

Digital Circuits				
Assigning " 1 " to high value, and " 0 " to low value is called positive logic, and assigning " 0 " to high value, and " 1 " to low value is called negative logic. Example: Function table of a physical device with 2 inputs and one output is shown below. If we use the positive logic, the device can be implemented with an AND gate. In negative logic system, the device is implemented with an OR gate.				
Physical Device Inputs: Output:	Positiv Inputs:	Logic Output: z 0 0 0 1	Negat Inputs:	Logic Output: z 1 1 1 0
http://akademi.itu.edu.tr/en/buzluca/ hitto://www.buzlucainfo	2011-2022		Feza buzluc	3.5

Digital Circuits			
Implementation of Boolean Functions Using Logic Gates			
- Sum of Products (SoP) - AND gates implement the products. - OR gate implements the sum.			
- Product of Sums (PoS) - OR gates implement the sums. - AND gate implements the product.		CO	
NOT gates can be also used where necess			
http://akademi.itu.edu.tr/en/buzluca/ htto://www buzluca.info	2011-2022	Feza BUZLUCA	

Digital Circuits

Functionally Complete Sets of Logic Gates

A set of logic operations is said to be functionally complete, if any Boolean function can be expressed using only this set of operations.

- The set \{AND, OR, NOT\} is obviously functionally complete because AND, OR, and NOT are main operations that are defined in of the Boolean algebra. Any function can be expressed in sum-of-products (or product-of-sums) form, and a sum-of-products expression uses only the AND, OR, and NOT operations.
- Since the set of operations \{AND, OR, NOT\} is functionally complete, any set of logic gates which can realize \{AND, OR, NOT\} is also functionally complete.
- For example, \{AND, NOT\} is also a functionally complete set of gates because OR can be realized using only AND and NOT.
To prove it we can use De Morgan's theorem.
De Morgan's Theorem:
$\overline{\bar{X}} \cdot \bar{Y}=X+Y$

Since \{AND, NOT\} is functionally complete, we can express any Boolean function using only AND and NOT.

Universal Logic Gates

If a single gate forms a functionally complete set by itself, then any Boolean function can be realized using only gates of that type.
This type of a gate is called universal logic gate.

- The NAND gate is an example of such a gate.

Remember: the NAND gate performs the AND operation followed by inversion (AND-NOT).

- NOT, AND, and OR can be realized using only NAND gates.
- Thus, any Boolean function can be realized using only NAND gates.
- Similarly, the set consisting only of the binary operator NOR is also functionally complete.
- All other logic functions can be realized using only NOR gates.

NAND (and also NOR) gates are called universal logic gates.

http://akademi.itu.edu.tr/en/buzluca htto://www.buzluca.info		2011-2022	Feza BuzLuca	3.10

Digital Circuits

Proof of functional completeness

To prove that NAND and NOR operators are functionally complete, we have to show that AND, OR, NOT operations can be implemented using only NAND (or alternatively, NOR) gates.
NAND is denoted by symbol |
NOR is denoted by symbol \downarrow

	NAND	NOR
NOT:	$\begin{aligned} \mathrm{x}^{\prime} & =\mathrm{x} \mid \mathrm{x} \\ & =(\mathrm{x} \cdot \mathrm{x})^{\prime} \\ & =\mathrm{x}^{\prime} \end{aligned}$	$\begin{aligned} \mathrm{x}^{\prime} & =\mathrm{x} \downarrow \mathrm{x} \\ & =(\mathrm{x}+\mathrm{x})^{\prime} \\ & =\mathrm{x}^{\prime} \end{aligned}$
AND:	$\begin{aligned} x \cdot y & =\left((x \cdot y)^{\prime}\right)^{\prime} \quad \text { Involution } \\ & =(x \mid y)^{\prime} \end{aligned}$	$\begin{aligned} x \cdot y & =\left(x^{\prime}+y^{\prime}\right)^{\prime} \quad \text { de Morgan } \\ & =\left(x^{\prime} \downarrow y^{\prime}\right) \end{aligned}$
OR:	$x+y=\left(x^{\prime} \cdot y^{\prime}\right)^{\prime} \quad$ de Morgan $x+y=\left(x^{\prime} \mid y^{\prime}\right)$	$\begin{aligned} x+y & \left.=\left((x+y)^{\prime}\right)\right)^{\prime} \quad \text { Involution } \\ & =(x \downarrow y)^{\prime} \end{aligned}$
		€ 2011-2022 \quad Feza BUZLUCA $\quad 3.11$

Digital Circuits
Relation between NAND and NOR

- NAND - NOR Conversions
- de Morgan: 1. $A^{\prime} \cdot B^{\prime}=(A+B)^{\prime}$

2. $A^{\prime}+B^{\prime}=(A \cdot B)^{\prime}$
3. $\left(A^{\prime} \cdot B^{\prime}\right)^{\prime}=A+B$
4. $\left(A^{\prime}+B^{\prime}\right)^{\prime}=(A \cdot B)$

- These expressions show that,

1. An AND gate with inverted inputs is the equivalent of the NOR gate.
2. An OR gate with inverted inputs is the equivalent of the NAND gate.
3. A NAND gate with inverted inputs is the equivalent of the OR gate.
4. A NOR gate with inverted inputs is the equivalent of the AND gate.
5. $-\square \square$
$=\rightarrow 0-$
2.\equiv

http://akademi.itu.edu.tr/en/buzuluca/
6. $-0 \square-$
: $/ /$ mwwwbuzlucainfo
(c) (i) (9) 2011-2022 Feza BUZLUCA

Digital Circuits
Implementation using gates with limited number of inputs
Sometimes, it is necessary to implement products (or sums) with many literals using
gates that accept only 2 inputs (remember the integrated circuits in 3.4).
Example:
$\mathrm{Z}=\overline{\mathrm{A} B C}+\overline{\mathrm{A}} \overline{\mathrm{CD}}$
Implement this expression using only 2-input NAND Gates.
Solution 1:
1. Implementation with the classical gates of the Boolean algebra
2. Inserting NOT gates to obtain NAND gates (see 3.16).
hitp:///akademitu.edu.tr/en/buzlucal
htto//wwwibuzucainfo

