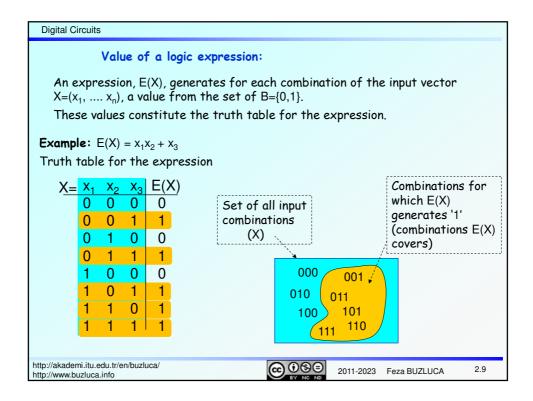



Digital Circuits						
The Duality principle:						
To obtain the dual of a logic expression: Replace \cdot by +, + by \cdot , 0 by 1, and 1 by 0, but do not change the variables.						
$a + b + 0 \dots \Leftrightarrow a \cdot b \cdot 1 \dots$						
Example: The dual of the expression $a + a \cdot b$ is $a \cdot (a+b)$.						
Principle: Duals of all proven theorems are also theorems.						
Given a Boolean algebra identity, another identity can be obtained by taking the dual of both sides of the identity.						
Note that in the previous slide, axioms were presented with their duals (in two columns).						
Example:						
Absorption theorem (given in the next slide):						
If we can prove the theorem $a + a \cdot b = a$, then its dual $a \cdot (a+b) = a$ is also true.						
General Duality Principle: f (X1, X2,, Xn, 0, 1, +, •) $\Leftrightarrow f^{D}(X1, X2,, Xn, 1, 0, •, +)$						
 Duality establishes a relationship between proofs of theorems. 						
Duals are not equal.						
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 2.2						

Digital Circuits							
Theorems:							
These theorems are derived from the operations and axioms of Boolean algebra.							
They can be proven using the axioms.							
1. Annihilator (or Dominance):	1. Annihilator (or Dominance):						
a + 1 = 1	a • 0 = 0						
2. Involution: (a')' = a or $\overline{\overline{a}}$ = a							
3. Idempotency:							
a+a+a++a = a	a•a•a • •a = a						
4. Absorption: (Proof in 2.4)							
$a + a \cdot b = a$	a (a+b) = a						
5. De Morgan's Theorem: Augustus De Morgan, British mathematician and logician (1806 - 1871)							
$\overline{(a+b)} = \overline{a} \cdot \overline{b}$	$\overline{(a \cdot b)} = \overline{a} + \overline{b}$						
5. General form of De Morgan's Theorem:							
$f(X1, X2,, Xn, 0, 1, +, \cdot) = g(\overline{X1}, \overline{X2},, \overline{Xn}, 1, 0, \cdot, +)$							
 It establishes a relationship between AND and OR (• and +). 							
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011-2023 Feza BUZLUCA 2.3						


Digital Circuits			
Proving the theorems:			
a) Using Axioms			
a) using Axions			
Example:			
Theorem:	$X \cdot Y + X \cdot \overline{Y} =$	- X	
Proof:			
Distributive	$X \cdot Y + X \cdot \overline{Y} =$	$= X \cdot (Y + \overline{Y})$	
Inverse (Complement)			
Identity	$X \cdot (1) =$	= X 🗸	
Example:			
Theorem:	X + X • Y	= X (Absorption)	
Proof:			
Identity	X + X • Y	$= X \cdot 1 + X \cdot Y$	
Distributive	X•1 + X•Y		
Annihilator	X • (1 + Y)		
Identity	X • (1)	= X ✓	

Digital Circuits
Minimizing logic expressions using axioms and theorems: Minimizing a logic expression means: • finding the shortest expression • with the fewest operations and variables • that generates the same output values as the original expression. Example: $Z(A, B, C) = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$ Original expression $= \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C + A B C$ $= \overline{A} B C + A \overline{B} C + A \overline{B} C + A B \overline{C} + A B C$ $= (\overline{A} + A) B C + A \overline{B} C + A B \overline{C} + A B C$ $= (1) B C + A \overline{B} C + A B \overline{C} + A B C$ $= B C + A \overline{B} C + A B \overline{C} + A B C$ $= B C + A \overline{B} C + A B \overline{C} + A B C$ $= B C + A \overline{B} C + A B \overline{C} + A B C$ $= B C + A \overline{B} C + A B \overline{C} + A B C$ $= B C + A \overline{B} C + A B \overline{C} + A B C$ $= B C + A (\overline{B} + B) C + A B \overline{C} + A B C$ $= B C + A (\overline{B} + B) C + A B \overline{C} + A B C$ $= B C + A (\overline{B} + B) C + A B \overline{C} + A B C$ $= B C + A (\overline{B} + B) C + A B \overline{C} + A B C$
= B C + A C + A B (1) = B C + A C + A B Minimized expression
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 2.6

