Digital Circuits

Design of Clocked Synchronous Sequential Circuits

The design of a sequential circuit starts with the problem statement which specifies the desired relationship between the input and output sequences (scenario).
The process of designing a circuit to perform a given logical function is quite similar to the process of designing a computer program to perform a given task.
First, we should describe and appropriately model the real-world problem.
Then, we should design a circuit to solve the problem.
Designing a sequential circuit consists of the following steps:

1. We describe the problem (functional requirements of the circuit) verbally. We can use timing diagrams to avoid uncertainties.
2. We decide which design model (Mealy/Moore) would better represent the circuit.
3. We determine the states that will make up the finite state machine (FSM).
a) We determine the state transitions based on the inputs and current states.
b) We construct the state transition and output tables. We can use a state diagram if it makes the design easier.
c) We reduce the number of states in the state table (if applicable). The purpose is to build a correctly functioning machine with the fewest possible number of states.
d) This process is similar to the process of designing a computer program; that is why it requires an intuitional approach.

Digital Circuits

Steps of sequential circuit design (cont'd)

4. Assigning codes to each state: A binary code is assigned to each state. If there are n states, the number of variables (number of flip-flops) m is computed as follows:

$$
m=\left\lceil\log _{2} n\right\rceil
$$

where $\lceil\mathrm{x}\rceil$ denotes the ceiling function. For example, $\lceil 4.1\rceil=5$ and $\lceil 4.0\rceil=4$.
5. We construct the state transition and output table based on the values of the state variables.
6. We decide what type of flip-flops we will use.
7. Using the transition table for the selected flip-flop type, we determine the inputs of the flip-flops. We obtain the function (F) that drives the flipflops.
8. From the output table, we obtain the output function (G).
9. We design combinational circuits for the functions (F and G) and implement each with the minimum cost.

Digital Circuits

Synchronous Circuit Design Example:

Problem:

We will design a sequential circuit with a single input (X) and single output (Z).
After the input remains at " 0 " for two consecutive clock cycles, the output will be "1" as long as a "0" is read at the input.
We can use a timing diagram to show the state machine's expected behavior for a sequence of inputs.

The design should follow the Mealy model so that the circuit can function as shown in the above timing diagram.
This is because the output which corresponds to a given input appears immediately following the application of that input (before the active edge of the clock signal).

http://akademi.itu.edu.tr/en/buzluca/ htto://wwww.buzluca.info	$2011-2023$ Feza BUZLUCA	10.3

Digital Circuits

1. We construct the state diagram based on the problem statement (timing diagrams). This step requires an intuitional approach and experience.
We can design the machine using three states:
A: No zeros have been received
B: First zero has been received
C: Second zero has been received
2. We construct the state, output table.

State coding:

A: 00
B: 01 (Alternative coding
C: 11
is possible)

State variables: Code
Current Next States,
Q_{1}, Q_{0}
State transition, output table:

States Outputs
$Q_{1}+Q_{0}{ }^{+}, Z \times$ (in Karnaugh map format)

Alternative state codings are possible. For example, $\mathrm{A}: 00, \mathrm{~B}: 10, \mathrm{C}: 01$.
In that case, the internal structure of the circuit will be different.
However, the functionality of the circuit will be the same.

Digital Circuits

3. We determine the transitions of state variables:
Using the state transition table of the circuit, we determine the transitions of each state variable (flip-flop) separately.
For this solution, we need two flip-flops, i.e., Q_{1} and Q_{2}.
Q_{1} transitions
$\left(\mathrm{Q}_{1} \rightarrow \mathrm{Q}_{1}{ }^{+}\right)$

To simplify notation, we assign symbolic names to transitions and reorganize the tables with these symbols.

symbol	QQ^{+}
0	00
α	01
β	10
1	11

Thus, we have determined what transition each state variable (flip-flop) will make for each input value and state.

