
Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.12011 – 2023 Feza BUZLUCA

DIGITAL CIRCUITS

Assoc.Prof. Feza BUZLUCA

Istanbul Technical University

Computer Engineering Department

https://akademi.itu.edu.tr/en/buzluca/
https://www.buzluca.info

This work is licensed under a Creative Commons Attribution 4.0 License.
License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.22011 – 2023 Feza BUZLUCA

Connection between hardware-based courses
in the İTÜ Computer Engineering Department

Digital Circuits
Logic Circuits

Lab.

Microprocessor
Systems and Lab.

Computer
Organization

Computer
Architecture

Introduction to
Electronics

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.32011 – 2023 Feza BUZLUCA

Where are digital circuits used?

Today, almost every electronic device is implemented as a digital circuit.

Examples:

• Central processing unit (CPU): It is a "synchronous sequential" circuit.
We will see sequential digital circuits in the second part of this course.

• Computer memory: We will see flip-flops and latches, which are digital
circuits and building blocks of memory.

• Home electronics: TV, washing machine control unit, video and audio devices.

• Cars: ABS, engine control

• Cell phones

https://upload.wikimedia.org/
wikipedia/commons/a/a3/AM
D_Ryzen_9_7900X.jpg

https://newsroom.intel.de/news-
releases/https://semiconductor.samsung.com/

dram/module/

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.42011 – 2023 Feza BUZLUCA

Analog – Digital Signals:
In the real world (where we live), many physical quantities (current, voltage,
temperature, light intensity, weight of a person, etc.) vary over a continuous range.
These types of signals, which can take any possible value between the limits of
such a range, are called analog signals.
An analog signal has a theoretically infinite resolution.
A binary digital signal may at any moment take on only one of two possible values :

0 - 1, high - low, on - off, true - false, open - closed.

t
Time

V
Voltage

Analog Signal (continuous)

t

V

One-bit Binary Digital Signal (discrete)

H

L

To represent an analog signal, more than one bit is necessary (see coding).

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.52011 – 2023 Feza BUZLUCA

Advantages of Digital Systems:

Because of their advantages over the old analog systems, digital systems are used
in many areas today.
Examples: Photography, video, audio, automobile engines, telephone systems, and
so on.
Advantages of Digital Systems:

• The mathematics of digital design (Boolean algebra) is more straightforward
than the mathematics of analog systems.

• Digital systems are easier to test and debug.
• Digital systems are flexible and programmable. Today, digital systems are

implemented in the form of programmable logic devices and computers
(embedded systems).
This way, devices can be reprogrammed according to new requirements without
changing the hardware.

• Digital data can be stored and processed in computer systems.
• Digital systems work faster.
• Digital systems continue to evolve (but improvements are slowing down).

See the BLG 322E- Computer Architecture lecture notes.

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.62011 – 2023 Feza BUZLUCA

Abstraction,Modeling
(Coding)

WHEN(A & B) THEN X1-C;

ELSE X2 – E # F;

X2 – (!A # C);
……

HDL Program
(Hardware Description

Language)

Design Implementation

Voltage

Temperature

Speed
Image

Current

Switch

Real World
(Physical world,
Problem Domain)

Steps of Digital System Implementation:

0, 1

and, or
not

z = a⋅b+c

Mathematical World
Model

(Boolean Algebra)

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.72011 – 2023 Feza BUZLUCA

3742

Real World

-17 3.14

A,B,C,Ğ,Ş,Ü

Binary Digital Coding:

Coding

01101101
00100110
11110011
00000011

…

Code words

As digital systems operate on binary digital signals, they can process only two
different values (binary data) : ON-OFF, LOW-HIGH, 0-1.

Therefore, physical quantities (voltage, temperature, etc.) and any kind of data
(letters, numbers, colors, sounds) must be converted to binary numbers (digitally
coded) before digital circuits can process them.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.82011 – 2023 Feza BUZLUCA

Digital Coding (cont'd):

Using n bits (binary digits), 2n different “things” can be represented.

n bits → 2n different “things”

For example, an 8-bit (binary digit) binary number can represent 28 (256)
different “things”.

