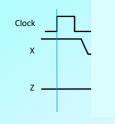
Digital Circuits License: https://creativecommons.org/licenses/by-nc-nd/4.0/
Design of Clocked Synchronous Sequential Circuits
The design of a sequential circuit starts with the problem statement which specifies the desired relationship between the input and output sequences (scenario).
The process of designing a circuit to perform a given logical function is quite similar to the process of designing a computer program to perform a given task.
First, we should describe and appropriately model the real-world problem.
Then, we should design a circuit to solve the problem.
Designing a sequential circuit consists of the following steps:
1. We describe the problem (functional requirements of the circuit) verbally. We can use timing diagrams to avoid uncertainties.
2. We decide which design model (Mealy/Moore) would better represent the circuit.
3. We determine the states that will make up the finite state machine (FSM).
a) We determine the state transitions based on the inputs and current states.
b) We construct the state transition and output tables. We can use a state diagram if it makes the design easier.
c) We reduce the number of states in the state table (if applicable). The purpose is to build a correctly functioning machine with the fewest possible number of states.
 d) This process is similar to the process of designing a computer program; that is why it requires an intuitional approach.
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 - 2023 Feza BUZLUCA 10.1

Digital Circuits	
Steps of sequential circuit design (cont'd)	
 Assigning codes to each state: A binary code is a there are n states, the number of variables (numbe computed as follows: 	
$m = \lceil \log_2 n \rceil$	
where $\lceil x \rceil$ denotes the ceiling function. For example,	[4.1] = 5 and $[4.0] = 4$.
 We construct the state transition and output table the state variables. 	e based on the values of
6. We decide what type of flip-flops we will use.	
 Using the transition table for the selected flip-flo inputs of the flip-flops. We obtain the function (F flops. 	
8. From the output table, we obtain the output funct	ion (G).
 We design combinational circuits for the function each with the minimum cost. 	ns (F and G) and implement
http://akademi.itu.edu.tr/en/buzluca/	2011 - 2023 Feza BUZLUCA 10.2
http://www.buzluca.info	10.2

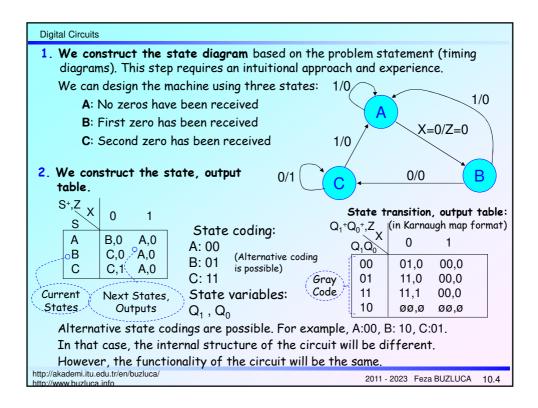

Digital Circuits

Synchronous Circuit Design Example:

Problem:

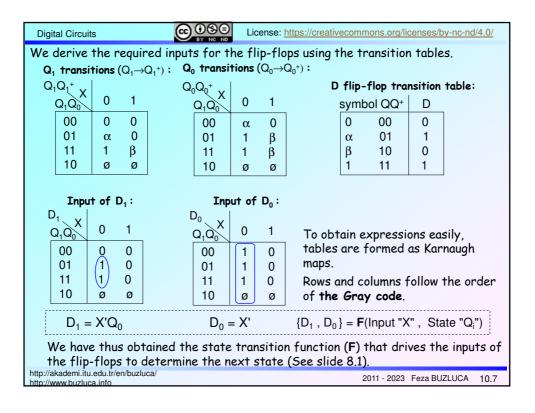
We will design a sequential circuit with a single input (X) and single output (Z). After the input remains at "O" for two consecutive clock cycles, the output will be "1" as long as a "O" is read at the input.

