License

Discrete Mathematics

Propositions
H. Turgut Uyar Ayșegül Gençata Yayımlı Emre Harmancı

2001-2023
(C) 2001-2023 T. Uyar, A. Yayımlı, E. Harmancı

You are free to:

- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material

Under the following terms:

- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- NonCommercial - You may not use the material for commercial purposes.
- ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Topics

Propositions
Introduction
Logical Operators
Metalanguage

Propositional Calculus
Approaches
Laws of Logic
Rules of Inference

Proposition

Definition
proposition: declarative sentence that is either true or false

- law of the excluded middle:
a proposition cannot be partially true or partially false
- law of contradiction:
a proposition cannot be both true and false

Proposition Examples

propositions

- The Moon revolves around the Earth.
- Elephants can fly.
not propositions
- What time is it?
- Exterminate!
- $x<43$
- $3+8=11$

Propositional Variable

- propositional variable:
a name that represents the proposition
examples
- p_{1} : The Moon revolves around the Earth. (T)
- p_{2} : Elephants can fly. (F)
- $p_{3}: 3+8=11(T)$

Logical Operators

- compound propositions obtained by applying logical operators
- truth table: a table that lists truth values for all possible values of variables

examples

- $\neg p_{1}$: The Moon does not revolve around the Earth.
$\neg T: F$
- $\neg p_{2}$: Elephants cannot fly. $\neg F: T$

Conjunction (AND)

$p \wedge q$		
p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

examples

- $p_{1} \wedge p_{2}$: The Moon revolves around the Earth and elephants can fly. $T \wedge F: F$
- $p_{1} \wedge p_{3}$: The Moon revolves around the Earth and $3+8=11$.
$T \wedge T: T$

Exclusive Disjunction (XOR)

$p \underline{\vee} q$		
p	q	$p \underline{\vee} q$
T	T	F
T	F	T
F	T	T
F	F	F

- $p_{1} \underline{\vee} p_{2}$: Either the Moon revolves around the Earth or elephants can fly. $T \underline{\vee}: T$
- $p_{1} \vee p_{3}$: Either the Moon revolves around the Earth or $3+8=11$. $T \underline{\vee} T: F$

Disjunction (OR)

$p \vee q$		
p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

example

- $p_{1} \vee p_{2}$: The Moon revolves around the Earth or elephants can fly.
$T \vee F: T$

Implication (IF)

$p \rightarrow q$		
p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

- also called conditional
- if p then q
- p : hypothesis
- q : conclusion

Implication Examples

- $p_{4}: 3<8, p_{5}: 3<14, p_{6}: 3<2, p_{7}: 8<6$
- $p_{4} \rightarrow p_{5}$:
if $3<8$, then $3<14$
$T \rightarrow T: T$
- $p_{6} \rightarrow p_{4}:$
if $3<2$, then $3<8$
$F \rightarrow T: T$
- $p_{4} \rightarrow p_{6}$:
if $3<8$, then $3<2$
$T \rightarrow F: F$
if $3<2$, then $8<6$
$F \rightarrow F: T$

Implication Example

- "If I weigh over 70 kg , then I will exercise."
- p: I weigh over 70 kg .
- q : I exercise.
- when is this claim false?

$p \rightarrow q$		
p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

$p \leftrightarrow q$		
p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Biconditional (IFF)

- p if and only if q

Example

- mother tells child:
"If you do your homework, you can play computer games."
- h : The child does her homework.
- p : The child plays computer games.
- what does the mother mean?
- $h \rightarrow p$
- $\neg h \rightarrow \neg p$
- $h \leftrightarrow p$

Well-Formed Formula

- syntax
- rules to form compound propositions
- formula that obeys rules: well-formed formula (WFF)
- semantics
- interpretation: calculating value of compound proposition by assigning values to variables
- truth table: all interpretations

Formula Examples

not well-formed

- $\vee p$
- $p \wedge \neg$
- $p \neg \wedge q$

Operator Precedence

1. ᄀ
2. \wedge
3. V
4. \rightarrow
5. \leftrightarrow

- parentheses are used to change the order of calculation
- implication associates from the right:
$p \rightarrow q \rightarrow r$
means
$p \rightarrow(q \rightarrow r)$

Precedence Examples

- s : Phyllis goes out for a walk.
- t : The Moon is out.
- u : It is snowing
- what do the following WFFs mean?
- $t \wedge \neg u \rightarrow s$
- $t \rightarrow(\neg u \rightarrow s)$
- $\neg(s \leftrightarrow(u \vee t))$
$\rightarrow \neg S \leftrightarrow u \vee t$

Metalanguage

- target language: language being worked on
- metalanguage: language used when talking about the properties of the target language

Metalanguage Examples

- native Turkish speaker learning English:
- target language: English
- metalanguage: Turkish
- student learning programming
- target language: C, Python, Java, ...
- metalanguage: English, Turkish, .

