Digital Circuits License: https://creativecommons.org/licenses/by-nc-nd/4.0/
Design of Clocked Synchronous Sequential Circuits
The design of a sequential circuit starts with the problem statement which specifies the desired relationship between the input and output sequences (scenario).
The process of designing a circuit to perform a given logical function is quite similar to the process of designing a computer program to perform a given task.
First, we should describe and appropriately model the real-world problem.
Then, we should design a circuit to solve the problem.
Designing a sequential circuit consists of the following steps:
1. We describe the problem (functional requirements of the circuit) verbally. We can use timing diagrams to avoid uncertainties.
2. We decide which design model (Mealy/Moore) would better represent the circuit.
3. We determine the states that will make up the finite state machine (FSM).
a) We determine the state transitions based on the inputs and current states.
 b) We construct the state transition and output tables. We can use a state diagram if it makes the design easier.
c) We reduce the number of states in the state table (if applicable). The purpose is to build a correctly functioning machine with the fewest possible number of states.
d) This process is similar to the process of designing a computer program; that is why it requires an intuitional approach.
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 - 2023 Feza BUZLUCA 10.1

Digital Circuits
Steps of sequential circuit design (cont'd)
4. Assigning codes to each state: A binary code is assigned to each state. If there are n states, the number of variables (number of flip-flops) m is computed as follows:
$m = \lceil \log_2 n \rceil$
where $\lceil x \rceil$ denotes the ceiling function. For example, $\lceil 4.1 \rceil = 5$ and $\lceil 4.0 \rceil = 4$.
We construct the state transition and output table based on the values of the state variables.
We decide what type of flip-flops we will use.
 Using the transition table for the selected flip-flop type, we determine the inputs of the flip-flops. We obtain the function (F) that drives the flip- flops.
8. From the output table, we obtain the output function (G) .
9. We design combinational circuits for the functions (F and G) and implement each with the minimum cost.
http://akademi.itu.edu.tr/en/buzluca/ 2011 - 2023 Feza BUZLUCA 10.2 http://www.buzluca.info 2011 - 2023 Feza BUZLUCA 2012 Feza 2

Digital Circu	Digital Circuits					
4. We d	letermi	ne the	input functions of the flip-flops:			
We w	vill use	D flip-	flops in this example.			
In thi	s step,	we wil	step, we determined transitions for all flip-flops. I investigate the values that must be applied to the inputs of uke the required transitions.			
We wi	ill use t	he tra	nsition table of the flip-flop for this purpose.			
D flip	o-flop	transit	ion table:			
symbo	l QQ+	D				
0 α	00 01	0	This table shows the value that must be applied to the input of a D flip-flop for a given transition.			
β 1	10 11	0	Different types of flip-flops have different transition tables.			
The transition table of the D flip-flop is simple. The value that must be applied to the input of the D flip-flop is equal to the next value of its state variable.						
http://akademi.i http://www.buzlu		1/buzluca/	2011 - 2023 Feza BUZLUCA 10.6			

Digital Circuits

Example: Same circuit designed using J-K flip-flops

The first three steps are the same.

4. In this example, we will use positive edge-triggered J-K flip-flops.

J-K flip-flop transition table:

ymbol	QQ+	J	Κ	
0	00	0	ø	
α	01	1	ø	
β	10	ø	1	
1	11	ø	0	
	0 α	α 01 β 10	$\begin{array}{c ccccc} 0 & 00 & 0 \\ \alpha & 01 & 1 \\ \beta & 10 & \emptyset \end{array}$	0 00 0 ø α 01 1 ø β 10 ø 1

Using J-K flip-flops instead of D flip-flops generally yields simpler logic functions for the next state. However, since the functions in this example are already simple, the J-K flip-flop yields no further simplification.

We had determined the transitions of state variables from the state transition table in step 3. Ω_1 transitions $(\Omega_1 \rightarrow \Omega_1^+)$: Ω_2 transitions $(\Omega_2 \rightarrow \Omega_2^+)$:

	_			Q 1	Transitio	ons (C	J1→Q1	,*): U () Trans	SITIONS	$(Q_0 \rightarrow$	Q_0^{+}
Q ₁ +Q ₀ +	⁺,Z			C	$Q_1 Q_1^+$			Q	Q0 ⁺	.		
Q		0	1		$Q_1 Q_0$	0	1		$Q_1 Q_0$	0	1	
(00	01,0	00,0		00	0	0		00	α	0	
(01	11,0	00,0		01	α	0		01	1	β	
· ·	11	11,1	00,0		11	1	β		11	1	β	
	10	øø,ø	øø,ø		10	ø	ø		10	ø	ø	
http://akader http://www.bi			ıca/					2011	- 2023	Feza BUZ	LUCA	10.9
11110.// 11111.01	uziuou.ii	lio										

Digital Circu	iits										
Transit	Transition tables for flip-flops:										
Transiti	on ta	ables fo	or di	ffer	ent types of	flip-flop	os are	e given b	belov	v.	
Trans	itior	n table	e for	S-F	R flip-flop :	Trans	ition	table [.]	for	J-K	flip-flop :
syr	nbol	QQ⁺	S	R		sy	mbo	I QQ⁺	J	κ	
	0 α β 1	00 01 10 11	0 1 0 ø	ø 0 1 0			0 α β 1	00 01 10 11	0 1 Ø	ø ø 1 0	
L	<u>.</u>		U	U			I		Ø	0	
Transi	tion	table	for	D fl	ip-flop:	Trans	ition	table	for	Τf	lip-flop :
sym	bol	QQ⁺	D	_		S	ymbo	ol QQ⁺	Т		
0)	00	0				0	00	0		
0		01	1				α	01	1		
β	5	10	0				β	10	1		
1		11	1				1	11	0		
		hu / //	(
http://akademi.it http://www.buzlu			ca/					2011	- 2023	Fez	a BUZLUCA 10.12

Digital Circuits

Synchronous Circuit Design Example 2: Moore Model

Designing a circuit using the Moore model has the same design stages that we have already seen.