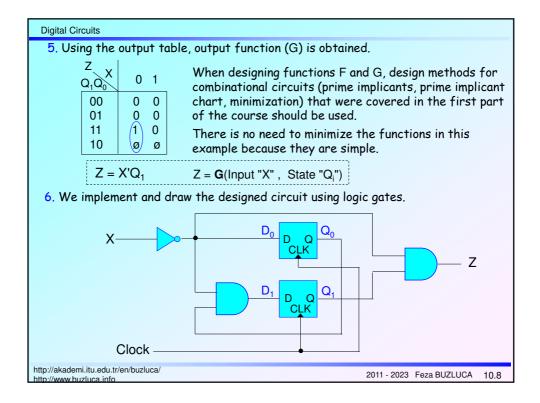
We can use a timing diagram to show the state machine's expected behavior for a sequence of inputs.



The design should follow **the Mealy model** so that the circuit can function as shown in the above timing diagram.

This is because the output which corresponds to a given input appears immediately following the application of that input (before the active edge of the clock signal).


http://akademi.itu.edu.tr/en/buzluca/


2011 - 2023 Feza BUZLUCA 10.3

 Digital Circuits 3. We determine the transitions of state variables: Using the state transition table of the circuit, we determine the transitions of each state variable (flip-flop) separately. For this solution, we need two flip-flops, 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
i.e., Q_1 and Q_2 . Q_1 transition $(Q_1 \rightarrow Q_1^+)$	$Q_1 Q_0$ Q_1 $Q_1 Q_0$ Q_1
To simplify notation, we assign symbolicsymbol 0QQ+names to transitions and reorganize the000β10	00 00 00 00 01 01 00 01 01 00 01 11 10 11 10 11 11 10 11 11 10 Ø Ø 10 Ø Ø 10 Ø Ø Ø
and reorganize the β 10 tables with these 1 11 symbols.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Thus, we have determined what transition each state variable (flip-flop) will make for each input value and state.	$01 \alpha 0 01 1 \beta$
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011 - 2023 Feza BUZLUCA 10.5

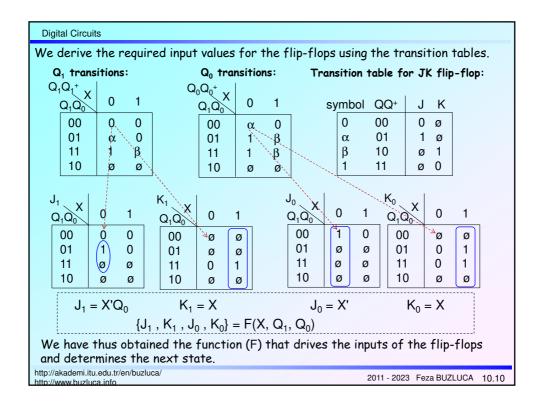
Digital Circuits						
4. We determi	ne the	input functions of the flip-flops:				
We will use l) flip-	flops in this example.				
In this step,	In the previous (3.) step, we determined transitions for all flip-flops. In this step, we will investigate the values that must be applied to the inputs of the flip-flops to make the required transitions.					
We will use t	he tra	nsition table of the flip-flop for this purpose.				
D flip-flop 1	ransit	tion table:				
symbol QQ ⁺	D					
$\begin{bmatrix} 0 & 00 \\ \alpha & 01 \end{bmatrix}$	0	This table shows the value that must be applied to the input of a D flip-flop for a given transition.				
β 10 1 11	0 1	Different types of flip-flops have different transition tables.				
The transition table of the D flip-flop is simple. The value that must be applied to the input of the D flip-flop is equal to the next value of its state variable.						
http://akademi.itu.edu.tr/en http://www.buzluca.info	/buzluca/	2011 - 2023 Feza BUZLUCA 10.6				

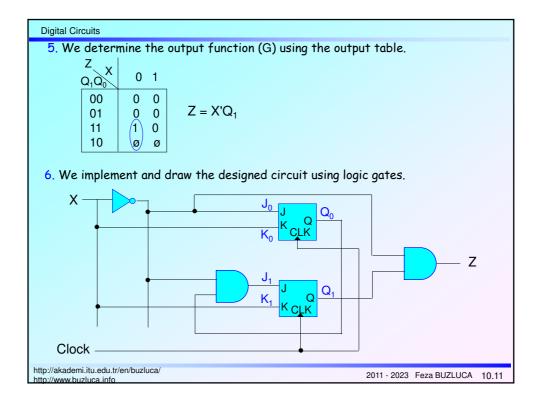
Digital Circuits

Example: Same circuit designed using J-K flip-flops

The first three steps are the same.

