ommons.org/licenses/by-nc-nd/4.0/

Digital Circuits License: http:

Logic Gates
Logic gates are physical devices, which implement simple Boolean functions.
Some of the simple gates:

ANSIIEEE-1973 ANSI/IEEE-1984 Truth Table:

XY
BUFFER Y=X 'R
I
INVERTER (NOT) Y=X o1
X Y |Z
0 1 _8_
AND Z=X+Y 10 |0
1 1 1
X Y |Z
OR Z=X+Y OU 01 '?_
10 |1
111

http://akademi.itu.edu.tr/en/buzluca/
hitp://www.buzluca.info

@ @@@N 2011 - 2022 Feza BUZLUCA 3.1

Digital Circuits

Some of the simple gates (cont'd): i/ 1EpE 1973 ANSVIEEE-1984 Truth Table:

— X_ Y

NAND Z=XY) X X — 0 0
(NOT AND) Y z v & b-2 ? (1)
101

— X Y

X X~ 0 0

NOR Z=X+Y) vy z Y_lez 0 1
10

(NOT OR) 11
x 1 X Y

. X =1|-z 0 0

XOR (Difference) Z=X®Y —Z oy 0 1
Z = XY + XY — 1 0
101

X
XNOR (Equality) Z=XQOY é jD—Z v Z

Z=XY+XY

~aoolx
—o o<

http://akademi.itu.edu.tr/en/buzluca/
hitp://www.buzluca.info

l@ OO0 0112020 Feza BUZLUCA 32

Digital Circuits

Integrated Circuits - IC
Logic gates are manufactured in integrated circuit (IC) (chip) form.

Digital Circuits

Examples of 74xx Series

Often, a large number of mixed logic gates are packaged in a single integrated circuit 7400 7502 7404 7408 7410
For example, an ULSI (Ultra large-scale integration) chip can include more than gl ves[]ue 1] ves[]u '[::? vee[]w 1] ves[Jua 4[] vee[]us
100,000 gates. 2[j e =[] O =[] E:] " 2[@ Je [e
ICs, themselves, come in different types of packages. :E @% - jE %:T jE::? %: :E @% N jE %::
Dual in-line Package (DIP) ICs 5[@ Ho 5[@ Ho <[] ::? E:] © 3[@ o o] Hu
of] Mo off Oe e[i::jo of] @]g o[} 0e
7[Jawo e 7[|ewo le 7[]own {1e 7[]em e 7[]ewe {]s
7411 7420 7421 T430 7432
[vee[]1e 1[] vee[J1e 1] vee[J1e 4[] ves[]te 1] vee[]
2] Do 2] Mo 2 N =[] Oe =[] Do
5] N o Ne 3[_‘ Me e[N af) @jﬁg
<[N o[it a[J_‘ Ov [N o[} i
Hi Mo s[] N s} N [Do s[@ N
e[e e[e e[e e[D <0 @]*
7o Ne +[ow Ne 7[en Ne o[He [few 0e
f You may find necessary information about ICs in their datasheet catalogs.
ttp/akadarmi. fu.od.tren/buzluce/ @ DO 2011202 FezaBUZLUCA 33 fttpdiakademi.tu. edur/en/buzlucal (OO 20112022 FeraBUzLUCA 34
Digital Circuits Digital Circuits
Positive and Negative Logic Implementation of Boolean Functions Using Logic Gates
Boolean values (zero and one) represent physical quantities such as voltage or ABC
state of an entity (door is open, light is off). | 1]
Assighing "1" to high value, and "0" to low value is called positive logic, and = Sum of Products (SOP) =
assigning "0" to high value, and "1" to low value is called negative logic. = AND gates implement the products.
Example: = OR gate implements the sum. W
Function table of a physical device with 2 inputs and one output is shown below. -
If we use the positive logic, the device can be implemented with an AND gate.
In negative logic system, the device is implemented with an OR gate.
Physical Device Positive Logic Negative Logic = Product of Sums (PoS)]
Inputs: Output: Inputs: Output: Inputs: Output: * OR gates implement the sums. =
x1 x2 z x1 x2 z x1 x2 z = AND gate implements the product.
L L L 0 0 0 1 1 1 .
L H L 0 1 0 1 0 1
H L L 1 0 0 0 1 1
H H H 1 1 1 0 0 0 NOT gates can be also used where necessary.
::EE//;k;ﬁehrlr:‘\.Iilk:::?:'.r(‘r/en/buzluca/ @ DB 20112000 Feza BUZLUCA a5 http://akadenmi.tu.edu.tr/en/buzluca/ l@ @OG)| 2011-202 Feza BUZLUCA 36

hito:/www buzluca infg

Exumplz: Implementation of a Boolean Function represented (given) by truth table]

A B C|F_

AL FAB.0 2013867 1. caronical form
0 1 o0lo =[AB'C + ABC + AB'C + ABC' + ABC| = F1

