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Boolean Algebra

 Defined on the set B = {0,1} 

 Binary operators: AND, OR { • , + }

 Unary operation: Complement (NOT) {'}
Another symbol for the NOT operator: a

 Axioms (Laws):

For any a, b ∈ B

1. Closure: a + b ∈ B a • b ∈ B

2. Commutative:   a + b = b + a a • b = b • a

3. Associative:     a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c

4. Identity: a + 0 = a a • 1 = a

5. Distributive:    a + (b • c) = (a + b) • (a + c)      a • (b + c) = (a • b) + (a • c)

6. Inverse: a + a = 1 a • a = 0

a • b (AND) a + b (OR)
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George Boole (1815-1864) English mathematician and philosopher.
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 Order of operations (operator precedence) from highest to lowest precedence:        
1. Parentheses,    2. NOT (Complementation) (Negation),        3. AND,        4. OR

•: AND    +: OR
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 The Duality principle:

To obtain the dual of a logic expression: Replace • by +, + by •, 0 by 1, and 1 by 0, 
but do not change the variables.

a + b + 0 ... ⇔ a • b • 1 ...

Example: The dual of the expression  a + a⋅b is   a⋅(a+b) .

Principle: Duals of all proven theorems are also theorems.

Given a Boolean algebra identity, another identity can be obtained by taking the 
dual of both sides of the identity.

Note that in the previous slide, axioms were presented with their duals (in two 
columns).

Example:

Absorption theorem (given in the next slide):

If we can prove the theorem a + a⋅b = a, then its dual a⋅(a+b) = a is also true.

General Duality Principle:
f (X1, X2, ..., Xn, 0, 1, +, •) ⇔ fD(X1, X2 ,..., Xn, 1, 0, •, +)

• Duality establishes a relationship between proofs of theorems.

• Duals are not equal.
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1. Annihilator (or Dominance):     

a + 1 = 1 a • 0 = 0

2. Involution: (a')' = a or a = a

3. Idempotency:

a+a+a+….+a = a      a•a•a •… •a = a

4. Absorption:

a + a⋅b = a a⋅(a+b) = a

5. De Morgan's Theorem:  Augustus De Morgan, British mathematician and logician (1806 – 1871)

(a + b) = a • b (a • b) = a + b

5. General form of De Morgan's Theorem:

f (X1, X2, ..., Xn, 0 ,1, + , •) =  g(X1, X2 ,..., Xn, 1 , 0, •, +)

• It establishes a relationship between AND and OR (• and +).

Theorems:

These theorems are derived from the operations and axioms of Boolean algebra.
They can be proven using the axioms.

(Proof in 2.4)
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a) Using Axioms

Example:

Theorem: � · � � � ·  �  �  �

Proof:
Distributive � · � � � ·  �   � � · �� �  � �

Inverse (Complement) � · �� �  � �      � � · �1�

Identity � · �1� � � 

Example:

Theorem: X + X • Y =   X     (Absorption)
Proof:
Identity X  +  X • Y =   X • 1  +  X • Y
Distributive X • 1  +  X • Y =   X • (1 + Y)
Annihilator X • (1 + Y) =   X • (1)
Identity X • (1) =   X 

Proving the theorems:
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(X + Y) = X • Y

(X • Y) = X + Y

X Y X Y (X + Y) X • Y

0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X Y (X • Y) X + Y

0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0

Proving the theorems:  b) Using truth tables

De Morgan:

Although truth tables may contain many rows, computer programs can fill in 
and compare these tables very quickly.

Note that to denote negation (NOT), we can also use the notation A.

2.6

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Example:
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Minimizing logic expressions using axioms and theorems:

Original expression

Minimized expression

Minimizing a logic expression means:
• finding the shortest expression
• with the fewest operations and variables
• that generates the same output values as the original expression.
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Logic (Boolean) Expressions
A logic expression is a finite combination of variables, constants, and operators 
that are well-formed according to the rules.

It is represented as E(X), where X= (x1, x2, .... xn) ∈ Bn and each xi ∈ {0,1}.

Bn is the set of vectors with n binary variables.

Examples:

E ��, ��, ��, �� � ���� � ���� � ����

E��, �, �� � ��̅ � ��

E �, �, �, � � �� � � � �̅���� � ���� � �̅� 

Literal:

In a Boolean expression, each separate occurrence of a variable, either in normal 
(uncomplemented) or inverse (complemented) form, is a literal.

For example, the expression E �, �, � � ��̅ � �� has three variables (�, �, �) and 
contains four literals (��̅ � ��).

However, two of the  literals are identical (� appears twice).

If E1 and E2 are logic expressions, then ��,  ��,  �� � ��, �� · ��, and all possible 
combinations are also logic expressions.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ 
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Each logic expression can be written in two special forms.