Digital Circuits	License: https://creativecommons.org/licenses/by-nc-nd/4.0/					
Logic (Boolean) Expressions					
A logic expression is a fin that are well-formed acc	nite combination of variables, constants, and operators ording to the rules.					
It is represented as $E(X)$, where $X = (x_1, x_2, \dots, x_n) \in B^n$ and each $x_i \in \{0, 1\}$.						
B ⁿ is the set of vectors with n binary variables.						
Examples:						
$E(x_1, x_2, x_3, x_4) =$	$x_2\overline{x_3} + x_1x_4 + \overline{x_1}x_2$					
$\mathrm{E}(a,b,c)=a\bar{c}+c$	ıb					
$\mathrm{E}(a,b,c,d)=(a+$	$(b+\bar{c})(\bar{a}+d)(b+\bar{d})$					
Literal:						
	each separate occurrence of a variable, either in normal erse (complemented) form, is a literal.					
For example, the express contains four literals ($aar{c}$	sion $E(a, b, c) = a\overline{c} + ab$ has three variables (a, b, c) and $(+ab)$.					
However, two of the lite	rals are identical (a appears twice).					
	pressions, then $\overline{E_1}$, $\overline{E_2}$, $E_1 + E_2$, $E_1 \cdot E_2$, and all possible					
combinations are also log	ic expressions.					
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011-2023 Feza BUZLUCA 2.7					

Normal forms of logic	expressions:
Each logic expression can be writte	en in two special forms.
1. Disjunctive normal form (DNF)	: ΣΠ
Logic <u>s</u> um <u>o</u> f logic <u>p</u> roducts (SOI). OR of ANDs.
Example: $b\bar{c} + ad + \bar{a}b$	
The OR (logic sum) operation is	also called logical disjunction.
2. Conjunctive normal form (CNF)): ΠΣ
Logic <u>p</u> roduct <u>o</u> f logic <u>s</u> ums (POS). AND of ORs.
Example: $(a + b + \overline{c})(a + d)(\overline{a} + b)(\overline{a} + b)(a$)
The AND (logic product) operation	on is also called logical conjunction.
Any logic expression can be writte	n in CNF (POS form) and DNF (SOP form).
Any expression in CNF can be conv	erted to DNF and vice versa ($\Sigma\Pi\leftrightarrow\Pi\Sigma$).
• Write the expression starting wi	n alphabetical order: $ab\bar{c}$ (<u>not</u> $a\bar{c}b$) ith the term that has the fewest (or the mos scending (or descending) order of literals per or $ab\bar{c}d + a\bar{c}d + ab$

Digital Circuits					
Applying axioms and theorems to expressions					
The axioms and theorems of Boolean algebra defined for binary values are also valid for expressions due to the closure property.					
Remember: According to the closure property, the value generated by an expression E is a binary value, i.e., $E(X) \in B = \{0,1\}$					
Examples:					
$E(a, b, c, d) = b\overline{c} + ad + \overline{a}b$					
Identity: $E(X) + 0 = E(X)$ $E(X) \cdot 1 = E(X)$					
$E(a, b, c, d) + 0 = (b\overline{c} + ad + \overline{a}b) + 0 = b\overline{c} + ad + (\overline{a} + 0)(b + 0)$					
$= b\overline{c} + ad + \overline{a}b = E(a, b, c, d)$					
$E(a, b, c, d) \cdot 1 = (b\overline{c} + ad + \overline{a}b) \cdot 1 = b\overline{c}1 + ad1 + \overline{a}b1$					
$= b\overline{c} + ad + \overline{a}b = E(a, b, c, d)$					
Annihilator (or Dominance): $E(X) + 1 = 1$ $E(X) \cdot 0 = 0$					
$E(a, b, c, d) + 1 = (b\overline{c} + ad + \overline{a}b) + 1 = 1$					
$E(a, b, c, d) \cdot 0 = (b\overline{c} + ad + \overline{a}b) \cdot 0 = 0$					
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 2.10					

Digital Circuits

"Order Relation" between binary vectors:

To explain some properties of logic expressions, we can define and use the following two order relations "< " and " \leq ":

1. An order relation "<" between elements of set $B = \{0,1\}: 0 < 1$

• Read as "O precedes 1" or "O is smaller than 1".

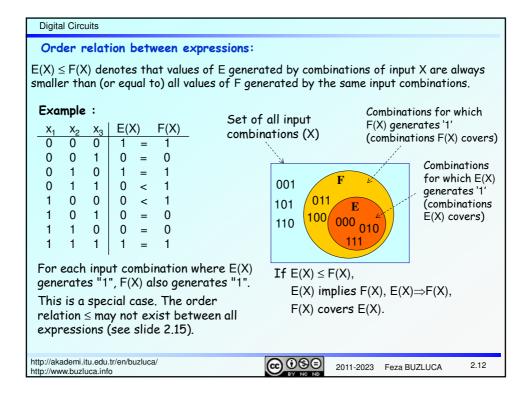
2. Another order relation " \leq " between X \in Bⁿ vectors can be defined as follows:

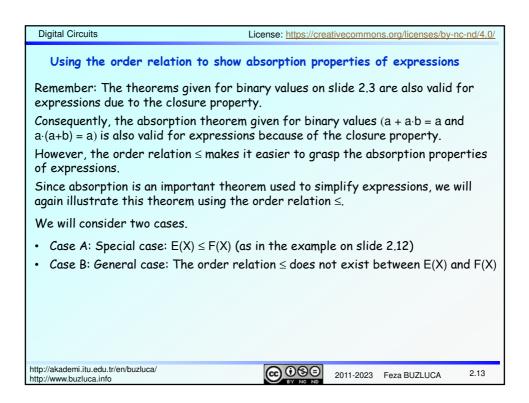
 If each component of X1 is smaller than (precedes) or equal to the component of vector X2 in the corresponding position, then X1 ≤ X2.

