Discrete Mathematics

Trees
H. Turgut Uyar Ayșegül Gençata Yayımlı Emre Harmancı

2001-2016

License

(c) (i)(e)(0)
(C) 2001-2016 T. Uyar, A. Yayımlı, E. Harmancı

You are free to:

- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material

Under the following terms:

- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- NonCommercial - You may not use the material for commercial purposes.
- ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/
Read the full license:
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Topics

Trees
Introduction
Rooted Trees
Binary Trees
Decision Trees

Tree Problems
Minimum Spanning Tree

Tree

Definition
tree: connected graph with no cycle
examples

Tree Theorems

Theorem

T is a tree (T is connected and contains no cycle).

$$
\Leftrightarrow
$$

There is one and only one path between any two distinct nodes in T.
\Leftrightarrow
T is connected, but if any edge is removed
it will no longer be connected.

$$
\Leftrightarrow
$$

T contains no cycle, but if an edge is added between any pair of nodes one and only one cycle will be formed.

Tree Theorems

Proof: Base step.

- $|E|=0 \Rightarrow|V|=1$
- $|E|=1 \Rightarrow|V|=2$
- $|E|=2 \Rightarrow|V|=3$
- assume that $|E|=|V|-1$ for $|E| \leq k$

Tree Theorems

Theorem

$$
|E|=|V|-1
$$

- proof method: induction on the number of edges

Tree Theorems

Proof: Induction step.

- $|E|=k+1$

- remove edge (y, z) :
$T_{1}=\left(V_{1}, E_{1}\right), T_{2}=\left(V_{2}, E_{2}\right)$
$|V|=\left|V_{1}\right|+\left|V_{2}\right|$
$=\left|E_{1}\right|+1+\left|E_{2}\right|+1$
$=\left(\left|E_{1}\right|+\left|E_{2}\right|+1\right)+1$
$=|E|+1$

Tree Theorems

Theorem
T is a tree (T is connected and contains no cycle).

$$
\Leftrightarrow
$$

T is connected and $|E|=|V|-1$.
\Leftrightarrow
T contains no cycle and $|E|=|V|-1$.

Tree Theorems

Theorem
In a tree, there are at least two nodes with degree 1.
Proof.

- $2|E|=\sum_{v \in V} d_{V}$
- assume: only 1 node with degree 1 :
$\Rightarrow 2|E| \geq 2(|V|-1)+1$
$\Rightarrow 2|E| \geq 2|V|-1$
$\Rightarrow|E| \geq|V|-\frac{1}{2}>|V|-1$

Rooted Tree

- hierarchy between nodes
- creates implicit direction on edges: in and out degrees
- in-degree 0 : root (only 1 such node)
- out-degree 0: leaf
- not a leaf: internal node

Node Level

- level of node: distance from root
- parent: adjacent node closer to root (only 1 such node)
- child: adjacent nodes further from root
- sibling: nodes with same parent
- depth of tree: maximum level in tree

Rooted Tree Example

- root: r
- leaves: x y zuv
- internal nodes: rpntsqw
- parent of $y: w$ children of $w: y$ and z
- y and z are siblings

Rooted Tree Example

Ordered Rooted Tree

- siblings ordered from left to right
- universal address system
- root: 0
children of root: 1,2,3,..
v: internal node with address a children of $v: a .1, a .2, a .3, \ldots$

Lexicographic Order

- address A comes before address B if one of:
- $A=x_{1} x_{2} \ldots x_{i} x_{j} \ldots$
$B=x_{1} x_{2} \ldots x_{i} x_{k} \ldots$
x_{j} comes before x_{k}
- $A=x_{1} x_{2} \ldots x_{i}$
$B=x_{1} x_{2} \ldots x_{i} x_{k} \ldots$

Expression Tree

- binary operations can be represented as binary trees
- root: operator, children: operands
- mathematical expression can be represented as trees
- internal nodes: operators, leaves: variables and values

Binary Trees

- $T=(V, E)$ is a binary tree:
$\forall v \in V\left[d_{v}{ }^{\circ} \in\{0,1,2\}\right]$
- $T=(V, E)$ is a complete binary tree:
$\forall v \in V\left[d_{v}{ }^{\circ} \in\{0,2\}\right]$

Expression Tree Examples

$$
7-a
$$

$$
a+b
$$

Expression Tree Examples

$$
\frac{7-a}{5}
$$

$$
(a+b)^{3}
$$

Expression Tree Examples

$$
\frac{7-a}{5} \cdot(a+b)^{3}
$$

Expression Tree Examples

$$
t+\frac{u * v}{w+x-y^{z}}
$$

Expression Tree Traversals

1. inorder traversal:
traverse left subtree, visit root, traverse right subtree
2. preorder traversal:
visit root, traverse left subtree, traverse right subtree
3. postorder traversal (reverse Polish notation): traverse left subtree, traverse right subtree, visit root

Preorder Traversal Example

Expression Tree Evaluation

- inorder traversal requires parantheses for precedence
- preorder and postorder traversals do not require parantheses

