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Topics Relation
Relations
Introduction Definition
Relation Properties relation: « CAX B x Cx---x N
Equivalence Relations
» tuple: element of relation
Functions » binary relation: « CA X B
Introduction > aab (a,b) € a
Pigeonhole Principle
Recursion
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Relation Example

A= {31, dap, as, 34}, B = {bl, b2, b3}
a = {(a1, b1), (a1, b3), (a2, b2), (a2, b3), (a3, b1), (a3, b3), (as, b1)}

Relation Composition

Definition

relation composition:

aCAxB,CBxC

af ={(a,c)| a€ A,ce C,3be B [aab A bSc]}

by by b3
& b, ai 1 0 1 |
example
g I
as
a " all 0 o0 NG N
=% b, C, C,
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Relation Composition Relation Composition Associativity
> Mys =M, - Mg (aB)y = a(By).
» using logical operations:
1: 7T 0:F -:AN +:V
(a,d) € (aB)y
example & dc[(a,¢) € aB A(c,d) €]
10 0 1100 < Fe[3b(a,b) € aA(b,c) € B]A(c,d) €]
001 1100 0110 & 3Jb|(a,b) € anTc[(b,c) € fA(c,d) €]
My={01 1| Mg=|0 0 1 1 Mys=]0111 & 3b|(a,b) € an(b,d) € B
010 0110 0 011 & (a,d) € a(By)
1 01 1110
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Relation Composition Theorems

a(fUy) =afUany.

(a,c)ea(BU9)
3b [(a,b) € a A (b,c) € (BU7Y)]
3b [(a,b) € a A ((b,c) € BV (b, c) €7)]
3b [((a, b) € a A (b, ) € B)
V ((a,b) € a A (b,c) €7)]
(a,c) e aBV(a,c) € ay
(a,c) e af Uy

t o0

T ¢
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Converse Relation

Definition
a~t={(b,a) | (a,b) € a}
> My-1=M]
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Converse Relation Theorems

> (04_1)_1 =«
> (aupB) t=a"tupt
> (anf)t—atng !
> al=al

> (a—pf)T=al—p
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Converse Relation Theorems

(R
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Converse Relation Theorems

(anp)t=atnpt

(ba) € (an )™

& (a,b) € (anp)

& (a,b)Ea/\(a b) € g

& (ba)ea tA(ba)ep
& (ba)ealnpt
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Converse Relation Theorems

(@=p)" = (anp)
= o !n B&
= o In F

-1 _ -1
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Relation Composition Converse

Theorem

(af)yt=ptat
Proof.

(ca) € ()t

(a,c) € ap

3b [(a, b) € a A (b, c) € S]
3b[(b,a) € a”t A(c,b) € 7Y
(c,a) € pta™?

to e
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Relation Properties

> aCAXA
> % aa
> o oo

> identity relation: E = {(a,a) | a € A}
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Reflexivity

reflexive

aCAxXA

Va € A [aca]
> ECa

» irreflexive:
Va € A [-(aaa)]
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Reflexivity Examples

Ri1 C{1,2} x {1,2}
Rl = {(17 1)’ (1’ 2)7 (2’ 2)}

> R is reflexive

Ro C€{1,2,3} x {1,2,3}
RZ = {(1’ 1)7 (1’ 2)’ (27 2)}

» R, is not reflexive

» also not irreflexive
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Reflexivity Examples

R C{1,2,3} x{1,2,3}
R = {(1’ 2)’ (27 1)’ (2’ 3)}

» R is irreflexive
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Reflexivity Examples

RCZXZ
R ={(a,b) | ab> 0}

» R is reflexive
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Symmetry

symmetric

aCAxA

Va, b € A [aab <> baa]
> Cyil =

» antisymmetric:
Va,b € A [aab A\ baa — a = b]
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Symmetry Examples

R g {17273} X {1’2’3}
R =A{(1,2),(2,1),(2,3)}
> R is not symmetric

P also not antisymmetric
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Symmetry Examples

RCZXZ
R ={(a,b) | ab> 0}

» R is symmetric
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Symmetry Examples

R C{1,2,3} x{1,2,3}
R =1{(1,1),(2,2)}
> R is symmetric and antisymmetric
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Transitivity

transitive
aCAxXA
Va, b,c € A [aab A bac — aac]
> o’ C o
» antitransitive:
Va, b, c € A [aahb A\ bac — —(aac)]

