DIGITAL CIRCUITS SOLUTIONS TO EXAMPLARY EXAM QUESTIONS

SOLUTION 1:

a. B is negative, result is negative, there is an overflow, and operation is subtraction
i) Overflow condition: pos - neg $=$ neg , therefore A must be positive.
ii) $\mathrm{A}=0 \mathrm{xxx} \mathrm{xxx}$
0xxx xxxx
$\mathrm{B}=10011101$ 2's comp. +01100011 smallest possible $\mathrm{A}=00011101$
$\mathrm{R}=1 \mathrm{xxx} \operatorname{xxx}$
1xxx xxxx
The same solution by thinking in decimal:
$\mathrm{B}=(-99)_{10}$, to generate an overflow result must be at least +128 . (Note that result seems to be negative, but due to overflow the real sign of the result is positive.)
$\mathrm{A}-99=128$, smallest possible $\mathrm{A}=(\mathbf{2 9})_{\mathbf{1 0}}=\mathbf{0 0 0 1} \mathbf{1 1 0 1}$
b. The carry bit is 1 . It means no borrow. Therefore $A>B$.

SOLUTION 2:

a)

```
Expression:
(a+E)(a'+F) or (a'+E)(a+F)
```

b)

$$
\begin{aligned}
(a+E)\left(a^{\prime}+F\right)(E+F) & =(a+E)\left(a^{\prime}+F\right)\left(E+F+a a^{\prime}\right) & & \text { Inverse and identity } \\
& =(a+E)\left(a^{\prime}+F\right)(E+F+a)\left(E+F+a^{\prime}\right) & & \text { Distribution } \\
& =(a+E)(1+F)\left(a^{\prime}+F\right)(1+E) & & \text { Identity } \\
& =(a+E)\left(a^{\prime}+F\right) & &
\end{aligned}
$$

c)

$$
\begin{aligned}
z & =a b^{\prime} c+a c d+a b+a^{\prime} b & & \\
& =a b^{\prime} c+a c d+b\left(a^{\prime}+a\right) & & \text { Distribution } \\
& =a c d+a b^{\prime} c+b & & \text { Inverse } \\
& =a c d+a b^{\prime} c+b+a c & & \text { Consensus } \\
& =a c\left(d+b^{\prime}+1\right)+b & & \text { Distribution and identity } \\
& =a c+b & &
\end{aligned}
$$

SOLUTION 3:

a)
$f(A, B, C, D)=A^{\prime} B^{\prime} C D+A B^{\prime} C D+A C^{\prime} D+A C^{\prime} D^{\prime}+A^{\prime} B^{\prime} C D^{\prime}+A B C D+A C D^{\prime}$

$$
\begin{aligned}
& =\left(A^{\prime}+A\right) B^{\prime} C D+A C^{\prime}\left(D+D^{\prime}\right)+A^{\prime} B^{\prime} C D^{\prime}+A B C D+A C D^{\prime} \quad \text { (Inverse) } \\
& =\left(B^{\prime}+A B\right) C D+A C^{\prime}+A^{\prime} B^{\prime} C D^{\prime}+A C D^{\prime} \quad \text { (absorbtion) } \\
& =B^{\prime} C D+A\left(C D+C^{\prime}\right)+\left(A^{\prime} B^{\prime}+A\right) C D^{\prime} \text { (absorbtion) } \\
& =B^{\prime} C D+A D+A C^{\prime}+B^{\prime} C D^{\prime}+A C D^{\prime} \\
& =B^{\prime} C D+A D+B^{\prime} C D^{\prime}+A\left(C^{\prime}+C D^{\prime}\right) \text { (absorbtion) } \\
& =B^{\prime} C D+A D+B^{\prime} C D^{\prime}+A C^{\prime}+A D^{\prime} \\
& =B^{\prime} C\left(D+D^{\prime}\right)+A\left(D+C^{\prime}+D^{\prime}\right) \text { (inverse) } \\
& =B^{\prime} C+A
\end{aligned}
$$

b)

$A B{ }^{C D}$	00	01	11	10
00	1	1	1	1
01	0	0	0	1
11	Φ	0	Φ	1
10	1	1	1	1

By considering 0 and Φ points we can obtain complement of f .