$\begin{gathered} \mathrm{QQ}_{1} \mathrm{Q}_{1}{ }^{+}{ }^{2} \\ \mathrm{Q}_{1} \mathrm{Q}_{0} \end{gathered}$	0	1	$Q_{1} Q_{0}$		$\mathrm{Q}_{0}+$) 1
00	00゙	00	00	-11	00
01	01	00	01	11	10
11	11	10	11	11	10
10	\varnothing	\varnothing	10	\varnothing	\varnothing
$\begin{array}{r} \mathrm{Q}_{1} \mathrm{Q}_{1}{ }^{+} \mathrm{X} \\ \mathrm{Q}_{1} \mathrm{Q}_{0} \end{array}$	0	1	$\begin{aligned} & { }_{2} Q_{0}{ }^{+} X \\ & Q_{1} Q_{0} \end{aligned}$	0	1
00	0	0	00	α	0
01	α	0	01	1	β
11	1		11	1	β
10	\varnothing	\varnothing	10	\varnothing	\varnothing

http://akademi.itu.edu.tr/en/buzluca
2011-2023 Feza BUZLUCA 10.5

Digital Circuits

4. We determine the input functions of the flip-flops:

We will use D flip-flops in this example.
In the previous (3.) step, we determined transitions for all flip-flops.
In this step, we will investigate the values that must be applied to the inputs of the flip-flops to make the required transitions.
We will use the transition table of the flip-flop for this purpose.
D flip-flop transition table:

| symbol QQ^{+} | D |
| :--- | :--- | :--- |
| 0 00 0
 α 01 1
 β 10 0
 1 11 1 | |

This table shows the value that must be applied to the input of a D flip-flop for a given transition.
Different types of flip-flops have different transition tables.

The transition table of the D flip-flop is simple. The value that must be applied to the input of the D flip-flop is equal to the next value of its state variable.

We have thus obtained the state transition function (F) that drives the inputs of the flip-flops to determine the next state (See slide 8.1).
http://akademi.itu.edu.tr/en/buzluca/
2011-2023 Feza BUZLUCA 10.7

Digital Circuits
5. Using the output table, output function (G) is obtained.

When designing functions F and G, design methods for combinational circuits (prime implicants, prime implicant chart, minimization) that were covered in the first part of the course should be used.
There is no need to minimize the functions in this example because they are simple.

$$
Z=X^{\prime} Q_{1} \quad Z=\mathbf{G}\left(\text { Input "X", State " } Q_{i}\right. \text { ") }
$$

6. We implement and draw the designed circuit using logic gates.

Digital Circuits

Example: Same circuit designed using J-K flip-flops

The first three steps are the same.
4. In this example, we will use positive edge-triggered J-K flip-flops.

J-K flip-flop transition table:

symbol		QQ^{+}	J
0	O	K	
$\mathbf{0}$	01	0	\varnothing
β	10	\varnothing	\varnothing
1	11	\varnothing	1

Using J-K flip-flops instead of D flip-flops generally yields simpler logic functions for the next state.
However, since the functions in this example are already simple, the J-K flip-flop yields no further simplification.

We had determined the transitions of state variables from the state transition table in step 3.

$\mathrm{Q}_{1}+\mathrm{Q}_{0}{ }^{+}, Z \mathrm{Z}$		
$\mathrm{Q}_{1} \mathrm{Q}_{0}$	0	1
00	01,0	00,0
01	11,0	00,0
11	11,1	00,0
10	$\varnothing \varnothing, \varnothing$	$\varnothing \varnothing, \varnothing$

Q_{1} transitions $\left(\mathrm{Q}_{1} \rightarrow \mathrm{Q}_{1}{ }^{+}\right.$
$\mathrm{Q}_{1} \mathrm{Q}_{1}{ }^{+} \mathrm{X}$
$\mathrm{Q}_{1} \mathrm{Q}_{0}$
0
:---:
01
11
10

Q_{0} transitions $\left(\mathrm{Q}_{0} \rightarrow \mathrm{Q}_{0}{ }^{+}\right)$:

$\mathrm{Q}_{0} \mathrm{Q}_{0^{+}} \mathrm{x}$		
$\mathrm{Q}_{1} \mathrm{Q}_{0}$	0	1
00	α	0
01	1	β
11	1	β
10	\varnothing	\varnothing

http://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Digital Circuits

5. We determine the output function (G) using the output table.

6. We implement and draw the designed circuit using logic gates.

Digital Circuits

Transition tables for flip-flops:
Transition tables for different types of flip-flops are given below.