0 1 1|1 =AB+C| =F2 (minimized)

} 8 ? ? F(A, B, C)= MM(0,2.4) 2. canonical form
11 01 =[(A+B+C)(A+B +C) (A +B+C)=F3
11,1 |1 =(A+C)(B+C)=F4 (minimized)

Digital Circuits License: https://creativec org/lic -nd/4.0/

A T
1
il .
L
B
LD] F1 1. canonical form (SoP)
|
c
L :
D®‘

F2 minimized (SoP)

2. canonical form (PoS)

h)
J
)
) F3
A]
i

; .
%DFA minimized (PoS)
)

Impl tation of Bool

P

Functions Using Logic Gates (cont'd)

There are many ways fo express a Boolean function. We implement each one using
different logic gates.

Example: Z=A"+B'+(C+D) = (A'+(B'+(C+D))) (Associative Law)
A g z
B—]> z = B B'(C+D)
¢ 8 C+D

3-input gate Only 2-input gates

Sometimes, it is necessary to manipulate logic expressions of functions based on
the types of available gates (for example, if we have only 2-input AND gates).
Reduction of logic equations is still necessary in order to fit the equations into a
small number of ICs.

http://akademi.itu.edu.tr/en/buzluca/
hitp://www.buzluca.info

l@ (Ds@l 2011 - 2022 Feza BUZLUCA 38

Digital Circuits

Functionally Complete Sets of Logic Gates
A set of logic operations is said to be functionally complete, if any Boolean
function can be expressed using only this set of operations.

+ The set {AND, OR, NOT} is obviously functionally complete because AND, OR,
and NOT are main operations that are defined in of the Boolean algebra.

Any function can be expressed in sum-of-products (or product-of-sums) form,
and a sum-of-products expression uses only the AND, OR, and NOT operations.

Since the set of operations {AND, OR, NOT} is functionally complete, any set
of logic gates which can realize {AND, OR, NOT} is also functionally complete.

For example, {AND, NOT} is also a functionally complete set of gates because
OR can be realized using only AND and NOT.

To prove it we can use De Morgan's theorem.

De Morgan's Theorem: =

X X X7 _— x
n o
)4
v >
Since {AND, NOT} is functionally complete, we can express any Boolean function
using only AND and NOT.

http://akademi.itu.edu.tr/en/buzluca/
hito//www.buzluca.info

X-Y=X+Y

@ ©@@1 2011 - 2022 Feza BUZLUCA 3.9

Digital Circuits

Universal Logic Gates

If asingle gate forms a functionally complete set by itself, then any Boolean
function can be realized using only gates of that type.

This type of a gate is called universal logic gate.

+ The NAND gate is an example of such a gate.
Remember: the NAND gate performs the AND operation followed by inversion
(AND-NOT).

+ NOT, AND, and OR can be realized using only NAND gates.

+ Thus, any Boolean function can be realized using only NAND gates.

Similarly, the set consisting only of the binary operator NOR is also
functionally complete.

.

All other logic functions can be realized using only NOR gates.

NAND (and also NOR) gates are called universal logic gates.

http://akademi.itu.edu.tr/en/buzluca/
hitp://www.buzluca.info

l@ (Ds@I 2011 - 2022 Feza BUZLUCA 3.10

Digital Circuits

Proof of functional completeness

To prove that NAND and NOR operators are functionally complete , we have to
show that AND, OR, NOT operations can be implemented using only NAND (or
alternatively, NOR) gates.

NAND is denoted by symbol |

NOR is denoted by symbol |

NAND NOR
= x| x X'=x1Xx
NOT: — (xx)' X@wx = (e x—_ X
=X =X
AND: | xy=((xy))" Involution xy= (&T);)) de Morgan

=1y

OR: x+y = (xy')" de Morgan x+y = ((x+y)")" Involution
x+y = (X']y) =(xLy)

@ ®®®‘ 2011 - 2022 Feza BUZLUCA 3.1

http://akademi.itu.edu.tr/en/buzluca/
hitp:/fwww buzluca infg

Digital Circuits

Relation between NAND and NOR

= NAND - NOR Conversions
= de Morgan: 1. A-B'=(A+B)

2. A+B'=(A-B)

3. (A'*B)=A+B

4. (A'+B)'=(A*B)

= These expressions show that,
1. An AND gate with inverted inputs is the equivalent of the NOR gate.
2. An OR gate with inverted inputs is the equivalent of the NAND gate.
3. ANAND gate with inverted inputs is the equivalent of the OR gate.
4. A NOR gate with inverted inputs is the equivalent of the AND gate.