Postorder Evaluation Example

tuv*wxyz \uparrow - + / +
$423 * 1923 \uparrow-+/+$

Regular Trees

- $T=(V, E)$ is an m-ary tree:
$\forall v \in V\left[d_{v}{ }^{\circ} \leq m\right]$
- $T=(V, E)$ is a complete m-ary tree:
$\forall v \in V\left[d_{v}{ }^{\circ} \in\{0, m\}\right]$

Regular Tree Theorem

Theorem

$T=(V, E)$: complete m-ary tree

- n: number of nodes
- I: number of leaves
- i : number of internal nodes
- $n=m \cdot i+1$
- $I=n-i=m \cdot i+1-i=(m-1) \cdot i+1$

$$
i=\frac{l-1}{m-1}
$$

Regular Tree Examples

- how many matches are played in a tennis tournament with 27 players?
- every player is a leaf: $I=27$
- every match is an internal node: $m=2$
- number of matches: $i=\frac{l-1}{m-1}=\frac{27-1}{2-1}=26$

Regular Tree Examples

- how many extension cords with 4 outlets are required to connect 25 computers to a wall socket?
- every computer is a leaf: $I=25$
- every extension cord is an internal node: $m=4$
- number of cords: $i=\frac{l-1}{m-1}=\frac{25-1}{4-1}=8$

Decision Trees

- one of 8 coins is counterfeit (heavier)
- find counterfeit coin using a beam balance
- depth of tree: number of weighings

Decision Trees

Spanning Tree

- $T=\left(V^{\prime}, E^{\prime}\right)$ is a spanning tree of $G(V, E)$:
T is a subgraph of G
T is a tree
$V^{\prime}=V$
- minimum spanning tree:
total weight of edges in E^{\prime} is minimal

Kruskal's Algorithm

1. $G^{\prime}=\left(V^{\prime}, E^{\prime}\right), V^{\prime}=\emptyset, E^{\prime}=\emptyset$
2. select $e=\left(v_{1}, v_{2}\right) \in E-E^{\prime}$ such that:
$E^{\prime} \cup\{e\}$ contains no cycle, and $w t(e)$ is minimal
3. $E^{\prime}=E \cup\{e\}, V^{\prime}=V^{\prime} \cup\left\{v_{1}, v_{2}\right\}$
4. if $\left|E^{\prime}\right|=|V|-1$: result is G^{\prime}
5. go to step 2

Kruskal's Algorithm Example

- minimum weight: 1 (e, g)
- $E^{\prime}=\{(e, g)\}$
- $\left|E^{\prime}\right|=1$

Kruskal's Algorithm Example

- minimum weight: 2
$(d, e),(d, f),(f, g)$
- $E^{\prime}=\{(e, g),(d, f)\}$
- $\left|E^{\prime}\right|=2$

Kruskal's Algorithm Example

- minimum weight: 2 (f, g) forms a cycle
- minimum weight: 3 $(c, e),(c, g),(d, g)$ (d, g) forms a cycle
- $E^{\prime}=\{(e, g),(d, f),(d, e),(c, e)\}$
- $\left|E^{\prime}\right|=4$

Kruskal's Algorithm Example

Prim's Algorithm

1. $T^{\prime}=\left(V^{\prime}, E^{\prime}\right), E^{\prime}=\emptyset, v_{0} \in V, V^{\prime}=\left\{v_{0}\right\}$
2. select $v \in V-V^{\prime}$ such that for a node $x \in V^{\prime}$ $e=(x, v), E^{\prime} \cup\{e\}$ contains no cycle, and $w t(e)$ is minimal
3. $E^{\prime}=E \cup\{e\}, V^{\prime}=V^{\prime} \cup\{x\}$
4. if $\left|V^{\prime}\right|=|V|$: result is T^{\prime}
5. go to step 2

Prim's Algorithm Example

- $E^{\prime}=\emptyset$
- $V^{\prime}=\{a\}$
- $\left|V^{\prime}\right|=1$

Prim's Algorithm Example

- $E^{\prime}=\{(a, b)\}$
- $V^{\prime}=\{a, b\}$
- $\left|V^{\prime}\right|=2$

Prim's Algorithm Example

Prim's Algorithm Example

- $E^{\prime}=\{(a, b),(b, e),(e, g)\}$
- $V^{\prime}=\{a, b, e, g\}$
- $\left|V^{\prime}\right|=4$

Prim's Algorithm Example

- $E^{\prime}=\{(a, b),(b, e),(e, g),(d, e)\}$
- $V^{\prime}=\{a, b, e, g, d\}$
- $\left|V^{\prime}\right|=5$

Prim's Algorithm Example

Prim's Algorithm Example

- $E^{\prime}=\{$
$(a, b),(b, e),(e, g)$,
$(d, e),(f, g),(c, g)$
\}
- $V^{\prime}=\{a, b, e, g, d, f, c\}$
- $\left|V^{\prime}\right|=7$

Prim's Algorithm Example

total weight: 17

References

Required Reading: Grimaldi

- Chapter 12: Trees
- 12.1. Definitions and Examples
- 12.2. Rooted Trees
- Chapter 13: Optimization and Matching
- 13.2. Minimal Spanning Trees:

The Algorithms of Kruskal and Prim