$$
\bar{f}=B \bar{C}+B D
$$

De Morgan:

$$
\begin{aligned}
f & =\overline{B \bar{C}+B D}=\overline{B \bar{C}} \cdot \overline{B D} \\
& =(\bar{B}+C) \cdot(\bar{B}+\bar{D})
\end{aligned}
$$

Or by considering true (1) points:

$$
f=\bar{B}+(C \bar{D})
$$

Distributive Law:
$f=(\bar{B}+C) \cdot(\bar{B}+\bar{D})$

SOLUTION 4 :

a) Maxterms (0 generating inputs): $0001,0101,1100,1101,1110,1001$

$\substack{\text { cd } \\ \text { ab } \\ \text { ad }}$	00	01	11	10
00	1		1	1
01	1		1	1
11			1	
10	1		1	1

Prime Implicants:
b'd' , a'd', a'c, b'c, cd
b)

False (0) points of function f are true (1) points of the complement $(\bar{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}))$.

Num	abcd	Num	abcd	Num	abcd
1	0001V	1,5	0-01V	1,5,9,13	-01 X
5	0101V	1,9	-001 $\sqrt{ }$		
9	1001V	5,13	-101V		
12	1100V	9,13	1-01V		
13	1101V	12,13	110-X		
14	1110V	12,14	11-0 X		

Prime Implicants:
abc' , abd', c'd

SOLUTION 5 :

Step 1. Point 4 is a distinguished point, and F is an essential prime implicant. F is selected, points $4,7,13$ and 14 are removed.
Step 2. C covers D with equal cost. D is removed.
Step 3. True point 2 is a distinguished point, and C is an essential prime implicant. C is selected, points 2, 5, 8 and 10 are removed.
Step 4. B covers E with less cost. E is removed.
Step 5. True point 11 is a distinguished point, and B is an essential prime implicant. B is selected.

Hence $\mathrm{B}+\mathrm{C}+\mathrm{F}$ is the minimal covering sum (sufficient base) with 26 unit cost.

SOLUTION 6:

a)

\mathbf{Z}				
$\mathbf{A B}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	1	0	1	1
$\mathbf{0 1}$	1	1	1	0
$\mathbf{1 1}$	Φ	0	0	0
$\mathbf{1 0}$	1	0	1	1

Set of all prime implicants:
$\bar{C} \bar{D}, \bar{B} C, \bar{B} \bar{D}, \bar{A} B \bar{C}, \bar{A} B D, \bar{A} C D$
A \quad B \quad C $\quad \mathrm{D} \quad \mathrm{E} \quad \mathrm{F}$
b) Prime Implicant Chart:
$\sqrt{ } \sqrt{ } \mathrm{V}$
c) Cheapest sufficient set of prime implicants:

A $+\mathrm{B}+\mathrm{E}:$ Cost $=18$
Cheapest expression: $\quad Z=\bar{C} \bar{D}+\bar{B} C+\bar{A} B D$

SOLUTION 7:

a.

Truth table:

| a | b | c | d | z |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |

From the truth table we can obtain minterms and write the expression of the function in the $1^{\text {st }}$ canonical form.
Remember, in minterms all variables (literals) appear once.
$1^{\text {st }}$ canonical form:
$z=a ' b ' c d^{\prime}+a^{\prime} b^{\prime} c d+a ' b c^{\prime} d^{\prime}+a^{\prime} b c d^{\prime}+a b^{\prime} c^{\prime} d^{\prime}+a b ' c ' d+a b ' c d '+a b ' c d$

+ abc'd'+ abc'd
b.

There are different ways to minimize the expression in the $1^{\text {st }}$ canonical form.
Minimized expression:
$\mathrm{z}=\mathrm{a}^{\prime} \mathrm{bd} \mathrm{A}^{\prime}+\mathrm{ac}$ + $\mathrm{b}^{\prime} \mathrm{c}$

SOLUTION 8:

There are different possible proper solutions. One of them is given below.
Four 2:1 multiplexers are connected in parallel.