1. Disjunctive normal form (DNF): ΣΠ
Logic sum of logic products (SOP). OR of ANDs.

Example: ��̅ � �� � ���

The OR (logic sum) operation is also called logical disjunction.

2. Conjunctive normal form (CNF): ΠΣ
Logic product of logic sums (POS). AND of ORs.

Example: �� � � � �̅��� � ����� � ��

The AND (logic product) operation is also called logical conjunction.

Any logic expression can be written in CNF (POS form) and DNF (SOP form).

Any expression in CNF can be converted to DNF and vice versa (ΣΠ ↔ ΠΣ).

Normal forms of logic expressions:

Conventions:

• Write the literals in the terms in alphabetical order: ���̅ (not ��̅�)
• Write the expression starting with the term that has the fewest (or the most) 

literals, and then proceeding in ascending (or descending) order of literals per 
term, such as: �� � ��̅� � ���̅� or ���̅� � ��̅� � ��
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An expression, E(X), generates for each combination of the input vector 
X=(x1, .... xn), a value from the set of B={0,1}. 

These values constitute the truth table for the expression.

Example: E(X) = x1x2 + x3

Truth table for the expression

Set of all input 
combinations

(X)

000

010

001

011

101

111 110
100

Combinations for 
which E(X)
generates ‘1’ 
(combinations E(X) 
covers)

x1 x2 x3   E(X)

0 0 0 0
0 0 1 1

0 1 0 0
0 1 1 1
1 0 0 0

1 0 1 1
1 1 0 1

1 1 1 1

Value of a logic expression:

X=
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The axioms and theorems of Boolean algebra defined for binary values are also 
valid for expressions due to the closure property.

Remember: According to the closure property, the value generated by an 
expression E is a binary value, i.e., E(X) ∈ B = {0,1}

Examples:

E a, b, c, d � bc� � ad � a�b

Identity: E(X) + 0 = E(X) E(X) • 1 = E(X)

E a, b, c, d � 0 � bc� � ad � a�b � 0 �  bc� � ad � a� � 0 b � 0

� bc� � ad � a�b � E a, b, c, d
-----------------------------------------------------------------------------------------------------------------------

E a, b, c, d · 1 � bc� � ad � a�b · 1 �  bc�1 � ad1 � a�b1

� bc� � ad � a�b � E a, b, c, d

Annihilator (or Dominance):     E(X) + 1 = 1 E(X) • 0 = 0

E a, b, c, d � 1 � bc� � ad � a�b � 1 � 1
-----------------------------------------------------------------------------------------------------------------------

E a, b, c, d · 0 � bc� � ad � a�b · 0 � 0

Applying axioms and theorems to expressions 
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To explain some properties of logic expressions, we can define and use the 
following two order relations "< " and "≤ ":

1. An order relation "<" between elements of set B = {0,1}: 0 < 1

• Read as "0 precedes 1" or "0 is smaller than 1".

2. Another order relation " ≤ " between X ∈ Bn vectors can be defined as follows:

• If each component of X1 is smaller than (precedes) or equal to the 
component of vector X2 in the corresponding position, then X1 ≤ X2. 

Example:

X1=1001 , X2 = 1101

X1 ≤ X2.

The order relation "≤" may not exist between all vectors.

Example: X1 = 0011 , X2 = 1001

There is no order relation between X1 and X2 (Neither X1 ≤ X2 nor X2 ≤ X1 is 
true).

"Order Relation" between binary vectors:
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F

E

E(X) ≤ F(X) denotes that values of E generated by combinations of input X are always 
smaller than (or equal to) all values of F generated by the same input combinations.

x1 x2 x3 E(X)     F(X) 
0 0 0 1 =     1
0 0 1 0    =     0
0 1 0 1    =     1
0 1 1 0    <     1
1 0 0 0 <     1
1 0 1 0 =     0
1 1 0 0 =     0
1 1 1 1 =     1

If E(X) ≤ F(X),

E(X) implies F(X), E(X)F(X),

F(X) covers E(X).

Example : 

For each input combination where E(X) 
generates "1", F(X) also generates "1".

This is a special case. The order 
relation ≤ may not exist between all 
expressions (see slide 2.15). 

Set of all input 
combinations (X)

Combinations for which 
F(X) generates ‘1’ 
(combinations F(X) covers)

Combinations 
for which E(X) 

generates ‘1’ 
(combinations 
E(X) covers)

Order relation between expressions:

001

101

000
010

111

011

100
110
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Remember: The theorems given for binary values on slide 2.3 are also valid for 
expressions due to the closure property.

Consequently, the absorption theorem given for binary values (a + a⋅b = a and
a⋅(a+b) = a) is also valid for expressions because of the closure property.