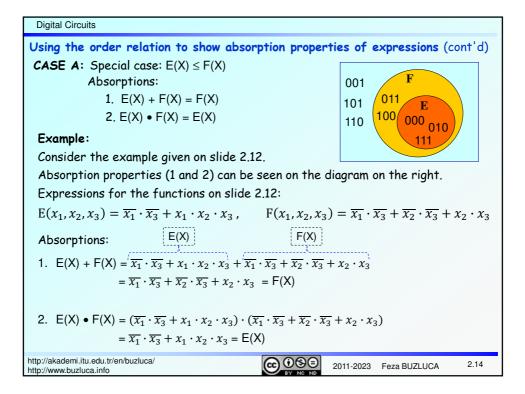
Example:

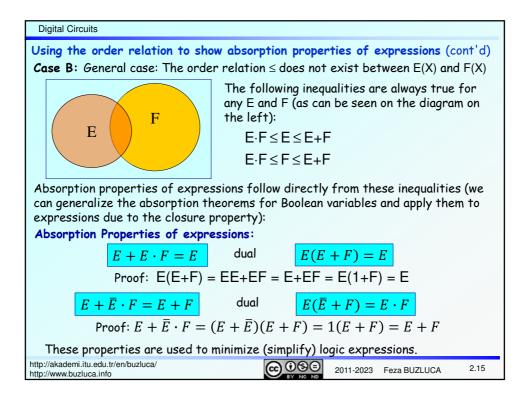
 $X1{=}1001$, X2 = 1101 $X1 \leq X2.$

The order relation "≤" may not exist between all vectors.

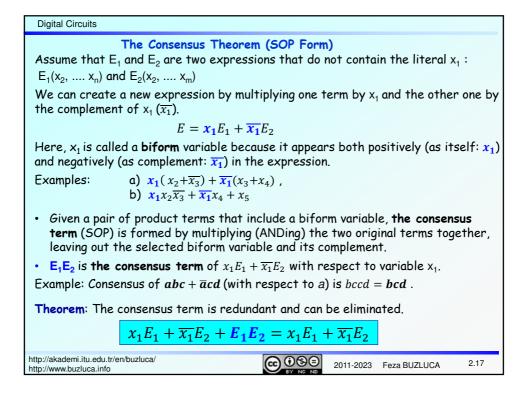

Example: X1 = 0011 , X2 = 1001

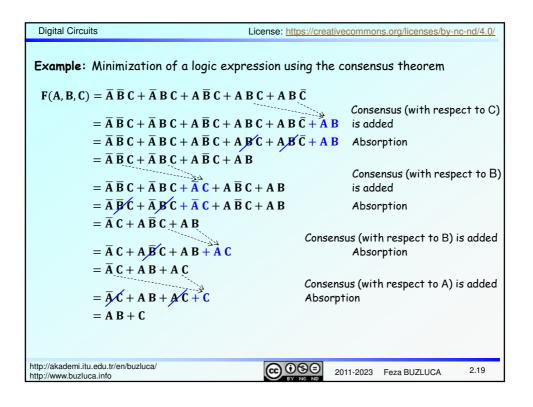

There is no order relation between X1 and X2 (Neither X1 \leq X2 nor X2 \leq X1 is true).