Formula Properties

- WFF is true for all interpretations: tautology
- WFF is false for all interpretations: contradiction
- concepts of the metalanguage

Tautology Example

Contradiction Example

p	q	$\neg p$	$\neg p \wedge q$ (A)	$p \wedge A$
T	T	F	F	F
T	F	F	F	F
F	T	T	T	F
F	F	T	F	F

Logical Implication and Equivalence

- if $P \rightarrow Q$ is a tautology, then P logically implies Q : $P \Rightarrow Q$
- if $P \leftrightarrow Q$ is a tautology, then P and Q are logically equivalent: $P \Leftrightarrow Q$

Logical Implication Example

$$
p \wedge(p \rightarrow q) \Rightarrow q
$$

$p \wedge(p \rightarrow q) \rightarrow q$				
p	q	$p \rightarrow q$ (A)	$A \wedge p$ (B)	$B \rightarrow q$
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Logical Equivalence Example

$$
\neg p \Leftrightarrow p \rightarrow F
$$

Logical Equivalence Example

$$
p \rightarrow q \Leftrightarrow \neg p \vee q
$$

p	q	$p \rightarrow q$ (A)	$\neg p$	$\neg p \vee q$ (B)	$A \leftrightarrow B$
T	T	T	F	T	T
T	F	F	F	F	T
F	T	T	T	T	T
F	F	T	T	T	T

Metalogic

- $P_{1}, P_{2}, \ldots, P_{n} \vdash Q$

There is a proof which infers the conclusion Q from the assumptions $P_{1}, P_{2}, \ldots, P_{n}$.

- $P_{1}, P_{2}, \ldots, P_{n} \vDash Q$
Q must be true if $P_{1}, P_{2}, \ldots, P_{n}$ are all true.

Logical Equivalence Example

- implication: $p \rightarrow q$
- contrapositive: $\neg q \rightarrow \neg p$
- converse: $q \rightarrow p$
- inverse: $\neg p \rightarrow \neg q$

$$
p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p
$$

p	q	$p \rightarrow q$ $(\mathrm{~A})$	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$ $(\mathrm{~B})$	$A \leftrightarrow B$
T	T	T	F	F	T	T
T	F	F	T	F	F	T
F	T	T	F	T	T	T
F	F	T	T	T	T	T

Formal Systems

- a formal system is consistent if for all WFFs P and Q : if $P \vdash Q$ then $P \vDash Q$
- if every provable proposition is actually true
- a formal system is complete if for all WFFs P and Q : if $P \vDash Q$ then $P \vdash Q$
- if every true proposition can be proven

Gödel's Theorem

- propositional logic is consistent and complete

Theorem (Gödel's Theorem)
Any logical system that is powerful enough to express arithmetic must be either inconsistent or incomplete.

Propositional Calculus

1. semantic approach: truth tables
too complicated when the number of primitive statements grow
2. syntactic approach: rules of inference
obtain new propositions from known propositions using logical implications
3. axiomatic approach: Boolean algebra
substitute logically equivalent formulas for one another
```
Laws of Logic
Double Negation (DN)
    \(\neg(\neg p) \Leftrightarrow p\)
    Commutativity (Co)
    \(p \wedge q \Leftrightarrow q \wedge p \quad p \vee q \Leftrightarrow q \vee p\)
    Associativity (As)
    \((p \wedge q) \wedge r \Leftrightarrow p \wedge(q \wedge r) \quad(p \vee q) \vee r \Leftrightarrow p \vee(q \vee r)\)
    Idempotence (Ip)
    \(p \wedge p \Leftrightarrow p \quad p \vee p \Leftrightarrow p\)
Inverse (In)
\(p \wedge \neg p \Leftrightarrow F \quad p \vee \neg p \Leftrightarrow T\)
```


Laws of Logic

```
Identity (Id)
\(p \wedge T \Leftrightarrow p \quad p \vee F \Leftrightarrow p\)
Domination (Do)
\(p \wedge F \Leftrightarrow F \quad p \vee T \Leftrightarrow T\)
Distributivity (Di)
\(p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r) \quad p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)\)
Absorption (Ab)
\(p \wedge(p \vee q) \Leftrightarrow p \quad p \vee(p \wedge q) \Leftrightarrow p\)
DeMorgan's Laws (DM)
\(\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q \quad \neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q\)
```


Equivalence Example

$$
\begin{array}{rcc}
& p \rightarrow q & \\
& \Rightarrow p \vee q & \\
\Leftrightarrow & q \vee \neg p & C o \\
\Leftrightarrow & \neg \neg q \vee \neg p & D N \\
\Leftrightarrow & \neg q \rightarrow \neg p &
\end{array}
$$

