

Trees

Introduction Rooted Trees **Binary Trees Decision Trees**

Tree Problems

Minimum Spanning Tree

Definition

tree: connected graph with no cycle

examples

Tree Theorems

Theorem

T is a tree (T is connected and contains no cycle). T is connected and |E| = |V| - 1. \Leftrightarrow T contains no cycle and |E| = |V| - 1.

Tree Theorems

Theorem

In a tree, there are at least two nodes with degree 1.

Proof.

► $2|E| = \sum_{v \in V} d_v$ ► assume: only 1 node with degree 1: $\Rightarrow 2|E| \geq 2(|V|-1) + 1$ $\Rightarrow 2|E| \geq 2|V| - 1$ $\Rightarrow |E| \ge |V| - \frac{1}{2} > |V| - 1$

10 / 55

Rooted Tree Node Level hierarchy between nodes creates implicit direction on edges: in and out degrees ▶ in-degree 0: root (only 1 such node) sibling: nodes with same parent ▶ out-degree 0: leaf ▶ not a leaf: internal node

- ▶ level of node: distance from root
- parent: adjacent node closer to root (only 1 such node)
- ► *child*: adjacent nodes further from root
- depth of tree: maximum level in tree

9 / 55

Postorder Evaluation Example	Regular Trees
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 T = (V, E) is an m-ary tree: ∀v ∈ V [d_v^o ≤ m] T = (V, E) is a complete m-ary tree: ∀v ∈ V [d_v^o ∈ {0, m}]
29 / 55	30 / 55
Regular Tree Theorem	Regular Tree Examples
Theorem $T = (V, E): \text{ complete } m \text{-} ary \text{ tree}$ $n: \text{ number of nodes}$ $I: \text{ number of leaves}$ $i: \text{ number of internal nodes}$ $n = m \cdot i + 1$ $I = n - i = m \cdot i + 1 - i = (m - 1) \cdot i + 1$ $i = \frac{l - 1}{m - 1}$	 how many matches are played in a tennis tournament with 27 players? every player is a leaf: l = 27 every match is an internal node: m = 2 number of matches: i = l-1/m-1 = 27-1/2-1 = 26
31/55	32 / 55

