

Digital Circuits
Advantages of Digital Systems:
Because of their advantages over the old analog systems, digital systems are used in many areas today.
Examples: Photography, video, audio, automobile engines, telephone systems, and so on.
Advantages of Digital Systems:
 The mathematics of digital design (Boolean algebra) is more straightforward than the mathematics of analog systems.
 Digital systems are easier to test and debug.
 Digital systems are flexible and programmable. Today, digital systems are implemented in the form of programmable logic devices and computers (embedded systems).
This way, devices can be reprogrammed according to new requirements without changing the hardware.
 Digital data can be stored and processed in computer systems.
 Digital systems work faster.
• Digital systems continue to evolve (but improvements are slowing down).
See the BLG 322E- Computer Architecture lecture notes.
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 – 2023 Feza BUZLUCA 1.5

Digital Circuits		
Digital Coding (cont'd):		
Using n bits (<u>b</u> inary dig <u>it</u> s), 2 ⁿ different "things" can be represented.		
n bits $ ightarrow$ 2° different "things"		
For example, an 8-bit (<i>binary digit</i>) binary number can represent 2 ⁸ (256) different "things".		
These can be 256 different colors, 256 symbols, integers between 0 and 255, integers from 1 to 256, or integers between -128 and +127.		
00000000, 00000001, 00000010, , 11111101, 11111110, 1111111.		
There are different coding systems (methods) for different types of data.		
The meaning of a binary value (for example, 10001101) is determined by the system (hardware or software) that processes this number.		
This value may represent a number, a color, or another type of data.		
The coding of numbers is especially important.		
Therefore, in this course, we will give some basic information about the coding methods of numbers.		
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 - 2023 Feza BUZLUCA 1.8		

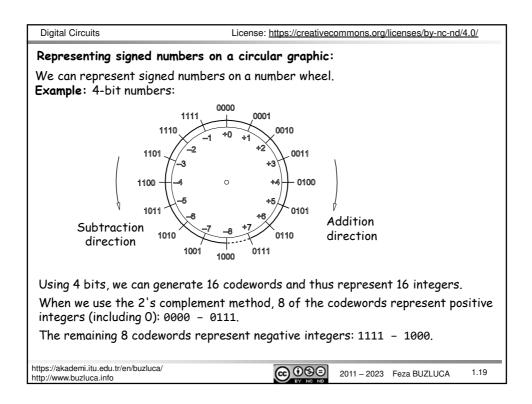
Digital Circuit	S			
BCD (Bind	ary Coded D	ecimal) Co	ding System:	
Each decim	al number bet	ween 0 and	9 is represented	l by a four-bit pattern.
Natura	d BCD:			
Number:	BCD Code:	Number:	BCD Code:	
0:	0000	5:	0101	F ormula (
1:	0001	6:	0110	Example: Number: 8 0 5
2:	0010	. 7:	0111	
3:	0011	8:	1000	BCD :1000 0000 0101
4:	0100	9:	1001	
		- •	alues can be ci	reated, but only 10 of
	•		c operations on ms do not use B	BCD numbers. CD coding to represent
https://akademi.itu http://www.buzluca	u.edu.tr/en/buzluca/ a.info			2011 – 2023 Feza BUZLUCA 1.9

Digital Circuits
Positional (weighted) Coding:
Each digit of the number has an associated weight.
Natural Binary Coding: Numbers are represented using positional (weighted) coding in binary (base-2).
Example: (unsigned) 11010 = 1.24 + 1.23 + 0.22 + 1.21 + 0.20 = 26
The leftmost bit is called the Most Significant Bit - MSB (high-order).
The rightmost bit is called the Least Significant Bit - LSB (low-order).
In today's computers, natural binary coding is used to represent numbers.
Hamming distance: The Hamming distance between two n-bit long code words is the number of bit positions at which the corresponding bits are different.
Example: Hamming distance between 011 and 101 is 2.
Richard Wesley Hamming (1915-1998) Mathematician, USA
Adjacent Codes: Between each pair of successive code words, the Hamming distance is 1 (only one bit changes).
In addition, if the Hamming distance between the first and last code words is 1, then this code is called cyclic (circular).
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 – 2023 Feza BUZLUCA 1.10

