Discrete Mathematics Propositions H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harı 2001-2023	mancı	 License Expression C 2001-2023 T. Uyar, A. Yayımlı, E. Harmancı You are free to: Share – copy and redistribute the material in any medium or format Adapt – remix, transform, and build upon the material Under the following terms: Attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. NonCommercial – You may not use the material for commercial purposes. ShareAlike – If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. For more information: https://creativecommons.org/licenses/by-nc-sa/4.0/
	1 / 60	2 / 60
Topics Propositions Introduction Logical Operators Metalanguage Propositional Calculus Approaches Laws of Logic Rules of Inference		 Proposition Definition proposition: declarative sentence that is either true or false law of the excluded middle: a proposition cannot be partially true or partially false law of contradiction: a proposition cannot be both true and false
	3 / 60	4 / 60

Metalanguage	Metalanguage Examples
 target language: language being worked on metalanguage: language used when talking about the properties of the target language 	 native Turkish speaker learning English: target language: English metalanguage: Turkish student learning programming target language: C, Python, Java, metalanguage: English, Turkish,
21	/ 60 22 / 60
Formula Properties	Tautology Example
 WFF is true for all interpretations: tautology WFF is false for all interpretations: contradiction concepts of the metalanguage 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
23	/60 24/60

Contradiction Example	Logical Implication and Equivalence
$p \land (\neg p \land q)$ p q $\neg p$ $\neg p \land q$ $p \land A$ T T F F T F F F F T T T F F T F F F T F	 if P → Q is a tautology, then P logically implies Q: P ⇒ Q if P ↔ Q is a tautology, then P and Q are logically equivalent: P ⇔ Q
25 / 60	26 / 60
Logical Implication Example	Logical Equivalence Example
$p \land (p \rightarrow q) \Rightarrow q$ $p \land (p \rightarrow q) \rightarrow q$ $\boxed{p q p \rightarrow q A \land p B \rightarrow q}$ $\boxed{p q p \rightarrow q A \land p B \rightarrow q}$ $\boxed{T T T T T T}$ $\boxed{T F F F F T}$ $\boxed{F T T F T}$ $\boxed{F F T F T}$	$\neg p \Leftrightarrow p \to F$ $\boxed{\begin{array}{c c} \neg p \Leftrightarrow p \to F \\ \hline p & \neg p & p \to F \\ \hline A \\ \hline \end{array}}$ $\boxed{\begin{array}{c c} T & F & F \\ \hline F & T \\ \hline \end{array}}$
27 / 60	28 / 60

Logical Equivalence Example

$p \rightarrow q \Leftrightarrow \neg p \lor q$ $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$ $\boxed{p q p \rightarrow q \neg p \neg p \lor q A \leftrightarrow B}$ $\boxed{T T T F F F T}$ $\boxed{T F F F F T}$ $\boxed{F T T T T}$ $\boxed{F F T T}$ $\boxed{F F T}$ $\boxed{T T T}$ $\boxed{F F}$ $\boxed{F T}$ $\boxed{T T}$ $\boxed{F F}$ $\boxed{T T}$ $T $	• implication: $p \rightarrow q$ • contrapositive: $\neg q \rightarrow \neg p$ • converse: $q \rightarrow p$ • inverse: $\neg p \rightarrow \neg q$ $p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$ $(p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p)$ $\overline{p \ q \ p \rightarrow q \ \neg q \ \neg p \ \neg q \rightarrow \neg p \ A \leftrightarrow B}$ $T \ T \ T \ F \ F \ T \ T \ T \ T \ T \ $
Metalogic	Formal Systems
 P₁, P₂,, P_n ⊢ Q There is a proof which infers the conclusion Q from the assumptions P₁, P₂,, P_n. P₁, P₂,, P_n ⊨ Q Q must be true if P₁, P₂,, P_n are all true. 	 a formal system is consistent if for all WFFs P and Q: if P ⊢ Q then P ⊨ Q if every provable proposition is actually true a formal system is complete if for all WFFs P and Q: if P ⊨ Q then P ⊢ Q if every true proposition can be proven

Logical Equivalence Example

Gödel's Theorem		Propositional Calculus				
 propositional logic is consistent and complete Theorem (Gödel's Theorem) Any logical system that is powerful enough to express arithmetic must be either inconsistent or incomplete. 		 semantic approach: <i>truth tables</i> too complicated when the number of primitive statements grow syntactic approach: <i>rules of inference</i> obtain new propositions from known propositions using logical implications axiomatic approach: <i>Boolean algebra</i> substitute logically equivalent formulas for one another 				
	33 / 60			34 / 60		
Laws of Logic		Laws of Logic				
$\frac{\text{Double Negation (DN)}}{\neg(\neg p) \Leftrightarrow p}$		$\frac{Identity\;(Id)}{p \land T \Leftrightarrow p}$	$p \lor F \Leftrightarrow p$			
$\frac{Commutativity}{p \land q \Leftrightarrow q \land p}$	$p \lor q \Leftrightarrow q \lor p$	$\frac{\text{Domination (Do)}}{p \land F \Leftrightarrow F}$	$p \lor T \Leftrightarrow T$			
$\begin{array}{l} \text{Associativity (As)} \\ (p \land q) \land r \Leftrightarrow p \land (q \land r) \end{array}$	$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$	$\begin{array}{ c c }\hline \textbf{Distributivity (Di)}\\ p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r) \end{array}$	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$			
$\begin{array}{c} Idempotence \ (Ip) \\ p \land p \Leftrightarrow p \end{array}$	$p \lor p \Leftrightarrow p$	$\begin{array}{c} Absorption \ (Ab) \\ p \land (p \lor q) \Leftrightarrow p \end{array}$	$p \lor (p \land q) \Leftrightarrow p$			
$ \begin{array}{c} Inverse (In) \\ p \land \neg p \Leftrightarrow F \end{array} $	$p \lor \neg p \Leftrightarrow T$	$ \begin{array}{c} DeMorgan's \ Laws \ (DM) \\ \neg(p \land q) \Leftrightarrow \neg p \lor \neg q \end{array} $	$ eg(p \lor q) \Leftrightarrow eg p \land eg q$			
	35 / 60			36 / 60		