These can be 256 different colors, 256 symbols, integers between 0 and 255,
integers from 1 to 256, or integers between -128 and +127.

00000000, 00000001, 00000010, … , 11111101, 11111110, 11111111.

There are different coding systems (methods) for different types of data.

The meaning of a binary value (for example, 10001101) is determined by the
system (hardware or software) that processes this number.

This value may represent a number, a color, or another type of data.

The coding of numbers is especially important.

Therefore, in this course, we will give some basic information about the
coding methods of numbers.

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.92011 – 2023 Feza BUZLUCA

Number: BCD Code:
0: 0000

1: 0001

2: 0010

3: 0011

4: 0100

Number: BCD Code:
5: 0101

6: 0110

7: 0111

8: 1000

9: 1001

Example:
Number: 8 0 5
BCD :1000 0000 0101

It is a redundant code.
Using 4 bits, 16 different code values can be created, but only 10 of
them are used.

BCD (Binary Coded Decimal) Coding System:

Natural BCD:

It is difficult to perform arithmetic operations on BCD numbers.
Therefore, today's computer systems do not use BCD coding to represent
numbers.

Each decimal number between 0 and 9 is represented by a four-bit pattern.

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.102011 – 2023 Feza BUZLUCA

Each digit of the number has an associated weight.
Natural Binary Coding: Numbers are represented using positional (weighted)
coding in binary (base-2).
Example: (unsigned) 11010 = 1⋅24 + 1⋅23 + 0⋅22 + 1⋅21 + 0⋅20 = 26

The leftmost bit is called the Most Significant Bit – MSB (high-order).
The rightmost bit is called the Least Significant Bit – LSB (low-order).
In today's computers, natural binary coding is used to represent numbers.

Hamming distance: The Hamming distance between two n-bit long code words is
the number of bit positions at which the corresponding bits are different.

Example: Hamming distance between 011 and 101 is 2.
Richard Wesley Hamming (1915-1998) Mathematician, USA

Adjacent Codes: Between each pair of successive code words, the Hamming
distance is 1 (only one bit changes).
In addition, if the Hamming distance between the first and last code words is 1,
then this code is called cyclic (circular).

Positional (weighted) Coding:

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.112011 – 2023 Feza BUZLUCA

Number: Code:
0: 0000

1: 0001

2: 0011

3: 0010

4: 0110

Number: Code:
5: 1110

6: 1010

7: 1000

8: 1100

9: 0100

Example: A 2-bit Gray code:

Gray Code: A binary (base 2), nonredundant, and cyclic (also adjacent) coding
system that represents 2n elements is called a Gray code.

Num.: Code:
0: 00

1: 01

2: 11

3: 10

Example: A cyclic BCD code (different from natural BCD !)

The patent of the Gray Code was issued to physicist
Frank Gray in 1953 when he was working at Bell Labs.

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.122011 – 2023 Feza BUZLUCA

Representation of Unsigned Numbers (Integers):
In computers, unsigned integers are represented using "natural binary weighted
(positional) coding”.

n-bit unsigned binary integer: an-1 an-2 . . . a2 a1 a0 , ai∈B={0,1}

an-1: High-order bit “Most Significant Bit – MSB”
a0 : Low-order bit “Least Significant Bit – LSB”

Converting binary to decimal:

Decimal value = an-1 ⋅2n-1 + an-2 ⋅2n-2 + . . . + a2 ⋅22 + a1 ⋅21 + a0 ⋅20

Representation of Numbers in Digital Systems (and Computers)
In this course, we will deal with integers.
Representation of the floating point numbers will be covered in the Computer
Architecture course (See: https://web.itu.edu.tr/buzluca/course.html).
Before coding the numbers, we must decide what type of numbers (unsigned or
signed) we will work with.
This is because unsigned and signed numbers are encoded and represented
differently.