Transitivity Examples

R g;{1,2,3} X {1,2,3}
R ::{(172)’(2’1)7(2’3)}

» R is antitransitive

25 /82 26 /82
Transitivity Examples Converse Relation Properties
RCZXZ
R ={(a,b) | ab> 0} Theorem
] o Reflexivity, symmetry, and transitivity are preserved
> R is not transitive in the converse relation.
» also not antitransitive
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Closures

» reflexive closure:
ro =aUE

» symmetric closure:
Sq = aU a1

» transitive closure:
ta =Ujz103 o =aUc?Ud3U---

Special Relations

predecessor - successor
RCZXZ
R={(ab)|a—b=1}

> irreflexive
P antisymmetric

» antitransitive
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Special Relations Special Relations
adjacency strict order
RCZXZ RCZXZ
R ={(a,b) | [a—b] =1} R={(a;b) | a<b}
> irreflexive > irreflexive
» symmetric P antisymmetric
» antitransitive P transitive
32/82
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Special Relations

partial order
RCZXZ
R ={(a,b) [ a< b}

> reflexive
» antisymmetric

» transitive

Special Relations

preorder
RCZXZ
R ={(a b) | |a| <Ib[}

> reflexive

» transitive
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Special Relations Special Relations
limited difference comparability
RCZxZ,melZt RCUxU
R =A{(a;b) [ [a—b| < m} R={(a,b)| (aC b)V(bCa)}
> reflexive > reflexive
» symmetric P> symmetric
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Special Relations

» siblings?

> irreflexive
» symmetric

P> transitive

» can a relation be symmetric and transitive, but irreflexive?

Compatibility Relations

Definition
compatibility relation:
» reflexive

P> symmetric

» when drawing, lines instead of arrows

P> matrix representation as a triangle matrix
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Compatibility Relation Example Compatibility Relation Example
dy d2 ai a4
A —
{a1,a2,a3,a4} K ., S aart 1 0 O
R = {(81,31) (32,32) dn 1 1 0 1
(a3,33), (a4, a2), R = {(a1,a1), (a2, a2), a3 |0 0 1 1
38 K X (a3, 23), (a8, 2a), alo 1 1 1
(a1, a2), (a2, a1),
& =t ( 2)7( 1)7
(a2, as), (a4, a2), !
(a 2 ) (a a3 )} (32734)7(34782)7
355 % 2 (a3,24), (a2, a3)} ap a a3
an 1
as |:0 0 }
dg 0 1 1
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Compatibility Relations

> aa~!is a compatibility relation

example
» P: persons, L: languages

> P ={p1,p2,P3,Pa, P5, Ps}
> L=1{h,h, B, I5}
> o CPxL
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Compatibility Relation Example

h h b Iy Ik
pprl 1 0 0 O
p |1 1 0 0 0
M,— P30 0 1 0 1
ps |1 0 1 1 0
ps |0 0 0 1 0
pe LO 1 1 0 0
P1 P2 P3 P4 P5  Pe
h rl 1 0 1 0 O
h |1 1 0 0 0 1
My+= K]0 0 1 1 0 1
b 0O 0 0 1 1 0
5k LO 0O 1 0 0 O
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Compatibility Relation Example

> aa !l CPxP

P1 P2 P3 P4 P5  Pe
pprl 1 0 1 0 1 e
pp |1 1 0 1 0 1
M. .- P[0 0 1 1 0 1 P =
ps |1 1 1 1 1 1 P P
ps |0 0 0 1 1 0
ps L1 1 1 1 0 1 P
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Compatibility Block

Definition
compatibility block: C C A
Va,blac CAbe C— ayb]

> maximal compatibility block:
not a subset of another compatibility block

» an element can be a member of more than one MCB

» complete cover: C,
set of all MCBs
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Compatibility Block Example Equivalence Relations

Definition
> G ={pa:ps
{pa. po} equivalence relation: ¢
> C = {p2,pa;pe} .
& > reflexive

> C3 = {p1, P2, P4, ps} (MCB) > symmetric

Ps [
P transitive
Ps Ps
¢, = {{p1,p2,ps,ps}, » equivalence classes (partitions)
» {p3, Pa,ps}, > every element is a member of exactly one equivalence class
{ps, ps}t} » complete cover: C,
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Equivalence Relation Example References
Required Reading: Grimaldi
RCZXZ