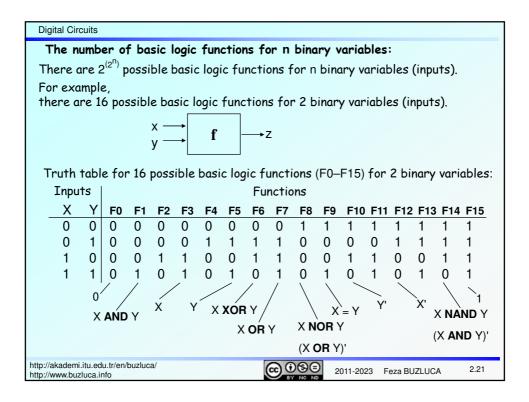

http://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

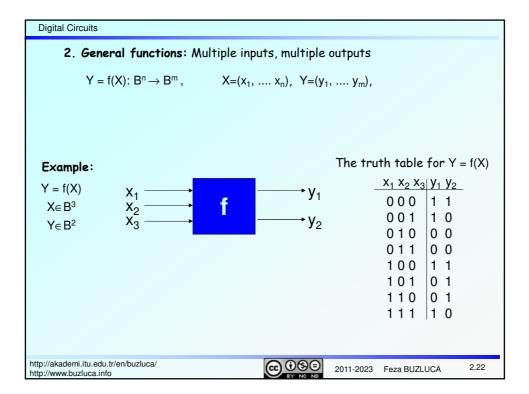

2011-2023 Feza BUZLUCA

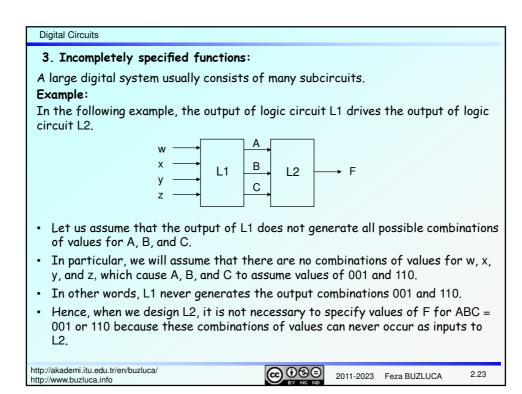
UCA 2.11



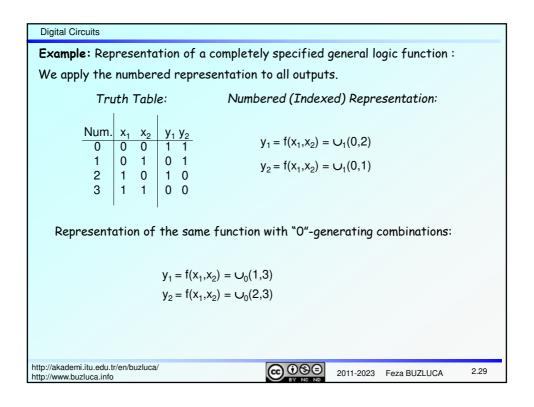



Digital Circ	cuits				
Example (general case): E(a,b,c,d) = abc', $F(a,b,c,d) = bdE \cdot F = abc'd E + F = abc' + bdThe order relation (\leq) does not exist betweenthe E and F expressions given in this example.From the truth table, we observe$					
abcd	E	F	F۰F	= E+F	E·F≤E and E·F≤F.
0000	0	0	0	0	We can check the absorption properties:
0001	0	0		0	$E \cdot F + E = E$
0010	0	0	0	0	$abc'd + abc' = abc' \checkmark$
0011	0	0 0	0 0	0 0	
0100	0	0	0	1	and
0110	0	<mark>1</mark> 0	0	0	$E \cdot F + F \stackrel{?}{=} F_2$
0111	0	1	0	1	abc'd + bd ≟ bd ✓
1000	0	<mark>1</mark> 0 0	0	0	Ágain, from the truth table, we observe
1001	0	0	0	0	E≤E+F and F≤E+F.
1010	0	0 0	0	0 0	We can check the absorption properties:
1011	0	0	0 0	1	$E \cdot (E + F) \stackrel{?}{=} E$
1101		1	1	1	$abc'(abc' + bd) = abc' \checkmark Wa have thus shown the$
1110	0	0	0	Ö	we have thus shown the
1111	0	1	0	1	and absorption properties
					$F \cdot (E + F) = F_2$ using a truth table instead
bd (abc'+bd) = bd ✓ of axioms.					
http://akademi. http://www.buz			ouzluc	a/	2011-2023 Feza BUZLUCA 2.16




Digital Circuits					
The Consensus Theorem (POS Form) According to the duality principle, the consensus theorem is also valid for expressions written in product-of-sums (POS) form.					
Assume that E_1 and E_2 are two expressions that do not contain the literal x_1 : $E_1(x_2,, x_n)$ and $E_2(x_2,, x_m)$					
We can create a new expression by adding x_1 to one term and the complement of x_1 to the other one.					
$E = (x_1 + E_1)(\overline{x_1} + E_2)$ Here, x ₁ is a biform variable.					
Examples: a) $(x_1 + x_2 + \overline{x_3})(\overline{x_1} + x_3 + x_4)$, b) $(x_1 + x_2 \overline{x_3})(\overline{x_1} + x_3 x_4)$					
• Given a pair of sums that include a biform variable, the consensus term (POS) is formed by adding (ORing) the two original terms together, leaving out the selected biform variable and its complement.					
• $\mathbf{E_1} + \mathbf{E_2}$ is the consensus term of $(x_1+E_1)(\overline{x_1}+E_2)$ with respect to the variable x_1 . Example: Consensus of $(a + b + c)(\overline{a} + c + d)$ is: $b + c + c + d = b + c + d$.					
Theorem: The consensus term is redundant and can be eliminated.					
$(x_1+E_1)(\overline{x_1}+E_2)(E_1+E_2) = (x_1+E_1)(\overline{x_1}+E_2)$					
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 2.18					

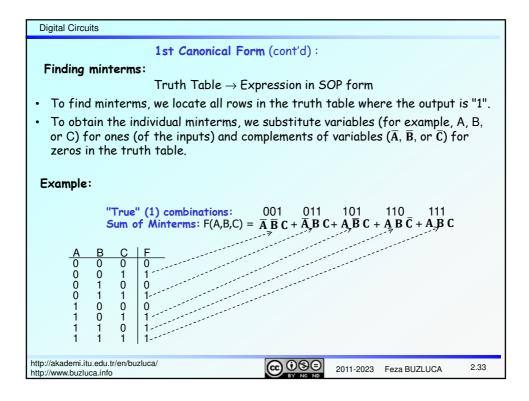
Digital Circuits					
Logic (Boolean) Functions					
Logic functions are defined on the input set B ⁿ (vectors with n binary variables). There are three types of logic functions:					
1. Simple (basic) functions: Multiple inputs, single output					
$\begin{split} y &= f(X) \colon B^n \to B \\ \forall X_i \! \in \! B^n \; ; \; \exists \! ! \; y_1 \! \in \! B \; ; \; y \! = \! f(X) \end{split}$	"For any X, there is exactly one y such that $f(X) = y$."				
Example: $y = f(X)$ X_1 $X \in B^3$ X_2 $y \in B$	$f \longrightarrow y \qquad f \qquad$				
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011-2023 Feza BUZLUCA 2.20				