4. In this example, we will use positive edge-triggered J-K flip-flops.


J-K flip-flop transition table:


S	ymbol	QQ+	J	Κ	
	0	00	0	ø	
	α	01	1	ø	
	β	10	ø	1	1
	1	11	ø	0	

Using J-K flip-flops instead of D flip-flops generally yields simpler logic functions for the next state. However, since the functions in this example are already simple, the J-K flip-flop yields no further simplification.

We had determined the transitions of state variables from the state transition table in step 3. Ω_{1} transitions $(\Omega_{1} \rightarrow \Omega_{1}^{+})$; Ω_{2} transitions $(\Omega_{2} \rightarrow \Omega_{2}^{+})$;

		\mathbf{u}_1 munshing	ms (C	$\mathbf{x}_1 \rightarrow \mathbf{u}_1$	\sim α_0 mans	1110115	$(\mathbf{Q}_0 \rightarrow \mathbf{Q})$	\mathbf{Q}_0
		$Q_1 Q_1^+$			$Q_0 Q_0^+$			
0	1	$Q_1 Q_0$	0	1	$Q_1 Q_0$	0	1	
01,0	00,0	00	0	0	00	α	0	
11,0	00,0	01	α	0	01	1	β	
11,1	00,0	11	1	β	11	1	β	
øø,ø	øø,ø	10	ø	ø	10	ø	ø	
.tr/en/buzluca	a/				2011 - 2023 F	eza BUZ	LUCA	10.9
	11,0 11,1 ØØ,Ø	11,0 00,0 11,1 00,0 ØØ,Ø ØØ,Ø tr/en/buzluca/	0 1 01,0 00,0 11,0 00,0 11,1 00,0 ØØ,Ø ØØ,Ø tr/en/buzluca/	0 1 01,0 00,0 11,0 00,0 11,1 00,0 11,1 00,0 11 1 0ø,ø øø,ø	$\begin{array}{c c} 0 & 1 \\ \hline 01,0 & 00,0 \\ 11,0 & 00,0 \\ 11,1 & 00,0 \\ \emptyset \emptyset, \emptyset & \emptyset \emptyset, \emptyset \end{array} \qquad \begin{array}{c} Q_1 Q_1^+ X \\ Q_1 Q_0 \\ 0 & 1 \\ \hline 00 & 0 & 0 \\ 01 & \alpha & 0 \\ 11 & 1 & \beta \\ 10 & \emptyset & \emptyset \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Digital Ci	rcuits									
Trans	ition	tables	for f	ip-flops:						
Transi	Transition tables for different types of flip-flops are given below.									
Trar	nsition	n table	for S	-R flip-flop :	Trans	ition	table [.]	for	J-K	flip-flop :
s	ymbo	I QQ⁺	SF	2	sy	mbo	QQ⁺	J	Κ	_
	0 α β 1	00 01 10 11	0 ø 1 0 0 1 ø 0			0 α β 1	00 01 10 11	0 1 Ø	ø ø 1 0	
Trans	sition	table	for D	flip-flop:	Trans	ition	table	for	Тf	lip-flop:
sy	mbol	QQ⁺	D		s	ymbo	ol QQ⁺	Т		
	0 α β 1	00 01 10 11	0 1 0 1			0 α β 1	00 01 10 11	0 1 1 0		
http://akaden			ca/				2011	- 2023	Fez	a BUZLUCA 10.12