» Chapter 5: Relations and Functions
» 5.1. Cartesian Products and Relations
» Chapter 7: Relations: The Second Time Around

» 7.1. Relations Revisited: Properties of Relations
» 7.4. Equivalence Relations and Partitions

R ={(a,b) | Ime€ Z [a— b =5m]|}

» ‘R partitions Z into 5 equivalence classes
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Functions

Definition
function: f: X =Y

Vx e X Yy, yo € Y [(x, 1), (x,52) € f = y1 = y3]

» X: domain, Y: codomain

> y=1f(x)  (xy)ef
» y: image of x under f

> XY, XCX
subset image: f(X') ={f(x) | x € X'}

Subset Image Examples

f(Z) = {0,1,4,9,16,...}
f({-2,1}) = {1,4}
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Range One-to-One Functions
Definition Definition
f:X—=>Y f : X — Y is one-to-one (or injective):
range: f(X) Vxi,xp € X [f(Xl) = f(X2) — X1 = X2]
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One-to-One Function Examples

» one-to-one » not one-to-one
f:R—R g:7—7Z
f(x)=3x+7 g(x) =x* —x

f(x1) = f(x) g(0) = 0*—0 = 0
= 3xq+7 = 3x+7 g(l) = 1*-1 =0
= 3x1 = 3x
= X1 = X
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Onto Functions

Definition
f: X — Y is onto (or surjective):
Vy e Y Ix € X [f(x) =y]

> f(X)=Y
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Onto Function Examples

» onto » not onto

f:R—=R fZ—7Z
f(x) =x3 f(x)=3x+1
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Bijective Functions

Definition
f: X — Y is bijective:
f is one-to-one and onto
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Function Composition

Definition

fFX=>Y,g:Y=>Z

gof: X—=Z7

(g o f)(x) = g(f(x))
» not commutative

> associative: fo(goh)=(fog)oh
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Composition Commutativity Example

f:R—R
f(x) = x?
g:R—>R
g(x)=x+5

gof :R—>R
(g0 F)(x) = x*+5

fog:R—=R
(Fo g)(x) = (x + 57
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Composite Function Theorems

Theorem
fFX=>Y,g:Y=>Z
f is one-to-one N\ g is one-to-one = g o f is one-to-one

Proof.

(gof)la) = (gof)(x)

= g(f(x)) = g(f(x))
= f(Xl) = f(X2)
= X1 = Xp
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Composite Function Theorems

Theorem
f X—=Y,g:Y>Z
f is onto A\ g is onto = g o f is onto

Proof.
VzeZ3dyeVYgly)=z
VyeVY IxeX f(x)=y
=>VzeZ3Ixe X g(f(x)) =z
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Identity Function Inverse Function
Definition Definition
identity function: 1x f: X — Y is invertible:
Ix: X = X I 1Y s X[flof=1xAfoft=1y]
1x(x) = x » f—1: inverse of function f
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Inverse Function Examples Inverse Function
f:R—>R Theorem
f(x)=2x+5 If a function is invertible, its inverse is unique.
1R LR Proof.
f_l(x)_g f: X—=Y
=72
g,h:Y—=>X
(FLof)(x) = FLF(x)) = Fl(2x+5) = BI5 _ 2 gof=1xAfog=1y
hof=1 foh=1
(Fof 1) (x) = F(FL(x)) = F(*55) = 2555 +5 = (x —5) + 5 = x ef=hxAfon=ly
h=holy =ho(fog)=(hof)og=1xog=g O]
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Invertible Function

Invertible Function

If invertible then one-to-one. If invertible then onto.

f:X—=Y f:X—->Y
Theorem f(xa) = f(x2) y
A function is invertible if and only if it is one-to-one and onto. N f_l(f(xl)) _ f_l(f(XQ)) 1y(y)
= (Frof)ia) = (F "o f)(x) = (fof™)(y)
= 1x(x) = 1x(x) F(F1(y))
= X1 =X T
L]
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Invertible Function Pigeonhole Principle
If bijective then invertible.
: B pigeonhole principle (Dirichlet drawers):
> fisonto=Vy ey _ElX €EXflx)=y If m pigeons go into n holes and m > n,
> let g: Y — X be defined by x = g(y) then at least one hole contains more than one pigeon.
> is it possible that g(y) = x1 # x2 = g(y) ? > X—=>Y
» this would mean: f(x1) =y = f(x2) |X| > Y| = f is not one-to-one
» but f is one-to-one > 3x1,x0 € X [x1 # xe Af(x1) = f(x)]
L]
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Pigeonhole Principle Examples

> Among 367 people, at least two have the same birthday.