weights

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.132011 – 2023 Feza BUZLUCA

Example: 8-bit unsigned integer

(1101 0111)2 = 1⋅27 + 1⋅26 + 0⋅25 + 1⋅24 + 0⋅23 + 1⋅22 + 1⋅21 + 1⋅20 = 21510

Converting decimal to binary:

Example: 21510

215/2 = 107 remainder 1 (low-order bit “Least Significant Bit – LSB”) last (rightmost) bit
107/2 = 53 remainder 1

53/2 = 26 remainder 1

26/2 = 13 remainder 0

13/2 = 6 remainder 1

6/2 = 3 remainder 0

3/2 = 1 remainder 1

1/2 = 0 remainder 1 (high-order bit “Most Significant Bit – MSB”) first (leftmost) bit

The largest unsigned integer that can be represented with n bits: 2n – 1

Example:
For n=8, largest unsigned integer is 1111 11112 = 25510

The smallest unsigned integer that can be represented with 8 bits: 0

0000 00002 = 010

Representation of Unsigned Integers (cont'd):

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.142011 – 2023 Feza BUZLUCA

The (high-order) most significant bit denotes the sign of the number.
• Positive numbers start with a “0”,
• Negative numbers start with a “1”.
Positive integers:

In computers, positive integers are represented (like unsigned integers) using
"natural binary weighted (positional) coding”.
Remember: Positive binary numbers must start with 0.

Representation of Signed Numbers (Integers):

Examples of Positive Numbers:
8-bit +510 : 0000 0101
8-bit +10010 : 0110 0100
4-bit +510 : 0101
4-bit +710 : 0111

The range of positive signed integers that can be represented with n bits:
00…00 to 01…11 (n bits) (Decimal: 0 to + 2n-1 – 1)

Example: n=8

The range of positive signed integers that can be represented with 8 bits:
0000 0000 to 0111 1111 (Decimal: 0 to +127)

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.152011 – 2023 Feza BUZLUCA

Negative integers are represented using 2's complement.
In this representation, negative integers are represented by the 2's complement
of the positive number (absolute value).
To obtain the 2’s complement:

• First, invert (1's complement) the number. Change 0 to 1, 1 to 0.
• Then, add 1 to the inverted number.
2's complement of ��� � � � � � � denotes 1's complement of A.

The 2's complement representation makes adding or subtracting two numbers
easy without sign and magnitude checks.
This coding system makes it possible to perform subtraction using circuitry
designed only for addition (we will see adder and subtracter circuits).
Thus, it simplifies the design of digital circuits for arithmetic operations.

Negative integers:

8-bit +610 : 0000 0110
1’s complement : 1111 1001
Add 1 : + 1
Result -610 : 1111 1010

Examples of Negative Numbers:
4-bit +710 : 0111
1's complement : 1000
Add 1 : + 1
Result -710 : 1001

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.162011 – 2023 Feza BUZLUCA

2's complement system (cont'd):

Taking the 2's complement of a number changes the sign of the number.
Taking the 2's complement of a negative number makes it positive (see 1.17 for
special cases).

2's complement operation:
positive → negative
negative → positive

8-bit -610 : 1111 1010
1's complement : 0000 0101
Add 1 : + 1
Result: +610 : 0000 0110

Example: Making a negative number positive :

The range of negative signed integers that can be represented with n bits:
10…00 to 11…11 (n bits) Decimal: (– 2n-1 to – 1)

Example: n=8

The range of negative signed integers that can be represented with 8 bits:
1000 0000 to 1111 1111 Decimal: (-128 to -1)

It will be updated on slide 1.18.