Digital Circuits						
Incompletely specified functions (cont'd):						
• For example, F might be specified	by t	he f	ollowing table:			
A	В	С	F			
0	0	0	1			
	0	1 0	X Don't care			
These input combinations 0	1	1	1			
can never occur. 1	0	0	0			
1	0	1	0			
1	1	0	X Don't care			
		'				
 The X's in the table indicate that we do not care whether the value of 0 or 1 is assigned to F for the combinations ABC = 001 or 110. 						
 In this example, we do not care what the value of F is because these input combinations never occur anyway. 						
 The function F is then incompletely specified. 						
• The terms $\overline{A} \ \overline{B} \ C$ and $A \ B \ \overline{C}$ are referred to as "don't care" terms because we do not care whether they are present in the function or not.						
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info		B	80 2011-2023 Feza BUZLUCA 2.24			

Digital Circuits	License: https://creativecor	nmons.	org/licenses/by-nc-nd/4.0/
 3. Incompletely specified funct When we realize the function, It is desirable to choose values For the example on Slide 2.24: If we assign the value 0 the first of the example on Slide 2.24: If we assign the value 0 the first of the example on Slide 2.24: If we assign the value 0 the first of the example on Slide 2.24: 	tions (cont'd): we must specify values for s which will help simplify t to both X's, then $= \overline{A} \overline{B} \overline{C} + B C$	or the the fu Find trut See	don't cares.
$F = \overline{A} \overline{B} \overline{C} + \overline{A} B C + A B \overline{C}$ $F = \overline{A} \overline{B} \overline{C} + \overline{A} B C + \overline{A} B C$ $F = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} B C$ $F = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} B C$ $F = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} B C$	+ A B C = $\overline{A} \overline{B} \overline{C} + B C + A$ + X and 0 to the second, + A B C = $\overline{A} \overline{B} + B C$ s, then	B then	The third choice of values leads to the simplest solution. B
 In Section 4, we will see the set simplification of incompletely s Incompletely specified function Certain combinations of inp All input combinations may way that we do not care whet a set set of the set of	pecified functions in deto ns can arise in the followi puts cannot occur (as in tl occur, but the function o	ail. ng ca: he abo output	ses: ove example). is used in such a
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info		2023 F	eza BUZLUCA 2.25

Digital Circuits								
3. Incompletely specified functions (cont'd):								
Example: A function that increments BCD numb	ers	I1 T2		→ → R	CD		+ 01 + 02	
We will create a general function to increment numbers given on slide 1.9.	BCD	14	$\begin{array}{cccc} I2 \longrightarrow & BCD \longrightarrow & O2\\ I4 \longrightarrow & +1 \longrightarrow & O4\\ I8 \longrightarrow & & & & & & & \\ \end{array}$					
This function will have 4 inputs and 4 outputs								
because BCD numbers are 4-bit patterns.	18	14	12	11	08	04	02	01
Since PCD numbers are represented using	0	0	0	0	0	0	0	1
Since BCD numbers are represented using	0	0	0	1	0	0	1	0
binary code words between 0000-1001,	0	0	1	0	0	0	1	1
combinations between 1010-1111 will never	0	0	1	1	0	1	0	0
appear as inputs to this function.	0	1	0	0	0	1	0	1
Even if these values are applied to the	0	1	0	1	0	1	1	0
inputs of the function, we do not care	0	1	1	0	0	1	1	1
what the output values are.	0	1	1	1	1	0	0	0
what the output values are.	1	0	0	0	1	0	0	1
	1	0	0	1	0	0	0	0
	1	0	1	0	X	Х	Х	X
For these input combinations, the output values	1	0	1	1	X	Х	Х	X
of the circuit (function) are not specified.	1	1	0	0	X	Х	Х	X
An X or Φ represents a don't care.	1	1	0	1	X	X	Х	X
An A or whepresents a don't care.	1	1	1	0	X	Х	Х	X
	1	1	1	1	Х	Х	Х	Х
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	90 90 ND	201	1-2023	Fez	a BUZ	LUCA		2.26

Digital Circuits
Representation of Logic (Boolean) Functions
There are different ways of representing (expressing) the same logic function.
When designing logic circuits, we choose the most suitable representation.
Truth Table Representation :
We write the output values for all possible input combinations (variables) in a table
We usually write the input columns so that they follow the order of binary counting.
Input variables are encoded as binary numbers.
(See examples in 2.20-2.22)
Numbered (Indexed) Representation:
Input variables are encoded as binary numbers.
We assign a decimal number for each input combination based on its binary value.
To represent the function, we list the decimal number of each input combination for which the function generates "1" (or logic "0" or " Φ ").
http://akademi.itu.edu.tr/en/buzluca/


Digital Circuits					
Example: Indexed representation of a completely specified basic logic function:					
Truth Table:Numbered (Indexed) Representation:Noumbered (Indexed) Representation:Numered (Indexed) Representation:OutputNumbered (Indexed) Representation:OutputNumbered (Indexed) Representation:OutputNumbered (Indexed) Representation:OutputNumbered (Indexed) Representation:OutputNumbered (Indexed) Representation:OutputOutputOutputOutputIndex colspan="2">Index colspan="2"Index colspan="2"Index colspan="2"Index colspan="2"Index					
Row Input Output $y = f(\mathbf{x}_2, \mathbf{x}_1) = \bigcup_1(0, 1)$ Num. x_2, x_1 y 0 0 0 1 0 1 2 1 0 3 1 1 0 combinations. $y = f(x_1, x_2) = \bigcup_0(1, 3)$ $y = f(x_1, x_2) = \bigcup_1(0, 2) = f(x_2, x_1) = \bigcup_1(0, 1) = f(x_1, x_2) = \bigcup_0(1, 3)$					
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 2.28					