» In an exam where the grades are integers between 0 and 100,
how many students have to take the exam to make sure that
at least two students will have the same grade?
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Generalized Pigeonhole Principle

Definition

generalized pigeonhole principle:

If m objects are distributed to n drawers,

then at least one of the drawers contains [m/n] objects.

example

Among 100 people, at least [100/12| = 9 were born
in the same month.
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Pigeonhole Principle Example

Theorem
S={1,2,3,....9), TCS|T|=6
ds;,sp € T [51 + S = 10]
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Pigeonhole Principle Example

Theorem
SCZ", VaeS[a<14],|5|=6
T=P(S)—0
X ={Xa| A€ T}, La: sum of the elements in A
[X| <|T|
Proof Attempt Proof.
> holes: consider T — S
1<¥p<9+---+14=69 > holes:

1<s4<10+---+14 =60

» pigeons: 26 — 1 =63
» pigeons: 2° — 2 = 62

]
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Pigeonhole Principle Example

Theorem
$=1{1,2,3,...,200}, T C S,|T| = 101
351,52 eT [52‘51]

» first, show that:

Pigeonhole Principle Example

Theorem
Vn3lp[n=2"pAreNAIteZ[p=2t+1]

Proof of existence.
n=1r=0p=1
n < k: assume n=2"p

Proof of uniqueness.
if not unique:

n=k+1:
Vn3lpn=2"pAreNATteZ[p=2t+1] n—o- r=1,p=1 n = 21p; = 272p,
» then, use this to prove the main theorem nprime (n>2): r=0p=n = 217"2p = pp
=(n prime) : n=ninp = 2|p
n=2"p;-2"p; O
n=2"%" . pip,
L]
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Pigeonhole Principle Example Recursive Functions
Theorem
5$={1,2,3,...,200}, T C S,|T| =101 Definition
Js1, € T [s2]s1] recursive function: a function defined in terms of itself
Proof. f(n) = h(f(m))
> P={p|peS,FieZ[p=2i+1]}, |Pl=100 » inductively defined function: a recursive function
> f:S—>PreNs=2p—f(s)=p where the size is reduced at every step
» |T| =101 = at least two elements have the same image in P:
f(s1) = f(s2) = 51 =2"p, 5 = 27p (n) k ifn=0
n) = _
si_2"p h(f(n—1)) ifn>0
s 272p
L]
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Recursion Examples

£91(n) n—10 if n> 100
n)—=
FO1(£91(n+ 11)) if n < 100

Dt ifn=0
" ln-(n=1) ifn>0
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Greatest Common Divisor

ged(a, b) = {

gcd(333,84)

b ifb|a
gecd(b,a mod b) if bta

= gcd(84,333 mod 84)
gecd(84,81)

(

(

= gcd(81,84 mod 81)
ged(81,3)

|
w
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Fibonacci Sequence

1 ifn=1
Fn = fib(n) = { 1 if n=2
fib(n — 2) + fib(n — 1) if n> 2

FL F, 3 Fo Fs Fo Fr Fg
1 1 2 3 5 8 13 21
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Fibonacci Sequence

Theorem

S F?=Fp Fopa

Proof.

n=2: Z?:l Fi?
k

n=k: S F?

n=k+1: Zf‘;rll[:,?

F2P+FR2=1+1=1-2=FF
Fi - Fria

S FR + Frga®

Fic - Frs1 + Fri1?

Fis1 - (Fk + Fry1)

Frs1 - Frgo
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Ackermann Function

y+1
ack(x,y) = ¢ ack(x — 1,1)
ack(x — 1, ack(x,y — 1))

if x=20
ify=0
ifx>0Ay>0
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Required reading: Grimaldi
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» 5.3. Onto Functions: Stirling Numbers of the Second Kind
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