Examine the programs
integer_interpret_8.cpp

and
integer_interpret_16.cpp

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.172011 – 2023 Feza BUZLUCA

The negative integer with the largest absolute value (-8 in the case of 4 bits) is
a special case in 2’s complement representation.
Remember: Using 	 bits, we can represent signed decimal numbers between

−2	−1 and +(2	−1 – 1).
For example, using 4 bits, we can represent signed decimal numbers between

−8 and +7.
The number -8 can be represented with 4 bits: -8 = 1000.
However, +8 cannot be represented with 4 bits.
If we take the 2’s complement of 1000 (-8) to obtain +8, the result is 1000.
However, 1000 cannot be a positive number because it starts with 1.

Special cases in 2’s complement representation

4-bit -8
10

: 1000
1's complement : 0111
Add 1 : + 1
Result: ? : 1000

If we take the 2's complement of 4-bit “-8”, we find its 4-bit magnitude (unsigned),
i.e., 1000 = (unsigned) 8 (special case for 4 bits).

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.182011 – 2023 Feza BUZLUCA

To obtain the 2's complement 4-bit binary number for the decimal number -8, we
also start with the 4-bit magnitude (unsigned absolute value) of 8.
We start with the unsigned absolute value of 8. Its UNSIGNED 4-bit binary
number equivalent is 1000.

Special cases in 2’s complement representation (cont'd)

8 (4-bit magnitude) : 1000
1's complement : 0111
Add 1 : + 1
Result: -8 (4-bit) : 1000

Based on this information we can update the explanation about the 2's complement
operation (given in slide 1.16) as follows:
2's complement operation:

unsigned magnitude → negative
negative → unsigned magnitude

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.192011 – 2023 Feza BUZLUCA

Representing signed numbers on a circular graphic:

Subtraction
direction

Addition
direction

Using 4 bits, we can generate 16 codewords and thus represent 16 integers.
When we use the 2's complement method, 8 of the codewords represent positive
integers (including 0): 0000 – 0111.
The remaining 8 codewords represent negative integers: 1111 – 1000.

We can represent signed numbers on a number wheel.
Example: 4-bit numbers:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.202011 – 2023 Feza BUZLUCA

In digital systems, a certain number of bits (memory locations) are allocated for
binary numbers, e.g., 16 bits, 32 bits, etc.
• In some cases, it is necessary to write a number to a memory space with more

bits than necessary (for example, 8-bit number to 16-bit memory).
• Sometimes, it is necessary to operate on two numbers of different lengths.
In such cases, the shorter number is extended (word length is increased).
For example, extension from 4 bits to 8 bits or from 8 bits to 16 bits.
The extension operation is different for unsigned and signed numbers.

Unsigned Numbers: The high-order part of the binary number is filled with "0"s.

Extension (Sign Extension) of Binary Numbers

Example: 4-bit 310 = 0011 8-bit 310 = 0000 0011

Example: 4-bit 910 = 1001 8-bit 910 = 0000 1001

Signed Numbers: The high-order part of the binary number is filled with the
value of the sign bit. This operation is called sign extension.

Example: 4-bit +310 = 0011 8-bit +310 = 0000 0011

Example: 4-bit -710 = 1001 8-bit -710 = 1111 1001

Example: 4-bit -110 = 1111 8-bit -110 = 1111 1111

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.212011 – 2023 Feza BUZLUCA

Binary numbers are necessary because digital circuits
can directly process binary values.
However, it is difficult for humans to work with large
numbers of bits in even relatively small binary
numbers. (Example: 1110010001011010)
Therefore, for documentation (to write and read
easily), hexadecimal (base-16) numbers are used.

Hexadecimal (Base-16) Numbers Decimal Binary Hex.

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Converting from binary to hexadecimal is easy:
• Each hex. digit maps to 4 bits. See the table.
• Separate binary number into groups of 4 bits.
• Find the single hexadecimal digit that corresponds

to each group of 4 bits.
Example:
010111012 = 0101 1101 (Binary)

= 5 D (Hexadecimal)
Example:

$87 = 1000 01112

Hexadecimal → Binary
To express hexadecimal numbers, the symbols $ and h are usually used.
Example: $5D , $87 or 5Dh , 87h.

