Digital Circuits	License: https://creativecommons.org/licenses/by-nc-nd/4.0/
Simplification	(Minimization) of Logic Functions
A logic function has man simplified expressions).	ny algebraic expressions (see canonical forms and
	cation is to choose the most appropriate expression (with the set of all possible expressions according to a cost
The cost criterion may	change and depend on the application.
number of products (or	a criteria may require the expression to have a minimum sums), a minimum number of literals (variables) in each one type of gate (such as NAND), or the use of only the sposal.
Objectives of simplific	ation:
• Decreasing the size of	of the circuit
 Decreasing power con 	nsumption (battery, cooling problem)
• Decreasing the delay	(increasing the speed) (See 6.2: Propagation Delay)
 Decreasing the cost 	
_	
http://akademi.itu.edu.tr/en/buzluca/	2011-2022 Feza BUZLUCA 4.1

Digital Circuits							
Simplification Related Definitions: Implicant and Prime implicant							
Implicant (in Sum-of-Products (SOP) form):							
An Implicant of a function F (in SOP form) is a product P that is covered by this function, i.e., $P \le F$ (See Order relation on slide 2.12).							
Reminder: Each minterm (product) of the 1st canonical form corresponds to a single 1-generating ("true") point.							
Therefore, the minterms are implicants of the function (m \leq F).							
Example:							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
1011110111111111Note that products with fewer literals cover more 1s.							
Like minterms, the product terms AB and C are also implicants of the function F because $AB \le F$ and $C \le F$.							
http://akademi.itu.edu.tr/en/buzluca/ 2011-2022 Feza BUZLUCA 4.2							

Digital Circuits

Prime implicant (in SOP form):

A prime implicant is a product (implicant) of a function (in SOP form) that cannot be simplified (i.e., it cannot be combined with another term to eliminate a literal). A prime implicant (PI) of F is an implicant that is minimal - that is, the removal of any literal from PI results in a non-implicant for F (Willard Van Orman Quine). Example: $F(A, B, C) = \Sigma m(1,3,5,6,7)$: 1st canonical form = A'B'C + A'BC + AB'C + ABC' + ABC = AB + CFor the given function above, the minterms are implicants but not prime implicants. For example, ABC' and ABC are not prime implicants because they can be combined to form AB, which includes fewer literals and covers more 1s. If we remove C from ABC, the new product AB is still an implicant of F (AB \leq F). AB is a **prime implicant** because it cannot be simplified as A and B because the function does not have 1s in all the places A and B would require $(A \leq F, B \leq F)$. If we remove A or B from AB, the new expression (A or B) is not an implicant of F. • C is also a prime implicant of the function F.

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011-2022 Feza BUZLUCA 4.3

Digital Circuits
Simplification process of a Boolean function:
The simplification procedure consists of two steps.
1. Finding the complete set of all prime implicants.
We will find all products that are covered by the function and cannot be simplified (prime implicants).
To find prime implicants, we will use two different methods:
a) Karnaugh maps
b) Quine-McCluskey (Tabular) method
Selection of the "most appropriate" subset of the prime implicants that covers all the 1s of the function.
All prime implicants may not be necessary to cover all 1s of the function.
We will calculate the cost of each prime implicant using the given cost criteria.
Using the prime implicant chart, we will select a subset of prime implicants with minimum cost that covers the function.
The sum of the selected prime implicants will be the cheapest expression of the function in POS form (minimal covering sum).
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info Translated by Dr. Mustafa KAMAŞAK 2011-2022 Feza BUZLUCA 4.4

	many minimal covering sums.
A BC 00 01 <u>B</u>	
	F(A,B,C) = A'B + B'C + AC'
A 1 1 1 1	 The minimal covering sum covers all 1s. If any of the prime implicants is removed from the
$A \xrightarrow{BC} 00 01 \xrightarrow{C} B \xrightarrow{B} 11 10$	minimal covering sum, some of the 1s will not be covered.
0 1 1 1	F(A,B,C) = A'B + BC' + B'C + AB'
$\begin{array}{c} C\\ BC\\ 00 01 11 10 \end{array}$	
	F(A,B,C)=BC' + A'C + AB'
$A \begin{vmatrix} 1 \\ 1 \end{vmatrix} 1 \begin{vmatrix} 1 \\ 1 \end{vmatrix}$	
	Note that all these expressions construct the same truth table.
A BC 00 01 11 10	They generate same output values given the same input combinations.
0 1 1 1	L
A 1 1 1 1	- F(A,B,C)= BC' + A'C + B'C + AC'
	2011-2021 Feza BUZLUCA 4.12