However, the order relation ≤ makes it easier to grasp the absorption properties 
of expressions.

Since absorption is an important theorem used to simplify expressions, we will 
again illustrate this theorem using the order relation ≤.

We will consider two cases.

• Case A: Special case: E(X) ≤ F(X) (as in the example on slide 2.12)

• Case B: General case: The order relation ≤ does not exist between E(X) and F(X)

Using the order relation to show absorption properties of expressions 

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ 
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CASE A: Special case: E(X) ≤ F(X)

Using the order relation to show absorption properties of expressions (cont'd) 

Absorptions:

1.  E(X) + F(X) = F(X)

2. E(X) • F(X) = E(X)

Example:

Consider the example given on slide 2.12.

Absorption properties (1 and 2) can be seen on the diagram on the right.

Expressions for the functions on slide 2.12:

E ��, ��, �� � �� · �� � �� · �� · �� , F ��, ��, �� � �� · �� � �� · �� � �� · ��

Absorptions:

1. E(X) + F(X) = �� · �� � �� · �� · �� � �� · �� � �� · �� � �� · ��

= �� · �� � �� · �� � �� · �� = F(X)

2. E(X) • F(X) = ��� · �� � �� · �� · ��� · ��� · �� � �� · �� � �� · ���

= �� · �� � �� · �� · �� = E(X)

F

E

001

101

000
010

111

011

100
110

E(X) F(X)
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F
E

The following inequalities are always true for 
any E and F (as can be seen on the diagram on 
the left):

E⋅F ≤ E ≤ E+F  

E⋅F ≤ F ≤ E+F

� � � · $ � �

Absorption Properties of expressions:

Proof:  E(E+F) = EE+EF = E+EF = E(1+F) = E

� � � $ � �dual

� � �� · $ � � � $

Proof: � � �� · $ � � � �� � � $ � 1 � � $ � � � $

���� � $� � � · $dual

Case B: General case: The order relation ≤ does not exist between E(X) and F(X)

These properties are used to minimize (simplify) logic expressions.

Using the order relation to show absorption properties of expressions (cont'd) 

Absorption properties of expressions follow directly from these inequalities (we 
can generalize the absorption theorems for Boolean variables and apply them to 
expressions due to the closure property):
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Example (general case):

a b c d E F E⋅F E+F

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 1 1 0 0 0 0 0

0 1 1 1 0 1 0 1

1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0  0 0 0

1 1 0 0 1 0 0 1

1 1 0 1 1 1 1 1

1 1 1 0 0 0 0 0

1 1 1 1 0 1 0 1

E(a,b,c,d) = abc′  ,  F(a,b,c,d) = bd

E⋅F = abc′d E+F = abc′ + bd

The order relation (≤) does not exist between 
the E and F expressions given in this example.

From the truth table, we observe 

E⋅F ≤ E    and  E⋅F ≤ F.

We can check the absorption properties:
E⋅F + E = E

abc′d + abc′ = abc′ 

and

E⋅F + F = F

abc′d + bd = bd

Again, from the truth table, we observe 

E ≤ E+F    and  F ≤ E+F.

We can check the absorption properties:
E⋅(E + F) = E

abc′ (abc′ + bd) =  abc′

and

F⋅(E + F) = F

bd (abc′ + bd) =  bd

We have thus shown the 
absorption properties 
using a truth table instead 
of axioms.

?

?

?

?

?

?

?

?








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• Given a pair of product terms that include a biform variable, the consensus 
term (SOP) is formed by multiplying (ANDing) the two original terms together, 
leaving out the selected biform variable and its complement.

• E1E2 is the consensus term of ���� � ���� with respect to variable x1.

Example: Consensus of %&' � %�'( (with respect to a) is ���� � &'( .

Theorem: The consensus term is redundant and can be eliminated.

���� � ���� � )�)* � ���� � ����

Assume that E1 and E2 are two expressions that do not contain the literal x1 :
E1(x2, .... xn) and E2(x2, .... xm)

We can create a new expression by multiplying one term by x1 and the other one by 
the complement of x1 (��).

� � +��� � +���

Here, x1 is called a biform variable because it appears both positively (as itself: +�) 
and negatively (as complement: +�) in the expression.

Examples: a)  +�  ����� � +�������� ,
b)  +����� � +��� � �,

The Consensus Theorem (SOP Form)
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• Given a pair of sums that include a biform variable, the consensus term (POS) 
is formed by adding (ORing) the two original terms together, leaving out the 
selected biform variable and its complement.

• E1 + E2 is the consensus term of �������������� with respect to the variable x1.

Example: Consensus of �% � & � '��%� � ' � (� is: � � � � � � � � & � ' � ( .

Theorem: The consensus term is redundant and can be eliminated.