Example	A CYCIIC BCD CO	de (different from	natural BCD !)	
Number:	Code:	Number:	Code:	
0:	0000 🔨	5:	1110	
1:	0001	6:	1010	
2:	0011	7:	1000	
3:	0010	8:	1100	
	0110	9:	0100	
	: A binary (base)		nd cyclic (also adjacent)	coding
Gray Code system the	: A binary (base) t represents 2 ⁿ e	2), nonredundant, a lements is called a	nd cyclic (also adjacent)	coding
Gray Code system the Example	: A binary (base) t represents 2 ⁿ e A 2-bit Gray coo	2), nonredundant, a lements is called a	nd cyclic (also adjacent)	coding
Gray Code system tha Example Num.:	: A binary (base i t represents 2 ⁿ e A 2-bit Gray coo Code: A 4 - T	2), nonredundant, a lements is called a le: he patent of the G	nd cyclic (also adjacent) Gray code . ray Code was issued to ph	ysicist
Gray Code system the Example	: A binary (base i t represents 2 ⁿ e A 2-bit Gray coo Code: A 4 - T	2), nonredundant, a lements is called a le: he patent of the G	nd cyclic (also adjacent) Gray code .	ysicist
Gray Code system tha Example Num.: 0:	: A binary (base) t represents 2 ⁿ e A 2-bit Gray coo Code: 00 ← F	2), nonredundant, a lements is called a le: he patent of the G	nd cyclic (also adjacent) Gray code . ray Code was issued to ph	ysicist

Digital Circuits
Representation of Numbers in Digital Systems (and Computers)
In this course, we will deal with <i>integers</i> .
Representation of the <i>floating point</i> numbers will be covered in the Computer Architecture course (See: https://web.itu.edu.tr/buzluca/course.html).
Before coding the numbers, we must decide what type of numbers (unsigned or signed) we will work with.
This is because unsigned and signed numbers are encoded and represented differently.
Representation of <u>Unsigned</u> Numbers (Integers):
In computers, unsigned integers are represented using "natural binary weighted (positional) coding".
n-bit unsigned binary integer: $a_{n-1} a_{n-2} \dots a_2 a_1 a_0, a_i \in B=\{0,1\}$
a _{n-1} : High-order bit "Most Significant Bit - MSB"
a ₀ : Low-order bit " <i>Least Significant Bit - LSB"</i>
Converting binary to decimal:
Decimal value = $a_{n-1} \cdot 2^{n-1} + a_{n-2} \cdot 2^{n-2} + \ldots + a_2 \cdot 2^2 + a_1 \cdot 2^1 + a_0 \cdot 2^0$ weights
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 - 2023 Feza BUZLUCA 1.12

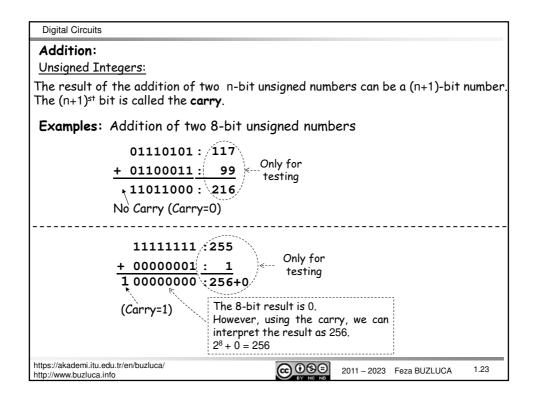
Digital Circuits	License: https://creativecommons.org/licenses/by-nc-nd/4.0/
Representation of <u>Unsig</u>e Example: 8-bit unsigned	
$(1101\ 0111)_2 = 1.2^7 + 1.2^7$	$2^{6} + 0.2^{5} + 1.2^{4} + 0.2^{3} + 1.2^{2} + 1.2^{1} + 1.2^{0} = 215_{10}$
Converting decimal to bi Example: 215 ₁₀	nary:
215/2 = 107 remainder 1 107/2 = 53 remainder 1 53/2 = 26 remainder 1 26/2 = 13 remainder 0 13/2 = 6 remainder 1 6/2 = 3 remainder 0 3/2 = 1 remainder 1	
1/2 = 0 remainder 1	(high-order bit "Most Significant Bit – MSB") first (leftmost) bit
Example: For n=8, largest unsigned	eger that can be represented with n bits: $2^n - 1$ l integer is 1111 1111 ₂ = 255 ₁₀ teger that can be represented with 8 bits: 0
https://akademi.itu.edu.tr/en/buzluca/	
http://www.buzluca.info	COUNT OF THE REPORT OF THE REP


