall's Algorithm Example

$$
\begin{array}{l|llll}
& a & b & c & d \\
\hline a & 0 & 1 & 0 & 0 \\
b & 0 & 1 & 0 & 0 \\
c & 0 & 0 & 0 & 1 \\
d & 1 & 0 & 1 & 0
\end{array}
$$

Warshall's Algorithm Example

	a	b	c	d
a	0	1	0	0
b	0	1	0	0
c	0	0	0	1
d	1	1	1	0

Warshall's Algorithm Example
Warshall's Algorithm Example

Planar Graphs

Definition

G is planar:
G can be drawn on a plane without intersecting its edges

- a map of G : a planar drawing of G

Regions

- map divides plane into regions
- degree of region: length of closed trail that surrounds region

Theorem
$d_{r_{i}}$: degree of region r_{i}

$$
|E|=\frac{\sum_{i} d_{r_{i}}}{2}
$$

Planar Graph Example
 Planar Graph Example

Region Example

$d_{r_{1}}=3$
$d_{r_{2}}=3$
$d_{r_{3}}=5$
$d_{r_{4}}=4$
$\begin{aligned} d_{r_{4}} & =4 \\ d_{r_{5}} & =3 \\ & =18\end{aligned}$
$|E|=9$

Euler's Formula

Theorem (Euler's Formula)
$G=(V, E)$: planar, connected graph
R : set of regions in a map of G

$$
|V|-|E|+|R|=2
$$

Euler's Formula Example

- $|V|=6,|E|=9,|R|=5$

Planar Graph Theorems

Theorem

$G=(V, E)$: connected, planar graph where $|V| \geq 3$
$|E| \leq 3|V|-6$
Proof.

- sum of region degrees: $2|E|$
- degree of a region ≥ 3
$\Rightarrow 2|E| \geq 3|R| \Rightarrow|R| \leq \frac{2}{3}|E|$
- $|V|-|E|+|R|=2$
$\Rightarrow|V|-|E|+\frac{2}{3}|E| \geq 2 \Rightarrow|V|-\frac{1}{3}|E| \geq 2$
$\Rightarrow 3|V|-|E| \geq 6 \Rightarrow|E| \leq 3|V|-6$

Planar Graph Theorems

Theorem
$G=(V, E)$: connected, planar graph where $|V| \geq 3$:
$\exists v \in V\left[d_{v} \leq 5\right]$
Proof.

- assume: $\forall v \in V\left[d_{v} \geq 6\right]$

$$
\Rightarrow 2|E| \geq 6|V|
$$

$$
\Rightarrow|E| \geq 3|V|
$$

$$
\Rightarrow|E|>3|V|-6
$$

Nonplanar Graphs

Kuratowski's Theorem

Theorem
G contains a subgraph homeomorphic to K_{5} or $K_{3,3}$.
G is not planar.

Theorem

$K_{3,3}$ is not planar.

- $|V|=6,|E|=9$
- if planar then $|R|=5$
- degree of a region ≥ 4
$\Rightarrow \sum_{r \in R} d_{r} \geq 20$
- $|E| \geq 10$ should hold
- but $|E|=9$

Platonic Solids

- regular polyhedron: a 3-dimensional solid where faces are identical regular polygons
- projection of a regular polyhedron onto the plane: a planar graph
- corners: nodes
- sides: edges
- faces: regions

Platonic Solid Example

Platonic Solids

- from Euler's formula:

$$
2=|V|-|E|+|R|=\frac{2|E|}{n}-|E|+\frac{2|E|}{m}=|E|\left(\frac{2 m-m n+2 n}{m n}\right)>0
$$

- $|E|, m, n>0$:

$$
\begin{aligned}
2 m-m n+2 n>0 & \Rightarrow m n-2 m-2 n<0 \\
\Rightarrow m n-2 m-2 n+4<4 & \Rightarrow(m-2)(n-2)<4
\end{aligned}
$$

- only 5 solutions

Platonic Solids

- $|V|$: number of corners (nodes)
- $|E|$: number of sides (edges)
- $|R|$: number of faces (regions)
- n : number of faces meeting at a corner (node degree)
- m : number of sides of a face (region degree)
- $m, n \geq 3$
- $2|E|=n \cdot|V|$
- $2|E|=m \cdot|R|$

Dodecahedron

Icosahedron

$m=3, n=5$

Graph Coloring

- $G=(V, E), C$: set of colors
- proper coloring of G : find an $f: V \rightarrow C$, such that $\forall\left(v_{i}, v_{j}\right) \in E\left[f\left(v_{i}\right) \neq f\left(v_{j}\right)\right]$
- chromatic number of $G: \chi(G)$ minimum $|C|$
- finding $\chi(G)$ is a very difficult problem
- $\chi\left(K_{n}\right)=n$

Chromatic Number Example

- Herschel graph: $\chi(G)=2$

Graph Coloring Example

- a company produces chemical compounds
- some compounds cannot be stored together
- such compounds must be placed in separate storage areas
- store compounds using minimum number of storage areas

Graph Coloring Example

- every compound is a node
- two compounds that cannot be stored together are adjacent

Graph Coloring Solution

- pick a node and assign a color
- assign same color to all nodes with no conflict
- pick an uncolored node and assign a second color
- assign same color to all uncolored nodes with no conflict
- pick an uncolored node and assign a third color
- ...