���������������)� � )*� � ��������������

According to the duality principle, the consensus theorem is also valid for 
expressions written in product-of-sums (POS) form.

Assume that E1 and E2 are two expressions that do not contain the literal x1:
E1(x2, .... xn) and E2(x2, .... xm)

We can create a new expression by adding x1 to one term and the complement of x1

to the other one.
� � �+������+�����

Here, x1 is a biform variable.
Examples: a)  �+� � �� � ����+� ��� ���� ,

b)  �+� � ������+� ��� ���

The Consensus Theorem (POS Form)
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-�., �, /� � .� �� / � .� � / � . �� / � . � / � . � /�

Consensus (with respect to C)
� .� �� / � .� � / � . �� / � . � / � . � /� � . � is added

� .� �� / � .� � / � . �� / � . � / � . � /� � . � Absorption

� .� �� / � .� � / � . �� / � . �

Consensus (with respect to B)
� .� �� / � .� � / � .� / � . �� / � . � is added

� .� �� / � .� � / � .� / � . �� / � . � Absorption

� .� / � . �� / � . �

Consensus (with respect to B) is added
� .� / � . �� / � . � � . / Absorption

� .� / � . � � . /

Consensus (with respect to A) is added
� .� / � . � � . / � / Absorption

� . � � /

Example: Minimization of a logic expression using the consensus theorem

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ 
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Logic functions are defined on the input set Bn (vectors with n binary variables).
There are three types of logic functions:

1. Simple (basic) functions: Multiple inputs, single output

y = f(X): Bn → B

∀Xi∈Bn ; ∃! yi ∈B ; y=f(X)

Logic (Boolean) Functions

f
x1
x2
x3

y

x1 x2 x3 y

0 0 0 1

0 0 1 1

0 1 0 0
0 1 1 0

1 0 0 1

1 0 1 0
1 1 0 0

1 1 1 1

Example:

"For any X, there is exactly one y such that f(X) = y."

y = f(X)

X∈B3

y∈B

The truth table for y = f(X)
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There are 2(2
n) possible basic logic functions for n binary variables (inputs).

For example,
there are 16 possible basic logic functions for 2 binary variables (inputs).

f
x

y
z

Truth table for 16 possible basic logic functions (F0–F15) for 2 binary variables:

0

X AND Y
X Y

X OR Y

Y' X' 1
X XOR Y

X NOR Y

(X OR Y)'

X = Y X NAND Y

(X AND Y)'

X Y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Inputs Functions

The number of basic logic functions for n binary variables: 

2.22

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Y = f(X): Bn → Bm , X=(x1, .... xn),  Y=(y1, .... ym), 

x1 x2 x3 y1 y2

0 0 0 1  1

0 0 1 1  0

0 1 0 0  0
0 1 1 0  0

1 0 0 1  1

1 0 1 0  1
1 1 0 0  1

1 1 1 1  0

f
x1
x2
x3

y1

y2

Example:

2. General functions: Multiple inputs, multiple outputs

Y = f(X)

X∈B3

Y∈B2

The truth table for Y = f(X)
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A large digital system usually consists of many subcircuits.
Example:
In the following example, the output of logic circuit L1 drives the output of logic 
circuit L2.

L1

A
w

x

y

z

B

C

L2 F

• Let us assume that the output of L1 does not generate all possible combinations 
of values for A, B, and C.

• In particular, we will assume that there are no combinations of values for w, x, 
y, and z, which cause A, B, and C to assume values of 001 and 110. 

• In other words, L1 never generates the output combinations 001 and 110. 

• Hence, when we design L2, it is not necessary to specify values of F for ABC =
001 or 110 because these combinations of values can never occur as inputs to 
L2.

3. Incompletely specified functions:
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A B C     F
0 0 0     1
0 0 1 X
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 X
1 1 1 1

• For example, F might be specified by the following table:

• The X’s in the table indicate that we do not care whether the value of 0 or 1
is assigned to F for the combinations ABC = 001 or 110.

• In this example, we do not care what the value of F is because these input 
combinations never occur anyway. 

• The function F is then incompletely specified.

• The terms .� �� / and . � /� are referred to as ‘’don’t care’’ terms because we 
do not care whether they are present in the function or not.

3. Incompletely specified functions (cont'd):

These input combinations 
can never occur.

