

Digital Circuits				
Some of the simple	gates (cont'd): _{ANSI/IEEE-1973}	ANSI/IEEE-1984	Truth Table:
NAND (NOT AND)	$\mathbf{Z} = \overline{(\mathbf{X}\mathbf{Y})}$	x	X - Y - & oZ	$\begin{array}{c cccc} X & Y & Z \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$
<i>NOR</i> (NOT OR)	$\mathbf{Z} = \overline{(\mathbf{X} + \mathbf{Y})}$	X Y	x - y -≥1 o-z	X Y Z 0 0 1 0 1 0 1 0 0 1 1 0
XOR (Difference) $\mathbf{Z} = \mathbf{X}\overline{\mathbf{Y}} + \overline{\mathbf{X}}\mathbf{Y}$	$Z = X \oplus Y$	x yz	$\begin{array}{c} x - \\ y - = 1 \end{array} - z$	X Y Z 0 0 0 0 1 1 1 0 1 1 1 0
XNOR (Equality) $\mathbf{Z} = \mathbf{X}\mathbf{Y} + \overline{\mathbf{X}}\ \overline{\mathbf{Y}}$	$\mathbf{Z} = \mathbf{X} \odot \mathbf{Y}$	x y	X - =1 o-Z	X Y Z 0 0 1 0 1 0 1 0 0 1 1 1
http://akademi.itu.edu.tr/en/buzk http://www.buzluca.info	uca/		1 - 2022 Feza BUZLUC	A 3.2

Digital Circuits					
Positive and Negative Logic					
Boolean values (zero and one) represent physical quantities such as voltage or state of an entity (door is open, light is off).					
Assigning "1" to high value, and "0" to low value is called positive logic, and assigning "0" to high value, and "1" to low value is called negative logic.					
Example:					
Function table of a physical device with 2 inputs and one output is shown below.					
If we use the positive logic, the device can be implemented with an AND gate.					
In negative logic system, the device is implemented with an OR gate.					
Physical Device Positive Logic Negative Logic					
Inputs: Output: Inputs: Output: Inputs: Output:					
x1 x2 z x1 x2 z x1 x2 z					
L H L 0 1 0 1 0 1					
H L L 1 0 0 0 1 1					
H H H 1 1 1 0 0 0					
http://akademi.itu.edu.tr/en/buzluca/					

Functionally Complete Sets of Logic Gates

A set of logic operations is said to be **functionally complete**, if any Boolean function can be expressed using only this set of operations.

- The set {AND, OR, NOT} is obviously functionally complete because AND, OR, and NOT are main operations that are defined in of the Boolean algebra.
 Any function can be expressed in sum-of-products (or product-of-sums) form,
- and a sum-of-products expression uses only the AND, OR, and NOT operations.
 Since the set of operations {AND, OR, NOT} is functionally complete, any set
- Since the set of operations {AND, OR, NOT} is functionally complete, any set of logic gates which can realize {AND, OR, NOT} is also functionally complete.
- For example, {AND, NOT} is also a functionally complete set of gates because OR can be realized using only AND and NOT.

To prove it we can use De Morgan's theorem.

De Morgan's Theorem:

Since {AND, NOT} is functionally complete, we can express any Boolean function using only AND and NOT.

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011 - 2022	Feza BUZLUCA	3.9

Digital Circuits				
Universal Logic Gates				
If a single gate forms a functionally complete set by itself, then any Boolean function can be realized using only gates of that type.				
This type of a gate is called universal logic gate .				
 The NAND gate is an example of such a gate. 				
Remember: the NAND gate performs the AND operation followed by inversion (AND-NOT).				
 NOT, AND, and OR can be realized using only NAND gates. 				
 Thus, any Boolean function can be realized using only NAND gates. 				
 Similarly, the set consisting only of the binary operator NOR is also functionally complete. 				
 All other logic functions can be realized using only NOR gates. 				
NAND (and also NOR) gates are called universal logic gates .				
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 - 2022 Feza BUZLUCA 3.10				

Digital Circuits				
Relation	between NAND and NOR			
 NAND - NOR Conversions 				
de Morgan:	1. $A' \cdot B' = (A + B)'$			
	2. A' + B' = (A • B)'			
	3. (A' • B')' = A + B			
	4. (A' + B')' = (A • B)			
 These expressions show the 	at,			
1. An AND gate with inverted inputs is the equivalent of the NOR gate.				
2. An OR gate with inverted inputs is the equivalent of the NAND gate.				
3. A NAND gate with inverted inputs is the equivalent of the OR gate.				
4. A NOR gate with inverted inputs is the equivalent of the AND gate.				
2 ≡) 4 =			
http://akademi.itu.edu.tr/en/buzluca/	2011 - 2022 Feza BUZLUCA 3.12			