Digital Circuits
Representation of <u>Signed</u> Numbers (Integers):
The (high-order) most significant bit denotes the sign of the number.
 Positive numbers start with a "0", Negative numbers start with a "1".
Positive integers:
In computers, positive integers are represented (like unsigned integers) using "natural binary weighted (positional) coding".
Remember: Positive binary numbers must start with 0.
Examples of Positive Numbers: 8-bit $+5_{10}$: 0000 0101 8-bit $+100_{10}$: 0110 0100 4-bit $+5_{10}$: 0101 4-bit $+7_{10}$: 0111
The range of positive signed integers that can be represented with n bits:
0000 to 0111 (n bits) (Decimal: 0 to + 2 ⁿ⁻¹ – 1)
Example: n=8
The range of positive signed integers that can be represented with 8 bits:
0000 0000 to 0111 1111 (Decimal: 0 to +127)
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 – 2023 Feza BUZLUCA 1.14

Digital Circuits		
Negative integers:		
Negative integers are represented using 2's complement.		
In this representation, negative integers are represented by the 2's complement of the positive number (absolute value).		
To obtain the 2's complement:		
 First, invert (1's complement) the number. Change 0 to 1, 1 to 0. Then, add 1 to the inverted number. 		
2's complement o	$f(A) = \overline{A} + 1$	\overline{A} denotes 1's complement of A.
The 2's complement representation makes adding or subtracting two numbers easy without sign and magnitude checks.		
This coding system makes it possible to perform subtraction using circuitry designed only for addition (we will see adder and subtracter circuits).		
Thus, it simplifies the design of digital circuits for arithmetic operations.		
Examples of Nega	tive Numbers:	
4-bit +7 ₁₀	:0111	8-bit +6 ₁₀ : 0 000 0110
1's complement	: 1000	1's complement : 1111 1001
Add 1	: <u>+ 1</u>	Add 1 : <u>+ 1</u>
Result -7 ₁₀	: 1 001	Result -6 ₁₀ : 1 111 1010
https://akademi.itu.edu.tr/en/buzluc http://www.buzluca.info	a/	2011 - 2023 Feza BUZLUCA 1.15

Digital Circuits		
2's complement sys	tem (cont'd):	
	lement of a number change lement of a negative numbe	s the sign of the number. er makes it positive (see 1.17 for
2's complement oper positive \rightarrow negative \rightarrow	negative It will be updated	on slide 1.18.
Example: Making a 8-bit -6 ₁₀ 1's complement Add 1 Result: +6 ₁₀	negative number positive : : 1 111 1010 : 0000 0101 : <u>+ 1</u> : 0 000 0110	Examine the programs integer_interpret_8.cpp and integer_interpret_16.cpp
1000 to 1 Example: n=8 The range of negativ	111 (n bits) Decimal: (–	be represented with 8 bits:
https://akademi.itu.edu.tr/en/buzluc http://www.buzluca.info	·····	SO NO NO 2011 - 2023 Feza BUZLUCA 1.16

Digital Circuits		
Special cases in 2's cor	nplement representation	
The negative integer with t a special case in 2's compler	the largest absolute value (-8 in t ment representation.	the case of 4 bits) is
Remember: Using n bits, we	e can represent signed decimal nu	mbers between
-2 ⁿ⁻¹ and	+($2^{n-1}-1$).	
For example, using 4 bits, w	ve can represent signed decimal n	umbers between
-8 and	d +7.	
The number -8 can be repre	esented with 4 bits: -8 = 1000.	
However, +8 cannot be rep	resented with 4 bits.	
	ement of 1000 (-8) to obtain +8 positive number because it starts	
4-bit -8 ₁₀	: 1000	
1's complement Add 1	: 0111	
Result: ?	: <u>+ 1</u> : 1000 <	
	. 2000	and the second sec
	ent of 4-bit "-8", we find its 4-bit	magnitude (unsigned),
i.e., 1000 = (unsigned) 8 (spec	cial case tor 4 bits).	
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	COSC 2011 - 202	23 Feza BUZLUCA 1.17