Graph Coloring Example

Graph Coloring Example

Heuristic Solutions

- heuristic solution: based on intuition
- greedy solution: doesn't look ahead
- doesn't produce optimal results

Region Coloring

- coloring a map by assigning different colors to adjacent regions

Theorem (Four Color Theorem)
The regions in a map can be colored using four colors.

Shortest Path

- finding shortest paths from a starting node to all other nodes: Dijkstra's algorithm

Dijkstra's Algorithm Example

- starting node: c

$$
\begin{array}{c|l}
\mathrm{a} & (\infty,-) \\
\hline \mathrm{b} & (\infty,-) \\
\hline \mathrm{c} & (0,-) \\
\hline \mathrm{f} & (\infty,-) \\
\hline \mathrm{g} & (\infty,-) \\
\hline \mathrm{h} & (\infty,-)
\end{array}
$$

Dijkstra's Algorithm Example

- from c : base distance $=0$

- $c \rightarrow f: 6,6<\infty$
- $c \rightarrow h: 11,11<\infty$

a	$(\infty,-)$	
b	$(\infty,-)$	
c	$(0,-)$	$\sqrt{ }$
f	$(6, c f)$	
g	$(\infty,-)$	
h	$(11, c h)$	

- closest node: f

Dijkstra's Algorithm Example

- from f : base distance $=6$
- $f \rightarrow a: 6+11,17<\infty$
- $f \rightarrow g: 6+9,15<\infty$
- $f \rightarrow h: 6+4,10<11$

a	$(17, c f a)$	
b	$(\infty,-)$	
c	$(0,-)$	$\sqrt{ }$
f	$(6, c f)$	$\sqrt{ }$
g	$(15, c f g)$	
h	$(10, c f h)$	

- closest node: h

Dijkstra's Algorithm Example

- from h : base distance=10

- $h \rightarrow a: 10+11,21 \nless 17$
- $h \rightarrow g: 10+4,14<15$

a	$(17, c f a)$	
b	$(\infty,-)$	
c	$(0,-)$	$\sqrt{ }$
f	$(6, c f)$	$\sqrt{ }$
g	$(14, c f h g)$	
h	$(10, c f h)$	$\sqrt{ }$

- closest node: g

Dijkstra's Algorithm Example

- from g : base distance $=14$

- $g \rightarrow a: 14+17,31 \nless 17$

a	$(17, c f a)$	
b	$(\infty,-)$	
c	$(0,-)$	$\sqrt{ }$
f	$(6, c f)$	$\sqrt{ }$
g	$(14, c f h g)$	$\sqrt{ }$
h	$(10, c f h)$	$\sqrt{ }$

- closest node: a

Dijkstra's Algorithm Example

Traveling Salesperson Problem

- start from a home town
- visit every city exactly once
- return to the home town
- minimum total distance
- find Hamiltonian cycle
- very difficult problem

TSP Solution

- heuristic: nearest-neighbor

Depth-First Search

1. $v \leftarrow v_{1}, T=\emptyset, D=\left\{v_{1}\right\}$
2. find smallest i in $2 \leq i \leq|V|$ such that $\left(v, v_{i}\right) \in E$ and $v_{i} \notin D$

- if no such i : go to step 3
- if found: $T=T \cup\left\{\left(v, v_{i}\right)\right\}, D=D \cup\left\{v_{i}\right\}, v \leftarrow v_{i}$, go to step 2

3. if $v=v_{1}$: result is T
4. if $v \neq v_{1}: v \leftarrow \operatorname{backtrack}(v)$, go to step 2

Searching Graphs

- searching nodes of graph $G=(V, E)$ starting from node v_{1}
- depth-first
- breadth-first

Breadth-First Search

1. $T=\emptyset, D=\left\{v_{1}\right\}, Q=\left(v_{1}\right)$
2. if Q empty: result is T
3. if Q not empty: $v \leftarrow \operatorname{front}(Q), Q \leftarrow Q-v$ for $2 \leq i \leq|V|$ check edges $\left(v, v_{i}\right) \in E$:

- if $v_{i} \notin D: Q=Q+v_{i}, T=T \cup\left\{\left(v, v_{i}\right)\right\}, D=D \cup\left\{v_{i}\right\}$
- go to step 3

References

Required Reading: Grimaldi

- Chapter 11: An Introduction to Graph Theory
- Chapter 7: Relations: The Second Time Around
- 7.2. Computer Recognition: Zero-One Matrices and Directed Graphs
- Chapter 13: Optimization and Matching
- 13.1. Dijkstra's Shortest Path Algorithm