Digital Circuits	
Simplification: Selection of the Most Approp	oriate Prime Implicants
Reminder: The simplification process has two steps:	
1. Finding the set of all prime implicants	
Selection of a subset of prime implicants with mini- function (minimal covering sum).	mum cost that covers the
Prime implicant charts are used to select the minima cost.	l cover with the minimum
Prime Implicant Chart:	
• Simple symbols (such as A, B, C,) are assigned to a	each prime implicant.
• Using the given cost criterion, the cost of each prin	ne implicant is calculated.
• The prime implicant chart is organized as a matrix:	
$_{ m o}$ The symbols of prime implicants are listed down t	he side of the chart (rows).
 The numbers corresponding to the true points of across the top of the chart (columns). 	the function are listed
$\circ~$ The cost of each prime implicant is placed in the	last column.
 If a prime implicant covers a given true point, an intersection of the corresponding row and column 	
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011-2022 Feza BUZLUCA 4.16
· ·	

Example (cont'	d):				S	iet	of	all	prir	ne	implica	nts	:	
	,	κ ₁ x ₃ '	×	x ₂ x ₃	' x ₄ '	x	1 'x 2 :	x ₄ '	х ₁	x ₂ x	4 x ₁ 'x ₃	x ₄ '	x ₂ ' x ₃ x ₄	' x ₁ x ₂ ' x ₄ '
Symbol	s: A	٩	6	3		C			D)	E		F	G
Costs:		5	8	8			3		6)	8		8	8
Covered point	s: 8,9,	12,1	3 4	l,12		4,	6		13,	15	2, 6		2, 10	8, 10
		-		r -					fur			1		
v		2	4	6	8	9	10	12		15				
nt	A				Х	X		Χ	Х		5			
ica	B		X					Χ			8			
lq	С		X	X							8			
ir	D								Χ	Χ	6			
an	E	Χ		X							8			
Prime implicants	F	X					Х				8			
<u> </u>	G				Х		Х				8			

		٦	Fru	e p	oiŗ	۱t	S, I	of 1	hę	e f	ų	ncț	tion
		2	4	6	8		9	10	1	2 1	З	15	õ Cost
√ x ₁ x ₃ '–	A				X	ť	Ð	-		-	*	\vdash	5
x ₂ x ₃ ' x ₄ '	В		X			Τ	Τ		X	:	Т		8
x ₁ 'x ₂ x ₄ '	С		X	X			T				T		8
$\sqrt{x_1 x_2 x_4}$						1	1				¥	A	6
x ₁ 'x ₃ x ₄ '	E	x		x	H	╈	+	\vdash	\square	+	Ť	4	8
$x_{2}' x_{3} x_{4}'$	 F	X			H	+	+	x	H	+	$^+$	\vdash	8
$x_{1} x_{2}' x_{4}'$	G				H	7	+	X	$\left \right $	+	+	\vdash	8
A1 A2 A4	G				Ļŕ	×	+	Λ	Ц		+	Ц	8
l. step: In this		ntial	pri		im	pl	lice	ants	s, t	he	: r	ow	ned points. is and columns that they cove

Digital Circuits	6					License	https://creativecommons.org/licenses	<u>/by-nc-nd/4.0/</u>
		2	4	6	10	Cos		
	В		х			- 8		
	С		Х	х		8		
	E	х		x		8		
	F	X			х	8		
	Ġ	~			X	Q		
	<u> </u>					0		
							e cost of C is equal to B, B om the chart).	(as the
							same cost. So, the row of G G) will not be in the final set	
			2	4	6	10	Cost	
	١	C		\mathbf{x}) x		8	
		Е	Х		X		8	
	۱	/ F	X			\otimes	8	
							inguished points. Therefore ion all true points of the fu	
http://akademi.itu. http://www.buzluca		n/buzluo	ca/				2011-2022 Feza E	BUZLUCA 4.21