SOLUTION 9:

SOLUTION 10:

A	B	Q	P	
0	0	0	1	If $\mathrm{B}=0$ then $\mathrm{P}=1$. The output of NAND1 is 1 and Q is 0 (stable)
0	1	0	1	After $(\mathrm{A}=0, \mathrm{~B}=0), \mathrm{Q}=0$ from previous state and $\mathrm{P}=1$. The output of NAND is 1 and $\mathrm{Q}=0$ (stable)
1	0	0	1	If $\mathrm{B}=0$ then $\mathrm{P}=1$. The output of NAND1 is 1 and Q is 0 (stable)
1	1	1	0	The output of NAND1 is 0. Therefore the output of NAND2, $\mathrm{Q}=$ 1 and $\mathrm{P}=0$ (stable)
0	1	1	0	After $(\mathrm{A}=1, \mathrm{~B}=1)$, The output of NAND1 is $1 . \mathrm{P}=0$ from previous state and $\mathrm{Q}=1, \mathrm{P}=0$ (stable)

A	B	
0	0	Reset
1	0	
0	1	Don't change
1	1	Set

The circuit is stable and can be switched to another state and has set, reset and don't change conditions. Therefore it can be used as a memory unit.

\mathbf{A}	\mathbf{B}	$\mathbf{Q}(\mathbf{t})$	$\mathbf{Q (t + 1)}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$\mathbf{A B} \backslash \mathbf{Q}(\mathrm{t})$	$\mathbf{0}$	1
$\mathbf{0 0}$	0	Q
01	0	1
11	1	1
10	0	$\mathrm{Q}(\mathrm{t}+1)=\mathrm{BQ}(\mathrm{t})+\mathrm{AB}$

SOLUTION 11:

a) $Q_{1}^{+}=A \bar{Q}_{1}+\bar{B} Q_{1}$

$$
\begin{aligned}
Q_{0}^{+} & =1 \oplus Q_{0}=\bar{Q}_{0} \\
Z & =\bar{S}_{1} s_{0}+s_{1} s_{0} \\
& =S_{1} \oplus S_{0}=Q_{1} \oplus Q_{0}
\end{aligned}
$$

Output is a function of states \longrightarrow Moore Model

$$
\begin{array}{c|cccc|c}
Q_{1}^{+} Q_{0}^{+} \\
Q_{1} Q_{0} & 00 & 01 & 10 & 11 & Z \\
00 & 01 & 01 & 11 & 11 & 0 \\
01 & 00 & 00 & 10 & 10 & 1 \\
10 & 11 & 01 & 11 & 01 & 1 \\
11 & 10 & 00 & 10 & 00 & 0
\end{array}
$$

A:00
$B: 01$
C: 10
D: 11

b) $\quad Q_{1}^{+}=D_{1}=A \bar{Q}_{1}+\bar{B} Q_{1}$

$$
Q_{0}^{+}=D_{0}=\bar{Q}_{0}
$$

$$
Z=Q_{1} \oplus Q_{0}
$$

SOLUTION 12:

a)

$$
\begin{aligned}
& \text { states } \\
& A \text { : zero ones } \\
& B \text { : one ones } \\
& C \text { : two or even ones } \\
& D=\text { (three or more) and } \\
& \text { odd ones }
\end{aligned}
$$

State/output table
$Q_{1}^{+} Q_{0}^{+}, Z$

$Q_{1} Q_{0}$	0	1	z
A	A	B	0
B	B	C	0
C	C	D	0
D	D	C	1

$$
\begin{aligned}
& \text { Codes } \\
& \begin{array}{l}
A: 00 \\
B: 01 \\
C: 10 \\
D: 11
\end{array}
\end{aligned}
$$

b)

Symbol	Transition	J	K
0	$0 \rightarrow 0$	0	ϕ
α	$0 \rightarrow 1$	1	ϕ
β	$1 \rightarrow 0$	ϕ	1
1	$1 \rightarrow 1$	ϕ	0

$$
J_{1}=Q_{0} X \quad J_{0}=X
$$

$$
k_{1}=0 \quad k_{0}=X
$$

$$
Z=Q_{1} Q_{0}
$$

$$
x
$$

SOLUTION 13:

A	Q1	Q2	Q3	Q4	Z
L	Off	On	On	Off	L
H	On	Off	Off	On	H

The expression for the function $Z=f(A)=A$ (buffer).