Don't care

Don't care
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3. Incompletely specified functions (cont'd):

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ 

• When we realize the function, we must specify values for the don’t cares. 
• It is desirable to choose values which will help simplify the function. 
• For the example on Slide 2.24:

o If we assign the value 0 to both X’s, then
- � .� �� /� � .� � / � . � / � .� �� /� � � /

o If we assign 0 to the first X and 1 to the second, then 
- � .� �� /� � .� � / � . � /� � . � / � .� �� /� � � / � . �

o If we assign 1 to the first X and 0 to the second, then 
- � .� �� /� � .� �� / � .� � / � . � / � .� ��  � � /

o If we assign 1 to both X’s, then 
- � .� �� /� � .� �� / � .� � / � . � /� � . � / � .� ��  � � / � . �

• In Section 4, we will see the selection of unspecified (don't care) values and the 
simplification of incompletely specified functions in detail. 

• Incompletely specified functions can arise in the following cases:
• Certain combinations of inputs cannot occur (as in the above example).
• All input combinations may occur, but the function output is used in such a 

way that we do not care whether it is 0 or 1 for certain input combinations.

Finding expression from 
truth table
See 2.32 canonical forms

The third choice of 
values leads to the 
simplest solution.
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For these input combinations, the output values
of the circuit (function) are not specified.

An X or Φ represents a don't care.

I8 I4 I2 I1 O8 O4 O2 O1

0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 1

0 0 1 1 0 1 0 0

0 1 0 0 0 1 0 1

0 1 0 1 0 1 1 0

0 1 1 0 0 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 1 0 0 1

1 0 0 1 0 0 0 0

1 0 1 0 X X X X

1 0 1 1 X X  X X

1 1 0 0 X X X X

1 1 0 1 X X X X

1 1 1 0 X X X X

1 1 1 1 X X X X

O1

O2

O4

O8

I1

I2

I4

I8

Example: A function that increments BCD numbers

We will create a general function to increment BCD 
numbers given on slide 1.9.

This function will have 4 inputs and 4 outputs 
because BCD numbers are 4-bit patterns.

BCD
+1

3. Incompletely specified functions (cont'd):

Since BCD numbers are represented using 
binary code words between 0000-1001, 
combinations between 1010-1111 will never 
appear as inputs to this function.  

Even if these values are applied to the 
inputs of the function, we do not care 
what the output values are. 
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There are different ways of representing (expressing) the same logic function.

When designing logic circuits, we choose the most suitable representation. 

Truth Table Representation :

We write the output values for all possible input combinations (variables) in a table.

We usually write the input columns so that they follow the order of binary 
counting.

Input variables are encoded as binary numbers.

(See examples in 2.20-2.22)

Numbered (Indexed) Representation:

Input variables are encoded as binary numbers.

We assign a decimal number for each input combination based on its binary value.

To represent the function, we list the decimal number of each input combination 
for which the function generates "1" (or logic "0“ or ”Φ”).

Representation of Logic (Boolean) Functions
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Example: Indexed representation of a completely specified basic logic function:

Row Input    Output
Num. x1 x2 y
0 0 0 1
1 0 1 0
2 1 0 1
3 1 1 0

y = f(x1,x2) = ∪1(0,2)

We can represent the same function with “0”-generating 
combinations. y = f(x1,x2) = ∪0(1,3)

y = f(x2,x1) = ∪1(0,1)

The order of the variables (x1,x2) is important.
It must be the same as in the truth table.
Otherwise, the decimal numbers identifying the 
combinations will change.

∪ denotes "union" or "set of".

Row Input    Output
Num. x2 x1 y
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 0

The same function; only 
the order of the variables 
(x2,x1) is changed.

∪1 denotes "set of 1-generating 
points".

Truth Table: Numbered (Indexed) Representation:

y = f(x1,x2) = ∪1(0,2)     =     f(x2,x1) = ∪1(0,1)    =    f(x1,x2) = ∪0(1,3)
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We apply the numbered representation to all outputs.

Num. x1 x2 y1 y2

0 0 0 1   1
1 0 1 0   1
2 1 0 1   0
3 1 1 0   0

Representation of the same function with “0”-generating combinations:

y1 = f(x1,x2) = ∪1(0,2)

y2 = f(x1,x2) = ∪1(0,1)

y2 = f(x1,x2) = ∪0(2,3)

y1 = f(x1,x2) = ∪0(1,3)

Truth Table: Numbered (Indexed) Representation:

Example: Representation of a completely specified general logic function :

2.30

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

In this case, writing only 1-generating or only 0-generating input combinations 
is not sufficient.

We must write at least two of the three groups (1-generating, 0-generating, 
don't care).

N x1 x2 y1 y2

0 0 0 1   1

1 0 1 0   Φ
2 1 0 Φ 0

3 1 1 0   Φ

y1 = f(x1,x2) = ∪1(0) + ∪0(1,3)

or   y1 = f(x1,x2) = ∪1(0) + ∪Φ(2)

or   y1 = f(x1,x2) = ∪0(1,3) + ∪Φ(2) 

y2 = f(x1,x2) = ∪1(0) + ∪0(2) 

or    y2 = f(x1,x2) = ∪1(0) + ∪Φ(1,3)

or    y2 = f(x1,x2) = ∪0(2) + ∪Φ(1,3) 

Truth Table: Numbered (Indexed) Representations:

Example: Representation of an incompletely specified general logic function:
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Algebraic Representation (Expressions) and Canonical Forms
The word description of a real-world logic design problem can be translated into a 
truth table.