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.222011 – 2023 Feza BUZLUCA

Addition and Subtraction Operations in Digital Systems

In computers, the Arithmetic Logic Unit (ALU) performs the integer arithmetic
operations.
As an advantage of 2's complement representation, integer addition and
subtraction operations are performed on unsigned and signed numbers in the same
way.
However, the result is interpreted differently for unsigned and signed numbers.
Before an operation on numbers of different lengths, a sign extension is necessary.
Remember: The extension operations are different for unsigned and signed
numbers.

Addition:
The result of the addition of two bits (a and b) is a 2-bit
number.
The LSB of the result is the 1-bit sum, and the MSB is the
carry.
The rules of binary addition are given in the table on the right.

a b Carry Sum

0+0 0 0
0+1 0 1
1+0 0 1
1+1 1 0

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.232011 – 2023 Feza BUZLUCA

The result of the addition of two n-bit unsigned numbers can be a (n+1)-bit number.
The (n+1)st bit is called the carry.

01110101

+ 01100011

11011000

No Carry (Carry=0)

Examples: Addition of two 8-bit unsigned numbers

11111111

+ 00000001

1 00000000

(Carry=1)

: 117

: 99

: 216

Only for
testing

:255

: 1

:256+0

Only for
testing

The 8-bit result is 0.
However, using the carry, we can
interpret the result as 256.
28 + 0 = 256

Addition:
Unsigned Integers:

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.242011 – 2023 Feza BUZLUCA

Signed Integers:
• The operation is performed as with unsigned numbers, but the result is

interpreted differently.
• As an advantage of 2's complement representation, adding 2's-complement

numbers requires no special processing even if the operands have opposite signs.
• If an (n+1)st bit arises as a result of adding two n-bit signed numbers, this bit is

ignored.
Examples: Addition of 8-bit signed numbers

11111111

+ 00000001

100000000

Ignored Sign (+)

11111111

+ 11111111

111111110

Ignored Sign (-)

Attention:
• While working with n-bit numbers, the sign bit is always the most significant bit

(counting from right to left), i.e., the nth bit, not the (n+1)st one.
• The (n+1)st bit is the carry bit.

Addition:

: -1

: +1

: 0

: -1

: -1

: -2

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.252011 – 2023 Feza BUZLUCA

The result of the addition of n-bit signed numbers can be too large for the binary
system to represent (greater than n bits).
For example, with 8 bits, we can represent signed numbers between -128 and +127.
If the result is out of this range, an overflow occurs.
The existence of overflow after addition can be detected by checking the signs of
the operands and the result.
In an addition operation, overflow can occur in two cases:

positive + positive → negative and negative + negative → positive

Overflow (signed integers):

Examples:

01111111:+127

+ 00000010: +2

10000001: Cannot be represented
Both operands are positive.
The result is negative.
There is an overflow.
Note: (n+1)st bit is zero.
It is ignored.

10000000:-128

+ 11111111: -1

101111111:Cannot be represented

Both operands are negative.
The result is positive.
There is an overflow.
Note: (n+1)st bit is one.
It is ignored.Examine the program

integer_overflow.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.262011 – 2023 Feza BUZLUCA

• Computers usually use the method of complements to implement subtraction.
• 2's complement of the second operand is added to the first number.

�
 � � � �
�

� � � �� ���������� ���

� � � � � �

So, only one addition circuit is sufficient to perform both addition and
subtraction (benefit of 2's complement system).
In Section 5, we will cover addition and subtraction circuits.

Like addition, subtraction operations are performed on unsigned and signed
numbers in the same way (because of 2's complement representation).
However, the interpretation of the result is different for unsigned and signed
numbers.