A= > 1=
2. :D— D— 4. ZD D—

http:/akademi.itu.edu.tr/en/buzluca/ (@OOO| 20112022 Foza BUZLUCA 312

hito:/www buzluca infg

Digital Circuits License: http: »mmons.org/licenses/by-nc-nd/4.0/

Implementation of Boolean functions using only NAND (NOR) gates
There are four different combinations:
1. Expression in SOP form, implementation using NAND gates
2. Expression in SOP form, implementation using NOR gates
3. Expression in POS form, implementation using NOR gates
4. Expression in POS form, implementation using NAND gates

1.Implementation of Boolean functions in the SOP form using only NAND gates

Shortcut: If we add NOT gates to the outputs of AND gates and to the inputs of
the OR gates, we obtain NAND gates. (See 3.12 - 2)

If we always add inverters in pairs (NOT-NOT), the function realized by the circuit
will not change. (a")' = a (Involution)

Example: Z=(A+B)+(C+D)

]

NAND (See. 3.12)

Digital Circuits

Example (cont'd):
Solution using algebraic conversion:

Expression is inverted twice. (Z')' = Z (Involution)
Z=(A*B)+(C+D) (SoP form)
[((AB)+(C-D))'T
=[(A+B) «(C-D)' I

=(A|B)[(CID)

(De Morgan)
(only NAND gates)

Algebraic verification:

A A
B B

:
b

A« B) +(C +D)] Expression using NANDs (circuit on the right)

1
= (A+B) +(C+D)v Expression of the circuit on left

D D

ftipsekeadami tu edu tfenbuzluce/ (@O8G] 0112022 FerabuzCA 313 tpz/akadem.itu.edu.tren/ouzluca/ (OO 20112022 FeraBUzLICA 314
Digital Circuits Digital Circuits

Implementation using gates with limited number of inputs Example (cont'd):

Sometimes, it is necessary to implement products (or sums) with many literals using Solution 1:

gates that accept only 2 inputs (remember the integrated circuits in 3.4). 3. Implementation with 2-input NAND gates

Example: A BC D

Z=ABC + ACD |‘E[)>

Implement this expression using only 2-input NAND Gates. |

Solution 1:

1. Implementation with the classical gates of the Boolean algebra z

! Extra NOT gates are necessary (see 3.16). |

A ABC CcD

Foq | [

2. Inserting NOT gates to obtain NAND gates

http://akademi.itu.edu.tr/en/buzluca/
hito//www.buzluca.info

@ ©@@1 2011 - 2022 Feza BUZLUCA 3.15

Solution 2:
Manipulating the original expression to obtain a simpler circuit

Z=ABC +ACD = A(BC + CD)

A B C D { The circuit in solution 2 is

i cheaper fo implement than
¢ -!:[)o—z i the circuit in solution 1.

: Therefore solution 2 is
i preferable to solution 1.

— (BC + CD)

http://akademi.itu.edu.tr/en/buzluca/
hitp://www.buzluca.info

l@ (Ds@I 2011 - 2022 Feza BUZLUCA 3.16

Digital Circuits

2. Implementation of Boolean functions in the SOP form using only NOR gates
In this case, we obtain a more complicated circuit than case 1 (SOP using NAND).

Example: Z=(A+B)+(C+D) Q
z
c
D
1 Step: 2. Step:

Converting AND to NOR. Converting OR to NOR

N Remember: We can ™ .
H > > ! implement NOT gates 4@ X
(@) = a (Involution) using NOR gates.

[@ G)@@‘ 2011 - 2022 Feza BUZLUCA 3.17

http://akademi.itu.edu.tr/en/buzluca/
hitp:/fwww buzluca infg

Digital Circuits

3. Implementation of Boolean functions in the POS form using only NOR gates
For the expressions in the POS form, using NOR gates is advantageous.
Shortcut :

If we add NOT gates to the outputs of OR gates, and to the inputs of the AND
gates, we obtain NOR gates. (See 3.12 -1)

Remember: If we always add inverters in pairs, the function realized by the
circuit will not change. (a')' = a (Involution)

Example: Z=(A+B)+(C+D)

A A
B B

z z
Cc C
D D — b
A i
B— NOR (See. 3.12)
z
C
D —
http:/akademi.itu.edu.tr/en/buzluca/ (@OOO| 20112022 Foza BUZLUCA 318

hito:/www buzluca infg

Digital Circuits

License: http:

ommons.org/licenses/by-nc-nd/4.0/
4. Implementation of Boolean functions in the POS form using only NAND gates
In this case, we obtain a more complicated circuit than case 3 (POS using NOR).

A
Example: Z=(A+B)+ (C + D) B :D

z
c
iy
1. Step: 2. Step:
Converting OR to NAND Converting AND to NAND
s
; |
Z
C o

Remember: We can x'
implement NOT gates

using NAND gates.
http:/akadeni.itu.edu.trfen/buzluca/

hito://www.buzluca.info @ ©@@W 2011 - 2022 Feza BUZLUCA

3.19