Example: Assume that input variable A represents the phrase ‘’the car door is 
open’’ and B represents ‘’the key is inserted’’,
then the truth table can specify the action Z to be taken, where Z=1 means that 
the alarm sounds. 

Logic expressions of the Boolean functions can be obtained in canonical forms from 
their truth tables.

There are two types of canonical forms:

• 1st canonical form: SOP (ΣΠ) form.    Example: % & ' + % &� '

The sum of products, each of which corresponds to a "1"-generating combination.

• 2nd canonical form: POS (ΠΣ) form.   Example: % � & � '� �% �  &� � '�)

The product of sums, each of which corresponds to a "0"-generating combination.

Num. A B Z

0 0 0 0

1 0 1 0

2 1 0 0

3 1 1 1

Truth tables of real-world logic design problems are more 
complicated.

To handle a logic design problem and implement the solution 
using logic gates, we need to obtain an algebraic expression
for the output function. Z = f (A,B)
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• The 1st canonical form is the sum of special products called minterms.

• Minterm: For a Boolean function of n variables, a product of n literals in 
which each variable appears exactly once (in either true or complemented 
form, but not both) is called a minterm. 

For example, a function with 3 variables (a, b, c) has 8 minterms:

0� 1̅ 2̅,  0� 1̅ 2,  0� 1 2̅,   0� 1 2,  0 1̅ 2̅,  0 1̅ 2,  0 1 2̅,  0 1 2

• Each minterm that appears in the 1st canonical form covers only one row of 
the truth table with the output "1".

For example, the minterm 0� 1̅ 2̅ can generate "1" only for the input value 
0 1 2 = 000.

For all other input combinations, the minterm 0� 1̅ 2̅ generates "0".

Summary:

• The 1st canonical form of a function is the sum of minterms.

• In the 1st canonical form, each product (minterm) in the sum corresponds to a 
row in the truth table with the output "1".

1st Canonical Form: Sum of Products

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ 
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Truth Table → Expression in SOP form

• To find minterms, we locate all rows in the truth table where the output is "1".

• To obtain the individual minterms, we substitute variables (for example, A, B,
or C) for ones (of the inputs) and complements of variables (.�, ��, or /�) for 
zeros in the truth table. 

Finding minterms:

Example:

1st Canonical Form (cont’d) :

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Sum of Minterms: F(A,B,C) =
"True" (1) combinations: 001      011      101       110       111

+ .� � /+ . �� / + . � /� + . � /.� �� /
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3�
, �, 
� � 
���
� � 
��
� � 
��
�

We can similarly obtain the 1st canonical form of the complement of a function  
by considering the "false" (0) rows.

Example:

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

-�

1
0
1
0
1
0
0
0

The 1st canonical form of the complement of a function: 

Obtain the 1st canonical form of the complement of a function  F from the 
previous example.

1st canonical form of 3�:
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• A Boolean function may have many possible logic expressions. They produce the 
same result given the same inputs.

• Since the minterms in the 1st canonical form are in one-to-one correspondence 
with the 1’s of the truth table, the 1st canonical (standard) form expression 
for a function is unique.

• A function can have only one expression in the 1st canonical form.

Minimization:

- ., �, /    � .� �� / � .� � / � . �� / � . � / � . � /�

� .� ��  � .� � � . ��  � . � / � . � /�

� .�  � .�� ��  � � / � . � /�

� / � . � /�

� . � /� � /

� . � � /

Canonical forms are usually not the simplest (optimal) algebraic expression of the 
function.

They can usually be simplified.

Simplification of expressions in the 1st canonical form:

2.36

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Indexing minterms:

We assign each minterm an index (number) based on the binary encoding of the 
variables.

This decimal number represents the row number (Row numbers start at 0).

For example, we assign the index 5 to the minterm . �� / (101) and designate it m5.

Inputs:
A B C Minterms
0 0 0 .� �� /̅ = m0

0 0 1 .� �� / = m1

0 1 0 .� � /̅ = m2

0 1 1 .� � / = m3

1 0 0 . �� /̅ = m4

1 0 1 . �� / = m5

1 1 0 . � /̅ = m6

1 1 1 . � / = m7

Example:

Expression of function F in (2.33) in 1st canonical 
form:

F(A, B, C) = Σm(1,3,5,6,7)

=  m1 + m3 + m5 + m6 + m7

=  .� �� / � .� � / � . �� / � . � /� � . � /

F  = ΣA, B, C (1,3,5,6,7)  (Sum of minterms)

Minterms for 3 variables (A,B,C):
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2nd Canonical Form: Product of Sums

• The 2nd canonical form is the product of special sum terms called maxterms.