Subtraction:

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.272011 – 2023 Feza BUZLUCA

Unsigned Integers:

If the result of subtracting two n-bit unsigned numbers, performed using 2's
complement, is a (n+1)-bit number (there is a carry), then there is no borrow, and
the result is valid.
If the (n+1)st bit of the result is zero (no carry), the first operand is smaller than
the second, and there is a borrow.

Carry = 1 → no borrow
Carry = 0 → borrow

00000101: 5

- 00000001: 1

Examples: Subtraction of 8-bit unsigned numbers
00000101: 5

+ 11111111:-1

100000100: 4

Carry=1 : No Borrow

Subtraction (cont'd):

00000001: 1

- 00000101: 5

00000001: 1

+ 11111011:-5

011111100: Cannot be represented

No Carry: Borrow

2's complement

2's complement

Examine the program
borrow.cpp

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.282011 – 2023 Feza BUZLUCA

Signed Integers:
Subtraction on signed integers is also performed using 2's complement.
The carry bit is ignored.

00000101: +5

- 00001100:+12

Example:

00000101: +5

+ 11110100:-12

11111001

Sign 1, result: negative

Subtraction (cont'd):

11111101: -3

- 01111111:+127

11111101: -3

+ 10000001:-127

101111110: cannot be represented
Sign:0, result: positive.

2’s complement

2’s complement

Neg. – pos. = pos. Overflow

To determine its decimal
equivalent, we take its 2’s
complement first

: 2’s comp.:00000111:-7

Overflow: Just as in addition, an overflow can occur in subtracting signed
numbers. In subtraction, overflow can occur in two cases:

pos. – neg. → neg. and neg. – pos. → pos.

Example:

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.292011 – 2023 Feza BUZLUCA

The subtraction operation is used to compare two integers.
After the operation R = A - B, related flags (status bits: carry, overflow) are
checked.
Unsigned Integers:

Comparing integers:

Result (R) Carry , Borrow Comparison

=0 X (not important) A=B

≠0 Carry = 1, NO A>B

≠0 Carry = 0, YES A<B

Signed Integers:

Result (R) Overflow Comparison

=0 X (not important) A=B

Positive, ≠0 NO A>B

Negative NO A<B

Positive YES A<B

Negative YES A>B

Because of overflow, the
sign of the result is not
correct.

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.302011 – 2023 Feza BUZLUCA

Summary of Carry, Borrow, Overflow
Carry: It can occur in the addition of unsigned numbers.
It indicates that the result cannot be represented with n bits, and an (n+1)st bit is
necessary.

Borrow: It can occur in the subtraction of unsigned numbers (A - B).
It indicates that the first number (A) is smaller than the second one (B, the
number being subtracted), i.e., A < B.
The result cannot be represented with unsigned numbers.
If the result of the subtraction using 2's complement is an n-bit number (no carry),
then there is a borrow, and the result is invalid.

Overflow: It can occur only on signed numbers in addition and subtraction
operations.
It indicates that the result cannot be represented with n bits.
Overflow can be detected by checking the signs of operands and the result.
There is an overflow in the following cases:

pos. + pos. → neg. pos. – neg. → neg.

neg. + neg. → pos. neg. – pos. → pos.

Digital Circuits

https://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

1.312011 – 2023 Feza BUZLUCA

Unsigned Signed

Event Carry Borrow Overflow

Affected
Operation

Addition
n-bit integers

Subtraction
n-bit integers

Addition/Subtraction
n-bit integers

Meaning The result cannot
be represented
with n bits.
Carry can be used
to interpret the
result.

A < B,
The result cannot be
represented with
unsigned numbers.

The result cannot be
represented with n bits.
The sign of the result is
inverted.

Detection (n+1)st bit of the
result is 1.
Carry = 1

If the result is an n-bit
number (Carry=0),
there is a borrow, and
the result is invalid.

Check the signs of operands
and the result
pos. + pos. -> neg.
pos. – neg. -> neg.
neg. + neg. -> pos.
neg. – pos. -> pos.

Summary of Carry, Borrow, Overflow

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