Digital Circuits			
Special cases in 2's complement representation (cont'd)			
To obtain the 2's complement 4-bit binary number for the decimal number -8, we also start with the 4-bit magnitude (unsigned absolute value) of 8.			
We start with the unsigned absolute value of 8. Its UNSIGNED 4-bit binary number equivalent is 1000.			
8 (4-bit magnitude) : 1000 1's complement : 0111 Add 1 : <u>+ 1</u> Result: -8 (4-bit) : 1000			
Based on this information we can update the explanation about the 2's complement operation (given in slide 1.16) as follows:			
2's complement operation:			
unsigned magnitude $ ightarrow$ negative negative $ ightarrow$ unsigned magnitude			
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 – 2023 Feza BUZLUCA 1.18			

Digital Circuits	
Extension (Sign Extension) of	Binary Numbers
In digital systems, a certain number binary numbers, e.g., 16 bits, 32 bits	of bits (memory locations) are allocated for , etc.
bits than necessary (for example,	•
	rate on two numbers of different lengths.
In such cases, the shorter number is	s extended (word length is increased).
For example, extension from 4 bits	to 8 bits or from 8 bits to 16 bits.
The extension operation is different	for unsigned and signed numbers.
Unsigned Numbers: The high-order	part of the binary number is filled with "0"s.
Example: 4-bit 3 ₁₀ = 0011	8-bit 3 ₁₀ = 0000 0011
Example: 4-bit 9 ₁₀ = 1001	8-bit 9 ₁₀ = 0000 1001
Signed Numbers: The high-order po value of the sign bit. This operation	rt of the binary number is filled with the is called sign extension .
Example: 4-bit +3 ₁₀ = 0011	8-bit +3 ₁₀ = 0000 0011
Example: 4-bit -7 ₁₀ = 1001	8-bit -7 ₁₀ = 1111 1001
Example: 4-bit -1 ₁₀ = 1111	8-bit -1 ₁₀ = 1111 1111
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011 – 2023 Feza BUZLUCA 1.20

Digital Circuits			
Hexadecimal (Base-16) Numbers	Decimal	Binary	Hex.
Binary numbers are necessary because digital circuits	0	0000	0
can directly process binary values.	1	0001	1
However, it is difficult for humans to work with large	2	0010	2
numbers of bits in even relatively small binary	3	0011	3
numbers. (Example: 1110010001011010)	4	0100	4
Therefore, for documentation (to write and read easily), <i>hexadecimal</i> (base-16) numbers are used.	5	0101	5
	6	0110	6
Converting from binary to hexadecimal is easy:	7	0111	7
 Each hex. digit maps to 4 bits. See the table. Separate binary number into groups of 4 bits. 	8	1000	8
 Find the single hexadecimal digit that corresponds 	9	1001	9
to each group of 4 bits.	10	1010	Α
Example:	11	1011	В
$01011101_2 = 0101 \ 1101 \ (Binary)$	12	1100	С
= 5 D (Hexadecimal)	13	1101	D
Example:	14	1110	Е
$\$87 = 1000 \ 0111_2$	15	1111	F
Hexadecimal → Binary			
To express hexadecimal numbers, the symbols \$ and h a	are usually	used.	
Example: \$5D , \$87 or 5Dh , 87h.			
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011 – 2023 F	eza BUZLUCA	1.21