It is important to note that

- outputs depend ONLY on the states,
- because of this, each state corresponds to a single output.

Problem:

We will design a synchronous sequential circuit with two inputs (X,Y) and a single output (Z).

If the number of 1s received at the input is a multiple of 4, the output of the circuit is 1. Otherwise, the output should be 0. If no 1s are received (the number of 1s is zero), the output should be 1.

Solution:

The circuit should perform the modulo 4 operation, and if the result of theoperation is 0, the output should be 1. This FSM can be implemented with 4 states:1.Modulo 0: S02.Modulo 1: S13.Modulo 2: S23.Modulo 2: S23.Output = 03.Nodulo 2: S23.Output = 03.Modulo 2: S23.Modulo 2: S2</

4.	Modulo 3: S3	Output = 0	number of incoming 1s mod 4 = 3	
http://akademi.itu. http://www.buzluc			2011 - 2023 Feza BUZLUCA	10.13

Digital Circu	its							
State, Mean Modul Modul Modul Modul	ing S 0 0 S0 0 1 S1 0 2 S2	2: Y _{00 01} S0 S1 S1 S2 S2 S3 S3 S0	11 S2 S3 S0 S1	10 S1 S2 S3 S0	Z 1 0 0	State coo S0: 00 S1: 01 S2: 11 S3: 10 State var	-	
Coded st	ate/output 1 (Y 00 01 11 00 01 1 01 14 1 11 10 00 10 00 0	<u>able:</u> 10 Z 1 01 1 2 11 0 10 0		Q0+) D1 Q1 Q0	x ^{(·} , y X Y 00 0 0 01 0 11 1 10 1	Q1, Q0 Q1'-X - Y 01 11 10 0 11 10 1 1 1 1 0 1 0 0 0 Q0 - X - Y'		$\begin{array}{c} Q1' \cdot X \cdot Y' \\ p1 & 11 & 10 \\ \hline 1 & 1 & 1 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \end{array}$
Since we a	re using the	characte	risti		,		$\frac{Q_0 \cdot x' \cdot y'}{Q^+ = D}, D_1 = C$	$Q_{1^{+}}, D_{0}=Q_{0^{+}}$
C	01= Q0·X'·Y + 00= Q1'·X'·Y	+ Q1'·X·Y					Z= Q1	' · Q0'
http://akademi.it http://www.buzlu	u.edu.tr/en/buzluca ca.info						2011 - 2023 Feza	BUZLUCA 10.14

Digital Circuits
Using Multiplexers for Synchronous Circuit Implementation
If a synchronous sequential circuit is designed using D flip-flops, simpler implementations are possible if the inputs of the flip-flops are driven with multiplexers.
In this method,
 The input of each D flip-flop is driven by a separate multiplexer.
 The state variables (flip-flop outputs) are connected to the selector (control) inputs of the multiplexers. Therefore, each multiplexer selects one of its data inputs according to the current state.
 The inputs of the multiplexer should have the necessary values that produce the next state of the machine.
 We obtain the values that will be applied to the inputs of the multiplexers from the rows of the state transition table.
The same circuit designed in the previous example will be redesigned using multiplexers.
nttp://akademi.itu.edu.tr/en/buzluca/ 2011 - 2023 Feza BUZLUCA 10.15

Digital Circuits			
State diagra	m:	State table:	
X=	0	Q ₁ ⁺ Q ₀ ⁺	
X=0 X=0 X=1 X=1 X=1 X=1 X=1 X=1 X=1 X=1	$X=1$ $X=0$ $1 \rightarrow 10^{-1}$ $X=0$ $X=0$ $X=0$ $X=0$ $X=0$	Rows are ordered according code so that state table can a Karnaugh map.	
Designing the co	unter using D flip-	-flops:	
Recall: $Q^+ = D$ Therefore, $D_1 = Q_1^+$ $D_0 = Q_0^+$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Output: Z0 = Q0 Z1 = Q1
	X'·(Q1⊕Q0) + X·(Q1 X⊕Q1⊕Q0	⊕Q0)' D0 = Q0'	
http://akademi.itu.edu.tr/en/b http://www.buzluca.info	uzluca/	2011 - 2023	Feza BUZLUCA 10.18

Digital Circuits	
control input (X).	e sequence 0-1-2-3-4-5 and has a single
If X=0 count up by one; if X=1, coun	
(000) X=0 →(001)	<u>State table:</u> Q ₂ +Q ₁ +Q ₀ +
X=0 X=1 X=1 X=0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
We organize the state table	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
as a Karnaugh map:	01 011 100 /101 100 ⁺ 11 ØØØ ØØØ ØØØ
http://akademi.itu.edu.tr/en/buzluca/	10 101 000 001 000
http://www.buzluca.info	2011 - 2023 Feza BUZLUCA 10.20

