			License
			© 2001-2016 T. Uyar, A. Yayımlı, E. Harmancı
	Discrete Mathematics		You are free to:
	Graphs		 Share – copy and redistribute the material in any medium or format Adapt – remix, transform, and build upon the material
			Under the following terms:
H. Turgut Uyar	Ayşegül Gençata Yayımlı	Emre Harmancı	 Attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
	2001-2016		 NonCommercial – You may not use the material for commercial purposes. ShareAlike – If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
			For more information: https://creativecommons.org/licenses/by-nc-sa/4.0/
			Read the full license:
			https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
		1/105	2 / 105
Topics			Graphs
Graphs Introduction			Definition
Walks			graph: $G = (V, E)$
Connectivity			V: node (or vertex) set
Planar Graphs			$\blacktriangleright E \subseteq V \times V: \text{ edge set}$
Graph Problems			• $e = (v_1, v_2) \in E$:
Graph Coloring			\triangleright v_1 and v_2 are <i>endnodes</i> of <i>e</i>
Shortest Path			• e is <i>incident</i> to v_1 and v_2
ISP Searching Graphs			▶ v ₁ and v ₂ are <i>adjacent</i>
	, ,		
		A 1-4-4	
		3 / 105	4/105

Adjacency Matrix

- ▶ rows: nodes, columns: nodes
- ▶ 1 if nodes are adjacent, 0 otherwise

15 / 105

Adjacency Matrix

multigraph: number of edges between nodes

Degree in Directed Graphs

- in-degree: d_v^i
- ▶ out-degree: d_v^o
- ▶ node with in-degree 0: *source*
- node with out-degree 0: sink

$\blacktriangleright \sum_{v \in V} d_v^{i} = \sum_{v \in V} d_v^{o} = |A|$

Degree

Theorem

In an undirected graph, there is an even number of nodes which have an odd degree.

Proof.

► t_i : number of nodes of degree i $2|E| = \sum_{v \in V} d_v = 1t_1 + 2t_2 + 3t_3 + 4t_4 + 5t_5 + \dots$ $2|E| - 2t_2 - 4t_4 - \dots = t_1 + t_3 + t_5 + \dots + 2t_3 + 4t_5 + \dots$ $2|E| - 2t_2 - 4t_4 - \dots - 2t_3 - 4t_5 - \dots = t_1 + t_3 + t_5 + \dots$

 $d_a = 6$

 $d_b = 3$

= 2

= 5

 $\frac{d_f}{20} = \frac{2}{20}$

|E| = 10

2

 $d_c =$

d_d

d_e

е

• left-hand side even \Rightarrow right-hand side even

Definition

- G = (V, E) and $G^* = (V^*, E^*)$ are homeomorphic:
 - ▶ G and G^* isomorphic, except that
 - \blacktriangleright some edges in E^{\star} are divided with additional nodes

22/105

С

- G = (V, E) is completely connected: $\forall v_1, v_2 \in V \ (v_1, v_2) \in E$
- every pair of nodes are adjacent
- K_n : completely connected graph with *n* nodes

- ▶ ignoring directions on arcs: *semi-walk*, *semi-trail*, *semi-path*
- ► if between every pair of nodes there is:
- ► a semi-path: weakly connected
- ► a path from one to the other: unilaterally connected
- ► a path: strongly connected

► all nodes have odd degrees: not traversable

Planar Graphs

Definition

G is planar:

 ${\it G}$ can be drawn on a plane without intersecting its edges

 \blacktriangleright a map of G: a planar drawing of G

Regions

- map divides plane into regions
- degree of region: length of closed trail that surrounds region

Theorem

 d_{r_i} : degree of region r_i

$$|E| = \frac{\sum_i d_{r_i}}{2}$$

67 / 105

- ▶ sum of region degrees: 2|E|
- degree of a region ≥ 3 $\Rightarrow 2|E| \geq 3|R| \Rightarrow |R| \leq \frac{2}{3}|E|$
- ► |V| |E| + |R| = 2⇒ $|V| - |E| + \frac{2}{3}|E| \ge 2 \Rightarrow |V| - \frac{1}{3}|E| \ge 2$ ⇒ $3|V| - |E| \ge 6 \Rightarrow |E| \le 3|V| - 6$

Proof.

► assume: $\forall v \in V \ [d_v \ge 6]$ $\Rightarrow 2|E| \ge 6|V|$ $\Rightarrow |E| \ge 3|V|$ $\Rightarrow |E| > 3|V| - 6$

Graph Coloring

- G = (V, E), C: set of colors
- ▶ proper coloring of *G*: find an $f : V \to C$, such that $\forall (v_i, v_j) \in E [f(v_i) \neq f(v_j)]$
- chromatic number of G: χ(G)
 minimum |C|
- finding $\chi(G)$ is a very difficult problem
- $\chi(K_n) = n$

Graph Coloring Example

- a company produces chemical compounds
- some compounds cannot be stored together
- such compounds must be placed in separate storage areas
- store compounds using minimum number of storage areas

Graph Coloring Example

- every compound is a node
- ▶ two compounds that cannot be stored together are adjacent

<section-header><section-header><list-item><list-item><list-item><list-item> Graph Coloring Solution pick a node and assign a color assign same color to all nodes with no conflict pick an uncolored node and assign a second color pick an uncolored node and assign a third color ...

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>