Digital Circu	uits					
Example: Representation of an incompletely specified general logic function:						
In this c is not su			-generating	or only O-generating input combinations		
We mus [.] don't ca		at least tw	o of the thr	ee groups (1-generating, 0-generating,		
	Truth To	able:	Numbe	red (Indexed) Representations:		
N 0 1 2 3	$\begin{array}{ccc} x_1 & x_2 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$	0Φ	or or or	$y_{1} = f(x_{1}, x_{2}) = \bigcup_{1}(0) + \bigcup_{0}(1,3)$ $y_{1} = f(x_{1}, x_{2}) = \bigcup_{1}(0) + \bigcup_{\Phi}(2)$ $y_{1} = f(x_{1}, x_{2}) = \bigcup_{0}(1,3) + \bigcup_{\Phi}(2)$ $y_{2} = f(x_{1}, x_{2}) = \bigcup_{1}(0) + \bigcup_{0}(2)$ $y_{2} = f(x_{1}, x_{2}) = \bigcup_{1}(0) + \bigcup_{\Phi}(1,3)$ $y_{2} = f(x_{1}, x_{2}) = \bigcup_{0}(2) + \bigcup_{\Phi}(1,3)$		
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 2.30						

Digital C	ircu	its			
-	ord	l des	Representation (Expressions) and Canonical Forms scription of a real-world logic design problem can be translated into a		
			sume that input variable A represents the phrase "the car door is epresents "the key is inserted",		
the ald	arm	SOL			
Num. 0	A 0	0 B	Z 0 Truth tables of real-world logic design problems are more 0 complicated.		
1 2 3	0 1 1	-	 To handle a logic design problem and implement the solution using logic gates, we need to obtain an algebraic expression for the output function. Z = f (A,B) 		
Logic e	Logic expressions of the Boolean functions can be obtained in canonical forms from their truth tables.				
There	are	two	types of canonical forms:		
	• 1st canonical form: SOP ($\Sigma\Pi$) form. Example: $a \ b \ c + a \ \overline{b} \ c$				
The sum of products, each of which corresponds to a "1"-generating combination.					
• 2nd canonical form: POS ($\Pi\Sigma$) form. Example: $(a + b + \overline{c})(a + \overline{b} + \overline{c})$					
	The product of sums, each of which corresponds to a "0"-generating combination.				
http://akade http://www.b					

Digital Circuits	License: https://creativecommons.org/licenses/by-nc-nd/4.0/				
1st C	anonical Form: Sum of Products				
• The 1st canonical f	orm is the sum of special products called minterms.				
which <u>each</u> variable	olean function of n variables, a <u>product</u> of n literals in e appears <u>exactly once</u> (in either true or complemented) is called a <mark>minterm</mark> .				
For example, a fun	ction with 3 variables (a, b, c) has 8 minterms:				
ā Ē c, ā Ē c,	ābē, ābc, abē, abc, abē, abc				
	 Each minterm that appears in the 1st canonical form covers only one row of the truth table with the output "1". 				
For example, the r a b c = 000.	ninterm $ar{\mathbf{a}}ar{\mathbf{b}}ar{\mathbf{c}}$ can generate "1" only for the input value				
For all other input combinations, the minterm $ar{\mathbf{a}}ar{\mathbf{b}}ar{\mathbf{c}}$ generates "0".					
Summary:					
• The 1st canonical f	orm of a function is the sum of minterms.				
	ll form, each product (minterm) in the sum corresponds to a ble with the output "1".				
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011-2023 Feza BUZLUCA 2.32				

Digital Circuits
The 1st canonical form of the complement of a function:
We can similarly obtain the 1st canonical form of the complement of a function by considering the "false" (0) rows.
Example:
Obtain the 1st canonical form of the complement of a function F from the previous example.
1st canonical form of \overline{F} :
$\overline{F(A,B,C)} = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 2.34

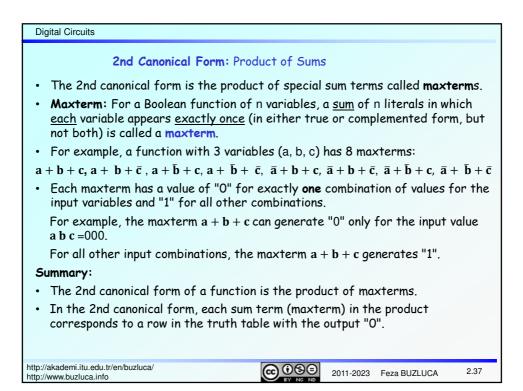
Digital Circuits

Simplification of expressions in the 1st canonical form:

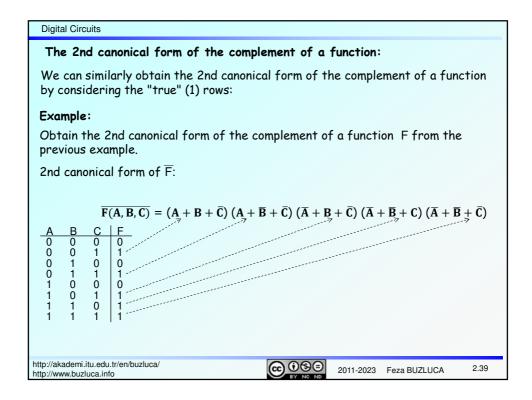
Canonical forms are usually not the simplest (optimal) algebraic expression of the function.

They can usually be simplified.