Addition and Subtraction Operations in Digital S	System	IS	
In computers, the Arithmetic Logic Unit (ALU) performs the in operations.	nteger	arithm	etic
As an advantage of 2's complement representation, integer ad subtraction operations are performed on unsigned and signed r way.			e sam
However, the result is interpreted differently for unsigned an	d signe	d numb	oers.
Defense en energetion en numbere ef different longthe e gion es	tension	is nec	essa
Before an operation on numbers of different lengths, a sign ex	1013101		
Before an operation on numbers of different lengths, a sign ex Remember: The extension operations are different for unsigne numbers.			
Remember: The extension operations are different for unsigne			
Remember: The extension operations are different for unsigne numbers. Addition: The result of the addition of two bits (a and b) is a 2-bit	ed and s	igned Carry	•
Remember: The extension operations are different for unsigne numbers. Addition: The result of the addition of two bits (a and b) is a 2-bit number.	ed and s $\boxed{\frac{a \ b}{0+0}}$	igned Carry 0	<u>' Sun</u> 0
Remember: The extension operations are different for unsigne numbers. Addition: The result of the addition of two bits (a and b) is a 2-bit number. The LSB of the result is the 1-bit sum, and the MSB is the	and s <u>a b</u> 0+0 0+1	igned <u>Carry</u> 0 0	•
Remember: The extension operations are different for unsigne numbers. Addition: The result of the addition of two bits (a and b) is a 2-bit number.	a d and s a b 0+0 0+1 1+0	igned Carry 0	•

Digital Circuits
Addition:
Signed Integers:
 The operation is performed as with unsigned numbers, but the result is interpreted differently.
• As an advantage of 2's complement representation, adding 2's-complement numbers requires no special processing even if the operands have opposite signs.
• If an $(n+1)^{st}$ bit arises as a result of adding two n-bit signed numbers, this bit is ignored.
Examples: Addition of 8-bit signed numbers
11111111 : -1 11111111 : -1
+ 00000001 : +1 $+ 11111111 : -1$
100000000 : 0 111111110 : -2
Ignored Sign (+) Ignored Sign (-)
Attention:
• While working with n-bit numbers, the sign bit is always the most significant bit
(counting from right to left), i.e., the n th bit, not the (n+1) st one.
 The (n+1)st bit is the carry bit.
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 - 2023 Feza BUZLUCA 1.24

Digital Circuits	License: httr	os://creativecommons.org/licenses/by-nc-nd/4.0/	
		stretativesonmens.org/licenses/by ne hart.or	
Overflow (signed i	integers):		
	dition of n-bit signed n (greater than n bits).	umbers can be too large for the binary	
	oits, we can represent f this range, an overfl a	signed numbers between -128 and +127. ww occurs.	
The existence of ove the operands and the		n be detected by checking the signs of	
In an addition operat	ion, overflow can occur	r in two cases:	
positive + positive \rightarrow negative and negative + negative \rightarrow positive			
Examples:			
01111111:+127	1	1000000:-128	
+ 00000010: +2	2	<u>+ 11111111: -1</u>	
10000001: Cannot be represented 101111111: Cannot be represented		101111111: Cannot be represented	
Both operands are positive. Both operands are negative.		Both operands are negative.	
The result is negative. The result is positive.		The result is positive.	
There is an overflow . There is an overflow .		There is an overflow .	
Note: (n+1) st bit is ze	ero.	Note: (n+1) st bit is one.	
It is ignored.	Examine the program	It is ignored.	
https://akademi.itu.edu.tr/en/buzluc http://www.buzluca.info	integer_overflow.cpp	2011 – 2023 Feza BUZLUCA 1.25	

Digital Circuits	
Subtraction:	
 Computers usually use the method of complements to implement subtraction. 2's complement of the second operand is added to the first number. 	•
A - B = A + (-B)	
$= A + 2's \ complement \ (B)$	
$= A + \overline{B} + 1$	
So, only one addition circuit is sufficient to perform both addition and subtraction (benefit of 2's complement system).	
In Section 5, we will cover addition and subtraction circuits.	
Like addition, subtraction operations are performed on unsigned and signed numbers in the same way (because of 2's complement representation). However, the interpretation of the result is different for unsigned and signed numbers.	
https://akademi.itu.edu.tr/en/buzluca/	26

Digital Circuits
Subtraction (cont'd):
<u>Unsigned Integers:</u>
If the result of subtracting two n-bit unsigned numbers, performed using 2 's complement, is a $(n+1)$ -bit number (there is a carry), then there is <u>no</u> borrow, and the result is valid.
If the $(n+1)^{st}$ bit of the result is zero (no carry), the first operand is smaller than the second, and there is a borrow .
Carry = 1 $ ightarrow$ no borrow Carry = 0 $ ightarrow$ borrow
Examples: Subtraction of 8-bit unsigned numbers 00000101: 5 - 00000001: 1 2's complement + 1111111:-1 > 100000100: 4 Carry=1: No Borrow
00000001: 1 <u>- 00000101: 5</u> <u>2's complement</u> + 11111011:-5 >011111100: Cannot be represented No Carry: Borrow
ttps://akademi.itu.edu.tr/en/buzluca/ ttp://www.buzluca.info 2011 – 2023 Feza BUZLUCA 1.27