Equivalence Example

	$\neg(\neg((p \vee q) \wedge r) \vee \neg q)$	
\Leftrightarrow	$\neg \neg((p \vee q) \wedge r) \wedge \neg \neg q$	$D M$
\Leftrightarrow	$((p \vee q) \wedge r) \wedge q$	$D N$
\Leftrightarrow	$(p \vee q) \wedge(r \wedge q)$	$A s$
\Leftrightarrow	$(p \vee q) \wedge(q \wedge r)$	$C o$
\Leftrightarrow	$((p \vee q) \wedge q) \wedge r$	$A s$
\Leftrightarrow	$q \wedge r$	$A b$

Duality

- dual of $s: s^{d}$
replace: \wedge with \vee, \vee with \wedge, T with F, F with T
- principle of duality: if $s \Leftrightarrow t$ then $s^{d} \Leftrightarrow t^{d}$
example

$$
\begin{aligned}
s: & (p \wedge \neg q) \vee(r \wedge T) \\
s^{d}: & (p \vee \neg q) \wedge(r \vee F)
\end{aligned}
$$

Inference

- establish the validity of an argument
- starting from a set of propositions
- which are assumed or proven to be true
notation
p_{1}
p_{2}

$$
p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n} \Rightarrow q
$$

$$
\frac{p_{n}}{\therefore q}
$$

Basic Rules

OR Introduction (Orl) AND Elimination (AndE)

$$
\frac{p}{\therefore p \vee q} \quad \frac{p \wedge q}{\therefore p}
$$

AND Introduction (Andl)

$$
\begin{array}{r}
p \\
q \\
\therefore p \wedge q
\end{array}
$$

Modus Ponens

Implication Elimination (ImpE)

$$
\begin{gathered}
p \rightarrow q \\
p \\
\hline \therefore q
\end{gathered}
$$

example

- If Lydia wins the lottery, she will buy a car.
- Lydia has won the lottery.
- Therefore, Lydia will buy a car.

Modus Tollens

Modus Tollens (ImpER)

$$
\begin{gathered}
p \rightarrow q \\
\quad \neg q \\
\hline \therefore \neg p
\end{gathered}
$$

example

- If Lydia wins the lottery, she will buy a car.
- Lydia did not buy a car.
- Therefore, Lydia did not win the lottery.

Modus Tollens

$$
\begin{gathered}
p \rightarrow q \\
\quad \neg q \\
\hline \therefore \neg p
\end{gathered}
$$

$$
\text { 1. } \quad p \rightarrow q \quad A
$$

$$
\text { 2. } \neg q \rightarrow \neg p \quad E Q V: 1
$$

$$
\text { 3. } \neg q \quad A
$$

$$
\text { 4. } \neg p \quad \operatorname{ImpE}: 2,3
$$

Fallacies

$$
\begin{array}{cc}
p \rightarrow q & (p \rightarrow q) \wedge q \nRightarrow p \\
q & \bullet p: F, q: T \\
\therefore p & (F \rightarrow T) \wedge T \rightarrow F: F
\end{array}
$$

example

- If Lydia wins the lottery, she will buy a car.
- Lydia has bought a car.
- Therefore, Lydia has won the lottery.

Fallacies

$$
\begin{array}{cc}
p \rightarrow q & (p \rightarrow q) \wedge \neg p \nRightarrow \neg q \\
\neg p & p: F, q: T \\
\therefore \neg \neg q & (F \rightarrow T) \wedge T \rightarrow F: F
\end{array}
$$

example

- If Lydia wins the lottery, she will buy a car.
- Lydia has not won the lottery.
- Therefore, Lydia will not buy a car.

Implication Introduction

Implication Introduction (Impl)

$$
\begin{aligned}
& \quad p \vdash q \\
& \therefore \vdash p \rightarrow q
\end{aligned}
$$

- if it can be shown that q is true assuming p is true
- then $p \rightarrow q$ is true without assuming p is true
- p is a provisional assumption (PA)
- provisional assumptions have to be discharged

Implication Introduction Example

$$
\begin{array}{cccl}
& 1 . & p & P A \\
& \text { 2. } & p \rightarrow q & A \\
& \text { 3. } & q & I m p E: 2,1 \\
p \rightarrow q & 4 . & \neg q & A \\
\neg q & \text { 5. } & q \rightarrow F & E Q V: 4 \\
\therefore \neg p & \text { 6. } & F & I m p E: 5,3 \\
& 7 . & p \rightarrow F & I m p I: 1,6 \\
& 8 . & \neg p & E Q V: 7
\end{array}
$$

OR Elimination

OR Elimination (OrE)

$$
\begin{gathered}
p \vee q \\
p \vdash r \\
q \vdash r \\
\hline \therefore \vdash r
\end{gathered}
$$

- p and q are provisional assumptions

Disjunctive Syllogism

example

- Bart's wallet is either in his pocket or on his desk.
- Bart's wallet is not in his pocket.
- Therefore, Bart's wallet is on his desk.