Minimization:


F (A , B , C)	$= \overline{A} \overline{B} C + \overline{A} B C + A \overline{B} C + A B C + A B \overline{C}$
	$= (\overline{A} \overline{B} + \overline{A} B + A \overline{B} + A B)C + A B \overline{C}$
	$= (\overline{\mathbf{A}} + \mathbf{A})(\overline{\mathbf{B}} + \mathbf{B})\mathbf{C} + \mathbf{A}\mathbf{B}\overline{\mathbf{C}}$
	$= \mathbf{C} + \mathbf{A} \mathbf{B} \overline{\mathbf{C}}$
	$= A B \overline{C} + C$
	$= \mathbf{A} \mathbf{B} + \mathbf{C}$
	nction may have many possible logic expressions. They produce the given the same inputs.

• Since the minterms in the 1st canonical form are in one-to-one correspondence with the 1's of the truth table, the 1st canonical (standard) form expression for a function is <u>unique</u>.


• A function can have only one expression in the 1st canonical form.

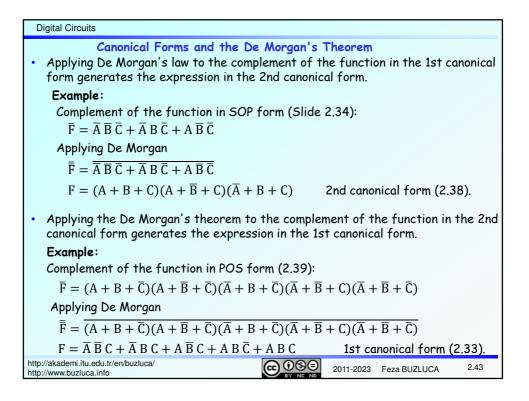
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info		2011-2023	Feza BUZLUCA	2.35
--	--	-----------	--------------	------

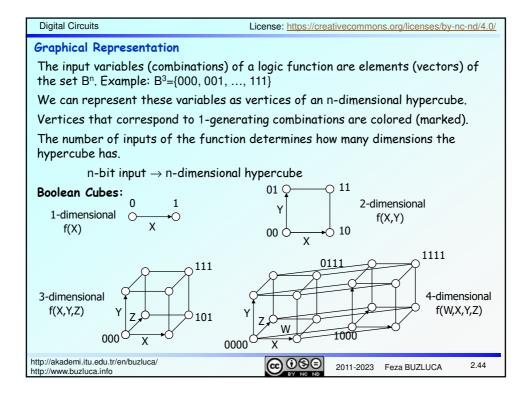
Digita	ıl Circı	uits				
Inde	xing	min	terms:			
We a varia			ch minterm an i	index (number) based on the binary encoding of the		
This	deci	mal r	number represe	ents the row number (Row numbers start at 0).		
For e	exam	ple,	we assign the	index 5 to the minterm A \overline{B} C (101) and designate it m5.		
Minte	rms	for	3 variables (/	A,B,C):		
Inp	outs:					
<u>A</u>	B	С	Minterms			
0	0	0	$\overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}} = \mathbf{m}0$	Example:		
0	-	1	$\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C} = \mathbf{m1}$	Expression of function F in (2.33) in 1st canonical		
0	1 1	0 1	$\overline{\mathbf{A}} \mathbf{B} \overline{\mathbf{C}} = \mathbf{m} 2$	form:		
0	0	0	$\overline{A} B C = m3$ $A \overline{B} \overline{C} = m4$	$F(A, B, C) = \Sigma m(1,3,5,6,7)$		
1	-	-	ABC = m4 ABC = m5			
		-	ABC = mS $AB\bar{C} = m6$	= m1 + m3 + m5 + m6 + m7		
	1	1	ABC = m7	$= \overline{A} \overline{B} C + \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$		
	'			$F = \Sigma_{A, B, C} (1,3,5,6,7)$ (Sum of minterms)		
http://oka	http://akademi.itu.edu.tr/en/buzluca/					
	http://www.buzluca.info 2011-2023 Feza BUZLUCA 2.36					

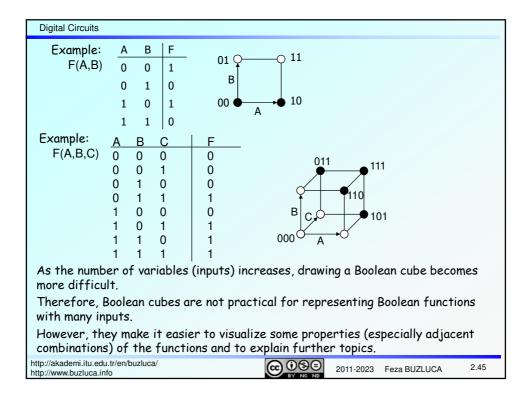
Digital Circuits	License: https://creativecommons.org/licenses/by-nc-nd/4.0/
Finding mostormat	2nd Canonical Form (cont'd):
Finding maxterms:	Truth Table $ ightarrow$ Expression in POS form
	ms, we locate all rows in the truth table where the output is
	dual maxterms, we substitute variables (for example, A, B, the inputs) and complements of variables (\overline{A} , \overline{B} , or \overline{C}) for
Example:	
"False" (O-generatin	ng) combinations: 000 010 100 naxterms: $F(A,B,C) = (A + B + C) (A + \overline{B} + C) (\overline{A} + B + C)$
A B C 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0	$\frac{F}{0}$
	on F has the same truth table as the function on slide 2.33.
The expressions in the truth table.	e 1st and 2nd canonical forms both correspond to the same
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	EX NO NO 2011-2023 Feza BUZLUCA 2.38