• Maxterm: For a Boolean function of n variables, a sum of n literals in which 
each variable appears exactly once (in either true or complemented form, but 
not both) is called a maxterm. 

• For example, a function with 3 variables (a, b, c) has 8 maxterms:

0 � 1 � 2, 0 �  1 � 2̅ , 0 � 1̅ � 2, 0 �  1̅ �  2̅,  0� � 1 � 2,  0� � 1 � 2̅,  0� � 1̅ � 2, 0� � 1̅ � 2̅

• Each maxterm has a value of "0" for exactly one combination of values for the 
input variables and "1" for all other combinations.

For example, the maxterm 0 � 1 � 2 can generate "0" only for the input value 
0 1 2 =000.

For all other input combinations, the maxterm 0 � 1 � 2 generates "1".

Summary:

• The 2nd canonical form of a function is the product of maxterms.

• In the 2nd canonical form, each sum term (maxterm) in the product 
corresponds to a row in the truth table with the output "0".
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Finding maxterms:
Truth Table → Expression in POS form

• To find the maxterms, we locate all rows in the truth table where the output is 
"0".

• To obtain the individual maxterms, we substitute variables (for example, A, B, 
or C) for zeros (of the inputs) and complements of variables (.�, ��, or /�) for 
ones in the truth table.

Example:

Note that this function F has the same truth table as the function on slide 2.33.

The expressions in the 1st and 2nd canonical forms both correspond to the same 
truth table.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ 

2nd Canonical Form (cont’d):

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

"False" (0-generating) combinations: 000              010              100

Product of maxterms: F(A,B,C) = (. � � � /) (. � �� � /) (.� � � � /)
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The 2nd canonical form of the complement of a function: 

We can similarly obtain the 2nd canonical form of the complement of a function 
by considering the "true" (1) rows:

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Example:

Obtain the 2nd canonical form of the complement of a function  F from the 
previous example.

2nd canonical form of F:

-�., �, /� = (. � � � /�) (. � �� � /�) (.� � � � /�) (.� � �� � /) (.� � �� � /�)
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Simplification of expressions in the 2nd canonical form:

Canonical forms are usually not the simplest (optimal) algebraic expression of the 
function.

They can usually be simplified.

• A Boolean function may have many possible logic expressions. They produce the 
same result given the same inputs.

• Since the maxterms in the 2nd canonical form are in one-to-one 
correspondence with the 0’s of the truth table, the 2nd canonical (standard) 
form expression for a function is unique.

• A function can have only one expression in the 2nd canonical form.

Minimization:

-�., �, /�  � . � � � / �. � �� � /��.� � � � /�

� . � / � � �� �.� � � � /�

� . � / �.� � � � /�

� . � / �.� � � � /� � � / (consensus)

� . � / � � /
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Indexing maxterms:

Example:
Expression of function F in (2.38) in 2nd canonical 
form:

-�., �, /� = ΠM(0,2,4)
=  M0 • M2 • M4
=  (. � � � /) (. � �� � /) (.� � � � / )

F = ΠA,B,C(0,2,4)  product of maxterms.

Inputs:
A B C Maxterms
0 0 0 . � � � / M0

0 0 1 . � � � /̅ M1

0 1 0 . � �� � / M2

0 1 1 . � �� � /̅ M3

1 0 0 .� � � � / M4

1 0 1 .� � � � /̅ M5

1 1 0 .� � �� � / M6

1 1 1 .� � �� � /̅ M7

We assign each maxterm an index (number) based on the binary encoding of the 
variables. This is a decimal number that represents the row number (Row numbers 

start at 0). 

For example, we assign the index 5 to the maxterm 0� � 1 � 2̅ (101) and designate it M5.

Maxterms for 3 variables (A,B,C):
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Conversions Between Canonical Forms

 Converting from 1st (sum of minterms) form to 2nd (product of maxterms) form:

• Replace the minterms with maxterms, and assign them numbers of minterms 
that do not appear in the 1st canonical form.

• Example: F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

F(A,B,C) = m1 + m3 + m5 + m6 + m7 = M0 ⋅ M2 ⋅ M4
F A, B, C � A� B� C � A� B C � A B� C � A B C� � A B C � �A � B � C��A � B� � C��A� � B � C�

 Converting from 2nd (product to maxterms) form to 1st (sum of minterms) form:

• Replace the maxterms with minterms, and assign them numbers of maxterms 
that do not appear in the 2nd canonical form.