Digital Circuits	
Subtraction (cont'd):	
Signed Integers:	
Subtraction on signed integers is also performed using 2	e's complement.
The carry bit is ignored. Example: 00000101: +5 00000101: +5	To determine its decimal equivalent, we take its 2's complement first
<u>- 00001100:+12</u> <u>2's complement</u> + 11110100:-12 11111001: 2's Sign 1, result: n	comp.:00000111:-7
Overflow: Just as in addition, an overflow can occur in s numbers. In subtraction, overflow can occur in two cases	
$\text{pos.}-\text{neg.} \rightarrow \text{neg.} \qquad \text{and} \qquad \text{neg.}-\text{pos.}$	\rightarrow pos.
Example:	
$\begin{array}{c} 11111101: -3 \\ - 01111111:+127 \end{array} \xrightarrow{2's \ complement} 11111101 \\ + 10000001 \\ \hline \end{array}$	L:-127
Neg pos. = pos. \Rightarrow Overflow Sign: 0 , resu): cannot be represented t: positive.
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 201	11 – 2023 Feza BUZLUCA 1.28

Digital Circuits			
Comparing in The subtract	tegers: ion operation is use	ed to compare	two integers.
After the op checked.	eration R = A - B , r	elated flags (s	status bits: carry, overflow) are
Unsigned Int	egers:		
Result (R)	Carry , Borrow	Comparison	
=0	X (not important)	A=B	
≠0	Carry = 1, NO	A>B	
≠0	Carry = 0, YES	A <b< td=""><td></td></b<>	
Signed Integ	gers:		
Result (R)	Overflow	Comparison	
=0	X (not important)	A=B	
Positive, ≠0	NO	A>B	
Negative	NO	A <b< td=""><td>]</td></b<>]
Positive	YES <	A <b< td=""><td>Because of overflow, the sign of the result is not</td></b<>	Because of overflow, the sign of the result is not
Negative	YES	A>B	correct.
https://akademi.itu.edu.tr/e http://www.buzluca.info	en/buzluca/		30 2011 - 2023 Feza BUZLUCA 1.29

Digital Circuits			
Summary of Carry, Borrow, Overflow			
Carry: It can occur in the addition of <u>unsigned</u> numbers.			
It indicates that the result cannot be represented with n bits, and an $(n\!+\!1)^{st}$ bit is necessary.			
Borrow: It can occur in the subtraction of <u>unsigned</u> numbers (A - B).			
It indicates that the first number (A) is smaller than the second one (B, the number being subtracted), i.e., $A < B$.			
The result cannot be represented with unsigned numbers.			
If the result of the subtraction using 2's complement is an n-bit number (no carry) then there is a borrow, and the result is invalid.			
Overflow: It can occur only on signed numbers in addition and subtraction operations.			
It indicates that the result cannot be represented with n bits.			
Overflow can be detected by checking the signs of operands and the result.			
There is an overflow in the following cases:			
pos. + pos. \rightarrow neg. pos neg. \rightarrow neg.			
neg. + neg. \rightarrow pos. neg pos. \rightarrow pos.			
https://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 – 2023 Feza BUZLUCA 1.30			

		Carry, Borrow, Ove		
	Unsigned		Signed	
Event	Carry	Borrow	Overflow	
Affected Operation	Addition n-bit integers	Subtraction n-bit integers	Addition/Subtraction n-bit integers	
Meaning	The result cannot be represented with n bits. Carry can be used to interpret the result.	A < B, The result cannot be represented with unsigned numbers.	The result cannot be represented with n bits. The sign of the result is inverted.	
Detection	(n+1)st bit of the result is 1. Carry = 1	If the result is an n-bit number (Carry=0), there is a borrow, and the result is invalid.	Check the signs of operand and the result pos. + pos> neg. pos neg> neg. neg. + neg> pos. neg pos> pos.	