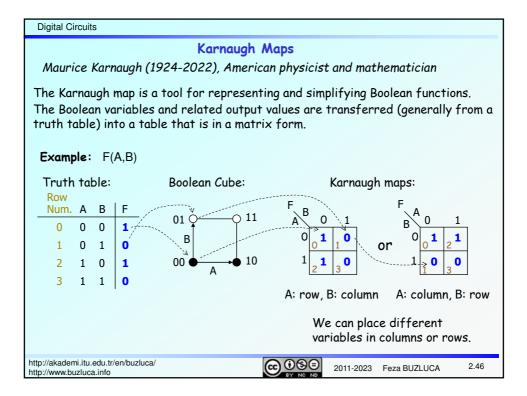
Digital Circuits					
Simplification of expressions in the 2nd canonical form:					
Canonical forms are usually not the simplest (optimal) algebraic expression of the function.					
They can usually be simplified.					
Minimization:					
$\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C}) = (\mathbf{A} + \mathbf{B} + \mathbf{C})(\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C})(\overline{\mathbf{A}} + \mathbf{B} + \mathbf{C})$					
$= ((\mathbf{A} + \mathbf{C})(\mathbf{B} + \overline{\mathbf{B}}))(\overline{\mathbf{A}} + \mathbf{B} + \mathbf{C})$					
$= (\mathbf{A} + \mathbf{C})(\overline{\mathbf{A}} + \mathbf{B} + \mathbf{C})$					
$= (\mathbf{A} + \mathbf{C})(\overline{\mathbf{A}} + \mathbf{B} + \mathbf{C})(\mathbf{B} + \mathbf{C}) \text{ (consensus)}$					
$= (\mathbf{A} + \mathbf{C})(\mathbf{B} + \mathbf{C})$					
 A Boolean function may have many possible logic expressions. They produce the same result given the same inputs. 					
 Since the maxterms in the 2nd canonical form are in one-to-one correspondence with the O's of the truth table, the 2nd canonical (standard) form expression for a function is <u>unique</u>. 					
• A function can have only one expression in the 2nd canonical form.					
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 2.40					

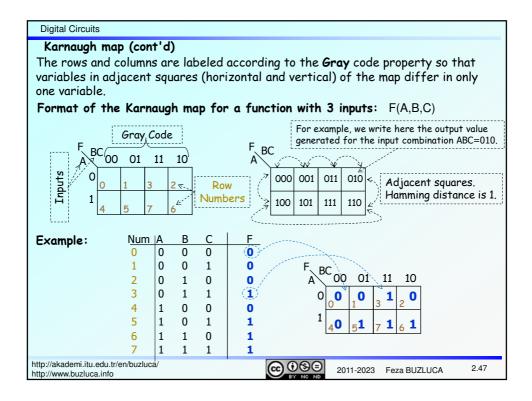
Digital Circuits


Indexing maxterms:


We assign each maxterm an index (number) based on the binary encoding of the variables. This is a decimal number that represents the row number (Row numbers start at 0). For example, we assign the index 5 to the maxterm $\bar{a} + b + \bar{c}$ (101) and designate it M5.


Maxterms for 3 variables (A,B,C):


Inp	Inputs:					
A	В	С	Maxterms			
0 0 0 0	0 0 1 1 0	0 1 0 1 0		Example: Expression of function F in (2.38) in 2nd canonical form:		
1 1 1	0 1 1	0 1 0 1	$\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}} \text{M4}$ $\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}} \text{M5}$ $\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}} \text{M6}$ $\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}} \text{M7}$	$F(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \Pi M(0, 2, 4)$ = M0 • M2 • M4 = (A + B + C) (A + \overline{B} + C) (\overline{A} + B + C)		
$F = \Pi_{A,B,C}(0,2,4) \text{ product of maxterms.}$ http://akademi.itu.edu.tr/en/buzluca/						
http://www.buzluca.info						


0	Digital Circuits					
	Conversions Between Canonical Forms					
•	Converting from 1st (sum of minterms) form to 2nd (product of maxterms) form:					
	• Replace the minterms with maxterms, and assign them numbers of minterms that do not appear in the 1st canonical form.					
	• Example: $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$ $F(A,B,C) = m1 + m3 + m5 + m6 + m7 = M0 \cdot M2 \cdot M4$ $F(A, B, C) = \overline{A} \overline{B} C + \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C = (A + B + C)(A + \overline{B} + C)(\overline{A} + B + C)$					
•	Converting from 2nd (product to maxterms) form to 1st (sum of minterms) form:					
	• Replace the maxterms with minterms, and assign them numbers of maxterms that do not appear in the 2nd canonical form.					
	• Example: $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$					
•	Finding the complement of the function in sum of minterms form:					
	 Select the minterms that do not appear in the 1st canonical form. 					
	• Example: $F(A,B,C) = \Sigma m(1,3,5,6,7) \implies \overline{F(A,B,C)} = \Sigma m(0,2,4)$					
-	Finding the complement of the function in the product of maxterms form: • Select the maxterms that do not appear in the 2nd canonical form. • Example: $F(A,B,C) = \Pi M(0,2,4) \implies \overline{F(A,B,C)} = \Pi M(1,3,5,6,7)$					
	p://akademi.itu.edu.tr/en/buzluca/ p://www.buzluca.info 2011-2023 Feza BUZLUCA 2.42					