Transition table for S-R flip-flop: Transition table for J-K flip-flop :

symbol $\mathbf{Q Q}^{+}$		
\mathbf{S}		\mathbf{R}
0 00 0 α 01 1 β 10 0 1 11 \varnothing 1 0		

symbol	$\mathbf{Q Q}^{+}$	\mathbf{J}	\mathbf{K}
0 00 0 \varnothing α 01 1 \varnothing β 10 \varnothing 1 1 11 \varnothing 0			

Transition table for D flip-flop:

symbol	$\mathbf{Q Q}^{+}$	\mathbf{D}
0 00 0 α 01 1 β 10 0 1 11 1		

Transition table for T flip-flop :

symbol $\mathbf{Q Q}^{+}$	\mathbf{T}	
$\mathbf{0}$	00	0
α	01	1
β	10	1
1	11	0

Digital Circuits

Synchronous Circuit Design Example 2: Moore Model

Designing a circuit using the Moore model has the same design stages that we have already seen.
It is important to note that

- outputs depend ONLY on the states,
- because of this, each state corresponds to a single output.

Problem:

We will design a synchronous sequential circuit with two inputs (X, Y) and a single output (Z).
If the number of $1 s$ received at the input is a multiple of 4 , the output of the circuit is 1 . Otherwise, the output should be 0 . If no 1s are received (the number of 1 s is zero), the output should be 1 .

Solution:

The circuit should perform the modulo 4 operation, and if the result of the operation is 0 , the output should be 1 . This FSM can be implemented with 4 states:

1. Modulo 0: S0 Output $=1 \quad$ number of incoming $1 \mathrm{~s} \bmod 4=0$
2. Modulo 1: S1 Output $=0 \quad$ number of incoming $1 \mathrm{~s} \bmod 4=1$
3. Modulo 2: S2 Output $=0 \quad$ number of incoming $1 \mathrm{~s} \bmod 4=2$
4. Modulo 3: S3 Output $=0 \quad$ number of incoming $1 \mathrm{~s} \mathrm{mod} 4=3$

Digital Circuits

Using Multiplexers for Synchronous Circuit Implementation

If a synchronous sequential circuit is designed using D flip-flops, simpler implementations are possible if the inputs of the flip-flops are driven with multiplexers.
In this method,

- The input of each D flip-flop is driven by a separate multiplexer.
- The state variables (flip-flop outputs) are connected to the selector (control) inputs of the multiplexers. Therefore, each multiplexer selects one of its data inputs according to the current state.
- The inputs of the multiplexer should have the necessary values that produce the next state of the machine.
- We obtain the values that will be applied to the inputs of the multiplexers from the rows of the state transition table.
The same circuit designed in the previous example will be redesigned using multiplexers.

Digital Circuits

In this example, we will use T flip-flops.
Remember:
Transition table for T flip-flop:

symbol	$\mathbf{Q Q} \mathbf{Q}^{+}$	\mathbf{T}
0	00	0
α	01	1
β	10	1
1	11	0

$\mathrm{Q}_{2}+\mathrm{Q}_{1}+\mathrm{Q}_{0}{ }^{+} \mathrm{X}$				
$\mathbf{2}_{2} \mathrm{Q}_{1}{ }^{2}$. 001	$0+0$		$\frac{10}{010}$
01	011	100	101	100
11	Øøర	Øøб	¢ø	Øøб
10	101	000	001	000

By examining transitions $\left(Q_{2} \rightarrow Q_{2}^{+}, Q_{1} \rightarrow Q_{1}^{+}, Q_{0}^{+} \rightarrow Q_{0}^{+}\right)$, we determine T_{2}, $T_{\text {ive }}$ and T_{0}.

$\mathrm{T}_{2} \mathrm{Q}_{0} \mathrm{X}_{000}$				
00	0^{2}	0	0	0
01	0	1	1	1
11	\varnothing	\varnothing	\varnothing	\varnothing
10	0	1	1	

$\mathrm{T}_{0} \mathrm{Q}_{0} \mathrm{X}_{0}$				
00	1	0	0	
01	1	0	0	1
11	\varnothing	\varnothing	\varnothing	0
10	1	0	0	

$T_{2}{ }^{\prime}=Q_{0}{ }^{\prime} \cdot X^{\prime}+Q_{2}{ }^{\prime} \cdot Q_{1}{ }^{\prime}$
$T_{2}=\left(Q_{0}+X\right) \cdot\left(Q_{2}+Q_{1}\right)$
$T_{1}=Q_{2} \cdot \cdot X+Q_{2} \cdot \cdot Q_{0}$
$\mathrm{T}_{0}=\mathrm{X}^{\prime}$
http://akademi.itu.edu.tr/en/buzluca/