Implication Introduction	Example		OR Elimination			
$ \begin{array}{c} p \rightarrow q \\ \neg q \\ \hline \vdots \neg p \end{array} $	1. p PA 2. $p \rightarrow q$ A 3. q ImpE: 2, 1 4. $\neg q$ A 5. $q \rightarrow F$ EQV: 4 6. F ImpE: 5, 3 7. $p \rightarrow F$ ImpI: 1, 6 8. $\neg p$ EQV: 7		OR Elimination (OrE)	$p \lor q$ $p \vdash r$ $q \vdash r$ $r \leftarrow r$ imptions		
	4	/ 60				50 / 60
Disjunctive Syllogism			Disjunctive Syllogism			
 Disjunctive Syllogism (DisSingues) example Bart's wallet is either in Bart's wallet is not in his Therefore, Bart's wallet 	Syl) $ \frac{p \lor q}{\neg p} \\ \xrightarrow{\neg p} \\ \therefore q $ his pocket or on his desk. is pocket. is on his desk.		$p \lor q$ $\neg p$ $\therefore q$ applying OrE: $p \lor q$ $p \vdash q$ $q \vdash q$ $\overrightarrow{q} \vdash q$ $\overrightarrow{\ldots} q$	1. 2. 3. 4 <i>a</i> 1. 4 <i>a</i> 2. 4 <i>a</i> . 4 <i>b</i> 1. 4 <i>b</i> . 5.	$p \lor q$ $\neg p$ $p \rightarrow F$ p F q q q	A A EQV : 2 PA ImpE : 3,4a1 CTR : 4a2 PA ID : 4b1 OrE : 1,4a,4b
	5	/ 60				52 / 60

Hypothetical Syllogism		Constructive	e Dilemma				
Hypothetical Syllogism (HypSyl)1. p $p \rightarrow q$ 3. q $\frac{q \rightarrow r}{\therefore p \rightarrow r}$ 4. $q \rightarrow r$ $5. r$ 5. r $6. p \rightarrow r$	PA A ImpE : 2, 1 A ImpE : 4, 3 ImpI : 1, 5	Constructive	Dilemma $p \rightarrow q$ $r \rightarrow s$ $p \lor r$ $\therefore q \lor s$		Destructive Dilem $p \rightarrow \\ r \rightarrow \\ \neg q \lor \\ \hline \therefore \neg p \lor$	ma q s ¬s ⁄ ¬r	
	53 / 60						54 / 60
Inference Examples		Inference Ex	amples				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	s A ImpER : 6,5 r A ImpER : 8,7	1. $\neg x$ 2. $r \rightarrow x$ 3. $\neg r$ 4. $\neg r \lor \neg s$ 5. $\neg (r \land s)$	(¬, A A ImpER : 2, 1 OrI : 3 EQV : 4	$p \lor \neg q) - r \rightarrow \\ \neg x \\ \hline \vdots p \\ 6. (\neg p \\ 7. \\ 8. \\ 9. \end{cases}$	$ \begin{array}{c} \rightarrow (r \land s) \\ x \\ \hline p \\ \hline p \\ \hline p \\ \neg (\neg p \lor \neg q) \\ p \land q \\ p \\ \end{array} $	A ImpER : 6, EQV : 7 AndE : 8	5
	55 / 60						56 / 60

Inference Examples			Inference Examples
$p \rightarrow (q \lor r)$ $s \rightarrow \neg r$ $q \rightarrow \neg p$ p s $\therefore F$	1. p 2. $q \rightarrow \neg p$ 3. $\neg q$ 4. $q \rightarrow F$ 5. s 6. $s \rightarrow \neg r$ 7. $\neg r$ 8. $p \rightarrow (q \lor r)$ 9. $q \lor r$ 10. q 11. F	A A ImpER : 2, 1 EQV : 3 A A ImpE : 6, 5 A ImpE : 8, 1 DisSyl : 9, 7 ImpE : 4, 10	 If there is a chance of rain or her red headband is missing, then Lois will not mow her lawn. Whenever the temperature is over 20°C, there is no chance for rain. Today the temperature is 22°C and Lois is wearing her red headband. Therefore, Lois will mow her lawn. <i>p</i>: There is a chance of rain. <i>q</i>: Lois' red headband is lost. <i>r</i>: Lois mows her lawn. <i>s</i>: The temperature is over 20°C.
Inference Examples			References
$(p \lor q) \rightarrow \neg r$ $s \rightarrow \neg p$ $s \land \neg q$ $\therefore r$	1. $s \land \neg q$ 2. s 3. $s \rightarrow \neg p$ 4. $\neg p$ 5. $\neg q$ 6. $\neg p \land \neg q$ 7. $\neg (p \lor q)$ 8. $(p \lor q) \rightarrow \neg r$ 9. ?	A AndE : 1 A ImpE : 3,2 AndE : 1 AndI : 4,5 EQV : 6 A 7,8	 Required reading: Grimaldi Chapter 2: Fundamentals of Logic 2.1. Basic Connectives and Truth Tables 2.2. Logical Equivalence: The Laws of Logic 2.3. Logical Implication: Rules of Inference Supplementary reading: O'Donnell, Hall, Page Chapter 6: Propositional Logic
			59 / 60