Disjunctive Syllogism (DisSyl)

$$
\begin{gathered}
p \vee q \\
\quad \neg p \\
\hline \therefore q
\end{gathered}
$$

Disjunctive Syllogism

$$
\begin{gathered}
p \vee q \\
\quad \neg p \\
\hline \therefore q
\end{gathered}
$$

applying OrE:

$$
\begin{gathered}
p \vee q \\
p \vdash q \\
q \vdash q \\
\hline \therefore q
\end{gathered}
$$

1.	$p \vee q$	A
2.	$\neg p$	A
3.	$p \rightarrow F$	$E Q V: 2$
$4 a 1$.	p	$P A$
$4 a 2$.	F	$\operatorname{ImpE}: 3,4 a 1$
$4 a$.	q	$C T R: 4 a 2$
$4 b 1$.	q	$P A$
$4 b$.	q	$I D: 4 b 1$
5.	q	$\operatorname{Or} E: 1,4 a, 4 b$

$\left.\begin{array}{|cllll|}\hline \text { Hypothetical Syllogism } & & & \\ \\ & & & & \\ & \text { 1. } & p & P A \\ \text { Hypothetical Syllogism (HypSyl) } & \text { 2. } & p \rightarrow q & A \\ & \text { 3. } & q & I m p E: 2,1 \\ p \rightarrow q & \text { 4. } & q \rightarrow r & A \\ & \text { 5. } & r & I m p E: 4,3 \\ & \text { 6. } & p \rightarrow r & I m p I: 1,5\end{array}\right]$

Inference Examples

$$
\begin{array}{cccllll}
p \rightarrow r & 1 . & \neg u & A & \text { 6. } & r \rightarrow s & A \\
r \rightarrow s & 2 . & u \vee \neg x & A & \text { 7. } & \neg r & \text { ImpER: } 6,5 \\
x \vee \neg s & \text { 3. } & \neg x & \text { DisSyl }: 2,1 & \text { 8. } & p \rightarrow r & A \\
u \vee \neg x & 4 . & x \vee \neg s & A & \text { 9. } & \neg p & \text { ImpER: } 8,7 \\
\neg \neg & & & \text { DisSyl }: 4,3 & & &
\end{array}
$$

Constructive Dilemma

Constructive Dilemma

$$
\begin{gathered}
p \rightarrow q \\
r \rightarrow s \\
p \vee r \\
\hline \therefore q \vee s
\end{gathered}
$$

Destructive Dilemma

$$
\begin{aligned}
& p \rightarrow q \\
& r \rightarrow s \\
& \neg q \vee \neg s \\
& \therefore \neg p \vee \neg r
\end{aligned}
$$

Inference Examples

	1.	p	A
	2.	$q \rightarrow \neg p$	A
	3.	$\neg q$	ImpER : 2,1
$p \rightarrow(q \vee r)$	4.	$q \rightarrow F$	$E Q V: 3$
$s \rightarrow \neg r$	5.	s	A
$q \rightarrow \neg p$	6.	$s \rightarrow \neg r$	A
s	7.	$\neg r$	$\operatorname{ImpE}: 6,5$
$\therefore F$	8.	$p \rightarrow(q \vee r)$	A
	9.	$q \vee r$	ImpE : 8, 1
	10.	q	DisSyl : 9,7
	11.	F	ImpE : 4, 10

Inference Examples

$$
\begin{gathered}
(p \vee q) \rightarrow \neg r \\
s \rightarrow \neg p \\
s \wedge \neg q \\
\therefore r
\end{gathered}
$$

Inference Examples

If there is a chance of rain or her red headband is missing,
then Lois will not mow her lawn. Whenever the temperature is over $20^{\circ} \mathrm{C}$, there is no chance for rain. Today the temperature is $22^{\circ} \mathrm{C}$ and Lois is wearing her red headband. Therefore, Lois will mow her lawn.

- p : There is a chance of rain.
- q : Lois' red headband is lost.
- r : Lois mows her lawn.
- s: The temperature is over $20^{\circ} \mathrm{C}$.

References

Required reading: Grimaldi

- Chapter 2: Fundamentals of Logic
- 2.1. Basic Connectives and Truth Tables
- 2.2. Logical Equivalence: The Laws of Logic
- 2.3. Logical Implication: Rules of Inference

Supplementary reading: O'Donnell, Hall, Page

- Chapter 6: Propositional Logic

