
3.1

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

BUFFER Y=X

INVERTER (NOT) � � ��

AND Z = X • Y

OR Z= X + Y

Logic Gates

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X
Y Z &

X
Z

Y

X Y
0 1
1 0

X Y 1X Y

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X

Y
Z ≥1

X
Z

Y

ANSI/IEEE-1973 ANSI/IEEE-1984 Truth Table:

X Y
0 0
1 1

X Y 1X Y

Logic gates are physical devices, which implement simple Boolean functions.
Some of the simple gates:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

3.2

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

NAND � � ����

(NOT AND)

NOR � � �� � ��

(NOT OR)

XOR (Difference)
 � � ⊕ �

� � ��� � ���

XNOR (Equality) � � � ⊙ �

� � �� � �� ��

X

Y
Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

&
X

Z
Y

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y
≥1

X
Z

Y

X

Y
Z

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

=1
X

Z
Y

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

Z
X

Y
=1

X
Z

Y

Some of the simple gates (cont’d):
ANSI/IEEE-1973 ANSI/IEEE-1984 Truth Table:

3.3

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

pin 1 pin 14

pin 8

pin 1
pin 20

pin 11

Dual in-line Package (DIP) ICs

Integrated Circuits – IC
Logic gates are manufactured in integrated circuit (IC) (chip) form.

Often, a large number of mixed logic gates are packaged in a single integrated circuit.
For example, an ULSI (Ultra large-scale integration) chip can include more than
100,000 gates.

ICs, themselves, come in different types of packages.

Quad Flat Package (QFP) Pin Grid Array (PGA)

3.4

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Examples of 74xx Series

You may find necessary information about ICs in their datasheet catalogs.

3.5

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Positive and Negative Logic

Boolean values (zero and one) represent physical quantities such as voltage or
state of an entity (door is open, light is off).

Assigning "1" to high value, and "0" to low value is called positive logic, and

assigning "0" to high value, and "1" to low value is called negative logic.

Example:

Function table of a physical device with 2 inputs and one output is shown below.

If we use the positive logic, the device can be implemented with an AND gate.

In negative logic system, the device is implemented with an OR gate.

Physical Device

Inputs: Output:

x1 x2 z
L L L
L H L
H L L
H H H

Positive Logic

Inputs: Output:

x1 x2 z
0 0 0
0 1 0
1 0 0
1 1 1

Negative Logic

Inputs: Output:

x1 x2 z
1 1 1
1 0 1
0 1 1
0 0 0

3.6

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

 Product of Sums (PoS)

 OR gates implement the sums.

 AND gate implements the product.

Implementation of Boolean Functions Using Logic Gates

A B C

 Sum of Products (SoP)

 AND gates implement the products.

 OR gate implements the sum.

NOT gates can be also used where necessary.

1. canonical form (SoP)

minimized (SoP)

2. canonical form (PoS)

minimized (PoS)

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

F2

F3

F4

F1
B

A

C

F1 = F2 = F3 = F4

Example: Implementation of a Boolean Function represented (given) by truth table

F(A, B, C)= Σm(1,3,5,6,7) 1. canonical form
= A'B'C + A'BC + AB'C + ABC' + ABC = F1

= AB+C = F2 (minimized)
F(A, B, C)= ΠM(0,2,4) 2. canonical form

= (A + B + C) (A + B' + C) (A' + B + C) = F3

= (A + C) (B + C) = F4 (minimized)

3.8

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

There are many ways to express a Boolean function. We implement each one using
different logic gates.

Example: Z = A' • B' • (C + D) = (A' • (B' • (C + D))) (Associative Law)

3-input gate

A

B

C
D

Z

A

B

C
D

C+D

B'(C+D)

Z

Only 2-input gates

≡

Sometimes, it is necessary to manipulate logic expressions of functions based on
the types of available gates (for example, if we have only 2-input AND gates).

Reduction of logic equations is still necessary in order to fit the equations into a
small number of ICs.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Implementation of Boolean Functions Using Logic Gates (cont'd)

3.9

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Functionally Complete Sets of Logic Gates

A set of logic operations is said to be functionally complete, if any Boolean
function can be expressed using only this set of operations.

• The set {AND, OR, NOT} is obviously functionally complete because AND, OR,
and NOT are main operations that are defined in of the Boolean algebra.

Any function can be expressed in sum-of-products (or product-of-sums) form,
and a sum-of-products expression uses only the AND, OR, and NOT operations.

• Since the set of operations {AND, OR, NOT} is functionally complete, any set
of logic gates which can realize {AND, OR, NOT} is also functionally complete.

• For example, {AND, NOT} is also a functionally complete set of gates because
OR can be realized using only AND and NOT.

To prove it we can use De Morgan's theorem.

� · �� � � �

De Morgan's Theorem:
X

Y

�

��

� · �� ≡
Y

X

Since {AND, NOT} is functionally complete, we can express any Boolean function
using only AND and NOT.

3.10

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

If a single gate forms a functionally complete set by itself, then any Boolean
function can be realized using only gates of that type.

This type of a gate is called universal logic gate.

• The NAND gate is an example of such a gate.

Remember: the NAND gate performs the AND operation followed by inversion
(AND-NOT).

• NOT, AND, and OR can be realized using only NAND gates.

• Thus, any Boolean function can be realized using only NAND gates.

• Similarly, the set consisting only of the binary operator NOR is also
functionally complete.