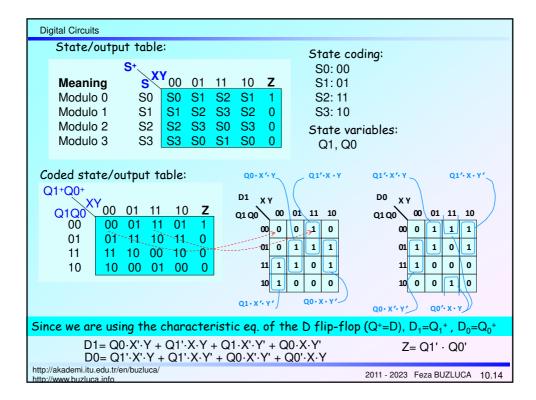
Digital Circuits

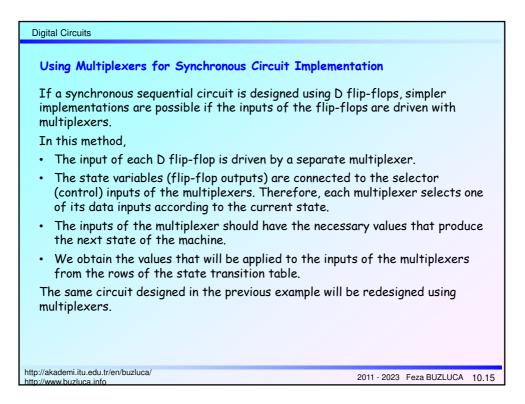
Synchronous Circuit Design Example 2: Moore Model

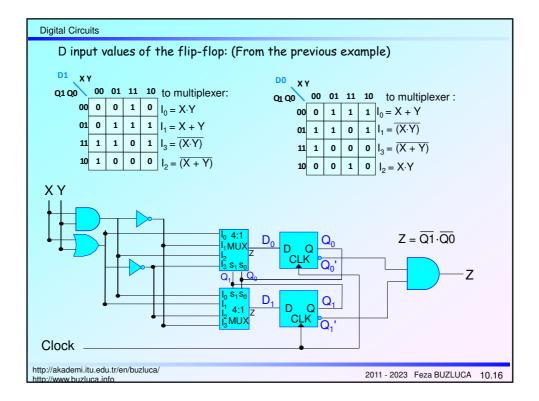
Designing a circuit using the Moore model has the same design stages that we have already seen.

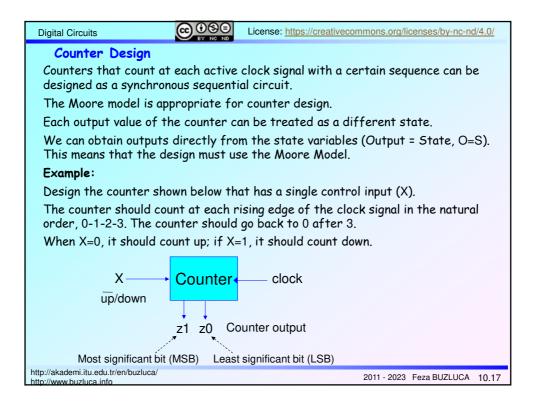
It is important to note that

- outputs depend ONLY on the states,
- · because of this, each state corresponds to a single output.

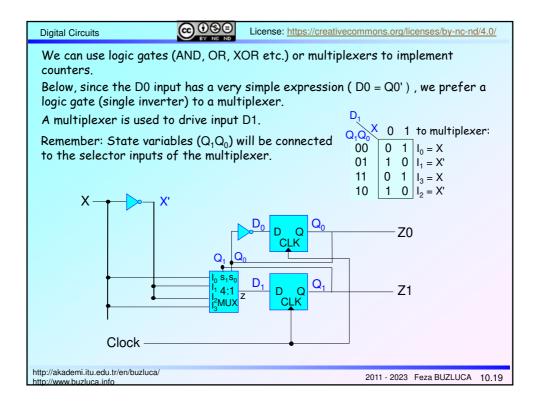

Problem:

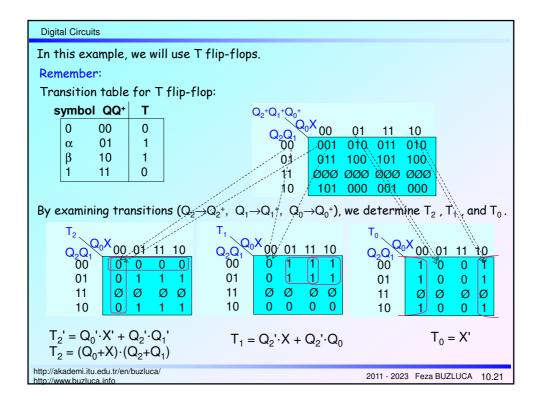

We will design a synchronous sequential circuit with two inputs (X,Y) and a single output (Z).