• Example:    F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7)

 Finding the complement of the function in sum of minterms form: 

• Select the minterms that do not appear in the 1st canonical form.

• Example:     F(A,B,C) = Σm(1,3,5,6,7)  F(A,B,C) = Σm(0,2,4)

 Finding the complement of the function in the product of maxterms form: 

• Select the maxterms that do not appear in the 2nd canonical form.

• Example:     F(A,B,C) = ΠM(0,2,4)  F(A,B,C) = ΠM(1,3,5,6,7)
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• Applying De Morgan's law to the complement of the function in the 1st canonical 
form generates the expression in the 2nd canonical form.

Example:
Complement of the function in SOP form (Slide 2.34):

F� � A� B� C� � A� B C� � A B� C�

Applying De Morgan 

F�� � A� B� C� � A� B C� � A B� C�

F � �A � B � C��A � B� � C��A� � B � C� 2nd canonical form (2.38).

• Applying the De Morgan's theorem to the complement of the function in the 2nd 
canonical form generates the expression in the 1st canonical form.

Example:

Complement of the function in POS form (2.39):

F� � �A � B � C���A � B� � C���A� � B � C���A� � B� � C��A� � B� � C��

Applying De Morgan

F�� � �A � B � C���A � B� � C���A� � B � C���A� � B� � C��A� � B� � C��

F � A� B� C � A� B C � A B� C � A B C� � A B C 1st canonical form (2.33).

Canonical Forms and the De Morgan's Theorem
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The input variables (combinations) of a logic function are elements (vectors) of 
the set Bn. Example: B3={000, 001, …, 111}

We can represent these variables as vertices of an n-dimensional hypercube.

Vertices that correspond to 1-generating combinations are colored (marked).

The number of inputs of the function determines how many dimensions the 
hypercube has.

n-bit input → n-dimensional hypercube

Boolean Cubes:

1-dimensional

f(X) X

0 1 2-dimensional

f(X,Y) 

X

Y

11

00

01

10

3-dimensional

f(X,Y,Z)

X

Y
Z

000

111

101

4-dimensional

f(W,X,Y,Z) 

W

X

Y
Z

0000

1111

1000

0111

Graphical Representation
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A B F

0 0 1

0 1 0

1 0 1

1 1 0
A

B

11

00

01

10

Example:
F(A,B)

Example:
F(A,B,C)

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

A

B
C

000

111

101

011

110

As the number of variables (inputs) increases, drawing a Boolean cube becomes 
more difficult.

Therefore, Boolean cubes are not practical for representing Boolean functions 
with many inputs.

However, they make it easier to visualize some properties (especially adjacent 
combinations) of the functions and to explain further topics.

2.46

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

The Karnaugh map is a tool for representing and simplifying Boolean functions.
The Boolean variables and related output values are transferred (generally from a 
truth table) into a table that is in a matrix form.

Row
Num. A B F

0 0 0 1

1 0 1 0

2 1 0 1

3 1 1 0
A

B

11

00

01

10

0 1

2 3

0 1
B

A

0

1

1

1 0

0

F

0 2

1 3

0 1
A

B
0

1

1

0 0

1

F

or

Karnaugh Maps  

Maurice Karnaugh (1924-2022), American physicist and mathematician

Truth table: Boolean Cube: Karnaugh maps:

We can place different 
variables in columns or rows.

A: row, B: column A: column, B: row

Example:  F(A,B)
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0 1

4 5

00 01
BC

A

0

1
3 2

7 6

11 10
F

000 001

100 101

011 010

111 110

BC
A

F

I
np

ut
s

Gray Code

Format of the Karnaugh map for a function with 3 inputs:  F(A,B,C)

Karnaugh map (cont'd)
The rows and columns are labeled according to the Gray code property so that 
variables in adjacent squares (horizontal and vertical) of the map differ in only 
one variable.

For example, we write here the output value 
generated for the input combination ABC=010.

Adjacent squares.
Hamming distance is 1.

Num A B C F
0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

0 1

4 5

00 01
BC

A

0

1
3 2

7 6

11 10

0 0 1 0

0 1 1 1

F

Example:

Row
Numbers
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0 1

4 5

3 2

7 6

12 13

8 9

15 14

11 10

CD

AB 00   01   11  10

00

01

11

10

F

Format of the Karnaugh map of a function with 4 inputs: F(A,B,C,D)

We will use Karnaugh maps to simplify Boolean functions in the coming lectures.

Gray Code

Gray Code

C D

00    01      11   10

1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1

AB

F CD

00

01

11

10

Example:
Draw the Karnaugh map for the following 
function.
F(A,B,C,D) = ∪1 (0,2,5,8,9,10,11,12,13,14,15)