• All other logic functions can be realized using only NOR gates.

NAND (and also NOR) gates are called universal logic gates.

Universal Logic Gates

3.11

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

To prove that NAND and NOR operators are functionally complete , we have to
show that AND, OR, NOT operations can be implemented using only NAND (or
alternatively, NOR) gates.

NAND is denoted by symbol |

NOR is denoted by symbol ↓

Proof of functional completeness

x'x
x x'

NOT:

NAND

x' = x | x

= (x·x)'

= x'

AND:

OR:
x+y = (x'·y')' de Morgan
x+y = (x' | y')

NOR

x' = x ↓ x

= (x+x)'

= x'

x·y = (x' + y')' de Morgan
= (x' ↓ y')

x+y = ((x+y)')' Involution
= (x ↓ y)'

x·y = ((x·y)')' Involution
= (x | y)'

3.12

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

 NAND - NOR Conversions

 de Morgan: 1. A' • B' = (A + B)'

2. A' + B' = (A • B)'

3. (A' • B')' = A + B

4. (A' + B')' = (A • B)
 These expressions show that,

1. An AND gate with inverted inputs is the equivalent of the NOR gate.

2. An OR gate with inverted inputs is the equivalent of the NAND gate.

3. A NAND gate with inverted inputs is the equivalent of the OR gate.

4. A NOR gate with inverted inputs is the equivalent of the AND gate.

Relation between NAND and NOR

1.

2.

3.

4.

≡

≡

≡

≡

3.13

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Implementation of Boolean functions using only NAND (NOR) gates

There are four different combinations:

1. Expression in SOP form, implementation using NAND gates

2. Expression in SOP form, implementation using NOR gates

3. Expression in POS form, implementation using NOR gates

4. Expression in POS form, implementation using NAND gates

1.Implementation of Boolean functions in the SOP form using only NAND gates

Shortcut: If we add NOT gates to the outputs of AND gates and to the inputs of
the OR gates, we obtain NAND gates. (See 3.12 - 2)

If we always add inverters in pairs (NOT-NOT), the function realized by the circuit
will not change. (a')' = a (Involution)

A

B

C

D

Z

A

B

C

D

Z

Example: Z = (A • B) + (C • D)

≡

NAND (See. 3.12)

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

3.14

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Algebraic verification:

Z = [(A • B)' • (C • D)']' Expression using NANDs (circuit on the right)

= [(A' + B') • (C' + D')]'

= [(A' + B')' + (C' + D')']

= (A • B) + (C • D) Expression of the circuit on left

?
≡

Solution using algebraic conversion:

Z = (A • B) + (C • D) (SoP form)
= [((A • B) + (C • D))']'

= [(A • B)' • (C • D)']' (De Morgan)
= (A | B) | (C | D) (only NAND gates)

Expression is inverted twice. (Z')' = Z (Involution)

A

B

C

D

Z

A

B

C

D

Z

Example (cont’d):

3.15

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Implementation using gates with limited number of inputs

Sometimes, it is necessary to implement products (or sums) with many literals using
gates that accept only 2 inputs (remember the integrated circuits in 3.4).

Example:

Z= ABC + ACD

Implement this expression using only 2-input NAND Gates.

Solution 1:

1. Implementation with the classical gates of the Boolean algebra

A B C D

Z

2. Inserting NOT gates to obtain NAND gates

A C
Extra NOT gates are necessary (see 3.16).

3.16

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Example (cont’d):

Solution 1:

3. Implementation with 2-input NAND gates

A B C D

Z

Solution 2:

Manipulating the original expression to obtain a simpler circuit

Z= ABC + ACD = A(BC + CD)

The circuit in solution 2 is
cheaper to implement than
the circuit in solution 1.

Therefore solution 2 is
preferable to solution 1.

A B C D

Z

(BC + CD)

3.17

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

1. Step:
Converting AND to NOR.

In this case, we obtain a more complicated circuit than case 1 (SOP using NAND).

Z

A

B

C

D

Remember: We can
implement NOT gates
using NOR gates.

2. Implementation of Boolean functions in the SOP form using only NOR gates

A

B

C

D

Z

x'x

Example: Z = (A • B) + (C • D)

(a')' = a (Involution)

A

B

C

D

Z

2. Step:
Converting OR to NOR

NOR

3.18

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

For the expressions in the POS form, using NOR gates is advantageous.

Shortcut :

If we add NOT gates to the outputs of OR gates, and to the inputs of the AND

gates, we obtain NOR gates. (See 3.12 -1)

Remember: If we always add inverters in pairs, the function realized by the
circuit will not change. (a')' = a (Involution)

A

B

C

D

Z

A

B

C

D

Z

A

B

C

D

Z

3. Implementation of Boolean functions in the POS form using only NOR gates

Example: Z = (A + B) • (C + D)

NOR (See. 3.12)

3.19

Digital Circuits

2011 - 2022 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

4. Implementation of Boolean functions in the POS form using only NAND gates
In this case, we obtain a more complicated circuit than case 3 (POS using NOR).

A

B

C

D

Z

Example: Z = (A + B) • (C + D)

A

B

C

D

Z

NAND

NAND

Remember: We can
implement NOT gates
using NAND gates.

x x'

A

B

C

D

Z

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

1. Step:
Converting OR to NAND

2. Step:
Converting AND to NAND