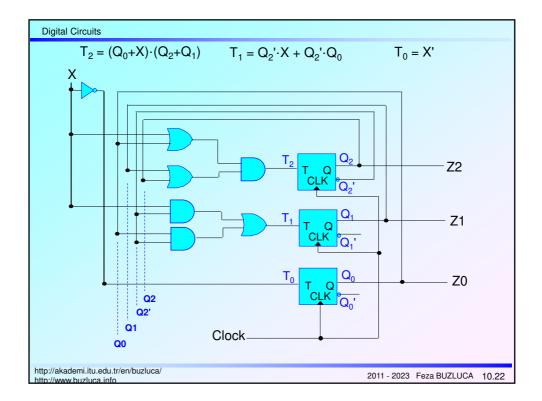

If the number of 1s received at the input is a multiple of 4, the output of the circuit is 1. Otherwise, the output should be 0. If no 1s are received (the number of 1s is zero), the output should be 1.

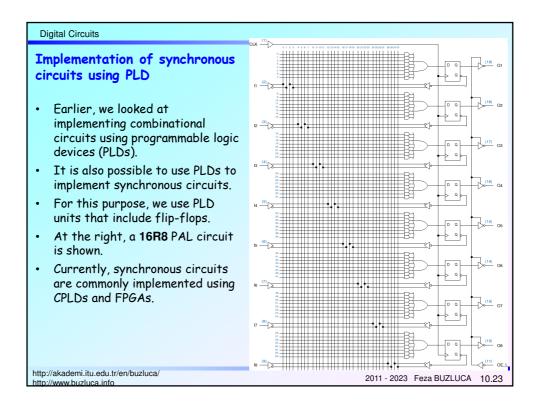

Solution:

The circuit should perform the modulo 4 operation, and if the result of the operation is 0, the output should be 1. This FSM can be implemented with 4 states: Modulo 0: S0 Output = 1 number of incoming 1s mod 4 = 01. Modulo 1: S1 Output = 0number of incoming $1 \le \mod 4 = 1$ 2. 3. Modulo 2: S2 Output = 0number of incoming 1s mod 4 = 24. Modulo 3: S3 Output = 0 number of incoming $1 \le \mod 4 = 3$ http://akademi.itu.edu.tr/en/buzluca/ 2011 - 2023 Feza BUZLUCA 10.13 ttp://www.buzluca.info








Digital Circuits	
State diagram:	State table:
X=0	Q ₁ ⁺ Q ₀ ⁺
x 00 ← X=1 01	$Q_1 Q_0 \times 0 1$
	00 01 11 01 10 00
X=0 X=1 X=1 X=0	71 00 10
X=1 10	10 11 01
X=0	Row's are ordered according to the Gray code so that state table can also be used as
State variables and outputs have the	a Karnaugh map.
same values (O = S).	
Designing the counter using D flip	-flops:
Recall:	
$Q^+ = D$ $Q_1 Q_0 0 1$	00 1 1 Output:
Therefore, 00 01 1 0 $D_1 = Q_1^+$ 01 1 0 0 0 1 0	$\begin{array}{c} 00 \\ 01 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
$D_0 = Q_0^+$ 11 0 1	11 0 0 71 = 01
$D1 = X' \cdot (Q1 \oplus Q0) + X \cdot (Q)$ $D1 = X \oplus Q1 \oplus Q0$	D0 = Q0'
http://akademi.itu.edu.tr/en/buzluca/	2011 - 2023 Feza BUZLUCA 10.18

Digital Circuits	
Example: Design a counter that counts in the control input (X). If X=0 count up by one; if X=1, count	e sequence 0-1-2-3-4-5 and has a single
$\frac{1}{000} \times = 0 \longrightarrow 001$	State table: $Q_2^+Q_1^+Q_0^+$
X=0 X=1 X=1 X=0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
We organize the state table as a Karnaugh map:	$\begin{array}{c} Q_2 + Q_1 + Q_0 + \\ Q_2 Q_1 & Q_0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011 - 2023 Feza BUZLUCA 10.20