orming th	ne prir	ne in	plic	ant	char	·†:				
					S	Set of all	prime impli	cants:		
		,	κ ₁ x ₃ '	' x	₂ x ₃ ' x	x ₄ ' x ₁ 'x ₂ x ₄	$ x_1 x_2 x_4 $	x ₁ 'x ₃ x ₄ '	x ₂ 'x ₃ x ₄ '	x ₁ x ₂ ' x ₄ '
Sy	ymbol	s:	Α		В	С	D	E	F	G
Co	osts:		5		8	8	6	8	8	8
Points co	overed	:	8.9.	13	4	4	13,15	2	2	8
Tr	ue poi	nts c	of th	ne f	uncti	ion	When	ve are ·	formina	the
	rue poi 2 A B		of th 8 X	9	uncti 13 1 X		prime i	mplican ion in S	forming t chart 600 form	of
	A	2 4	8	9	13 1	5 Cost 5	prime i a funct	mplican ion in S	t chart o SOP forn	of
	A B C D	2 4 X	8	9	13 1	5 Cost 5 8 8 4 5	prime i a funct we ass i	mplican ion in S gn O t o	t chart 6 50P forn ο Φ's.	of 1,
	A B C D E	2 4 X X	8	9	13 1 X	5 Cost 5 8 8 4 6 8 4 8	prime i a funct we ass i As there	mplican ion in S gn O t a is no ne	t chart o 50P form ο Φ's. ced to co	of n, over the
Prime implicants	A B C D E	2 4 X X	8	9	13 1 X	5 Cost 5 8 8 4 5	prime i a funct we ass i	mplican ion in S gn O t a is no ne h unspe	t chart o 50P form ο Φ's. ced to co ccified v	of n, over the alues,

Digital Circuits	
Simplifying the p	rime implicant chart:
	True points of the function
implicants	2 4 8 9 13 15 Cost A
Prime imp	
Pri	F X 8 G X 8
As A and D are	chart, points 9 and 15 are distinguished points. the essential prime implicants, they are selected. The is covered by A and D are removed.
A and D are mar implicants.	ked to show that they will be in the final set of prime
http://akademi.itu.edu.tr/en/buz http://www.buzluca.info	uca/ 2011-2022 Feza BUZLUCA 4.26

Digital Circuits

	2	4	Cost
В		Х	8
С		х	8
Е	х		8
F	х		8

Step 2: B and C cover the same points, and they have the same cost. Therefore, it is not possible to choose between B and C; either one can be selected.

The same situation exists for prime implicants E and F.

In the end, the same function can be implemented using any of the following expressions which have the same (lowest) cost.

 $\begin{aligned} f &= A + D + B + E = x_1 x_3' + x_1 x_2 x_4 + x_2 x_3' x_4' + x_1' x_3 x_4' \\ f &= A + D + B + F = x_1 x_3' + x_1 x_2 x_4 + x_2 x_3' x_4' + x_2' x_3 x_4' \\ f &= A + D + C + E = x_1 x_3' + x_1 x_2 x_4 + x_1' x_2 x_4' + x_1' x_3 x_4' \\ f &= A + D + C + F = x_1 x_3' + x_1 x_2 x_4 + x_1' x_2 x_4' + x_2' x_3 x_4' \\ \end{aligned}$ All designs have the same cost (27).

	All Prime Implicants Using Iskey (Tabulation) Method
The Karnaugh map method is an ef a small number of variables.	fective way to simplify logic functions that hav
When the number of variables is lo must be simplified, the use of a dig	arge (more than four) or if several functions gital computer is desirable.
The Quine-McCluskey (tabulation) can be readily <u>programmed</u> for a d	method provides a systematic procedure that igital computer.
Quine-McCluskey (Tabulation) Me	thod:
	rime implicants, true points (minterms) of the Adjacent minterms where single variable e the figure on slide 4.5).
In the tabulation method, each mir combinations) is compared to all ot	nterm (corresponding to 1-generating input her minterms.
If a single variable (input) changes	between two minterms, they are combined.
The variable with the changing value	ue is removed, and a new term is obtained.
This process is repeated until no f	urther groups can be formed.
Terms that cannot be grouped are	the prime implicants.

Method (Algorithm):	Willard Van Orman Quine (1908-2000) Philosophy, logi Edward J. McCluskey (1929-2016) Electrical engineer
1st Step: Finding the	set of all prime implicants:
 Consider 1-generatin 	g input combinations (true points) in the truth table.
	ting input combinations depending on the number of 1s ination. For example, 1011 has three 1s.
This will shorten the	running time of the algorithm.
	is that are in the neighboring clusters. Group the a single variable changes value.
• The variable with the	e changing value will be eliminated.
 Mark the combinatio 	• •
 Repeat the grouping can be formed. 	on the newly formed combinations until no further group
 Combinations that an all prime implicants. 	e not grouped (items that are not marked) form the set
2nd Step: Finding the	minimal covering sum
	art is used to select the subset of prime implicants with rs the function (minimal covering sum) (See 4.16).
http://akademi.itu.edu.tr/en/buzluca/	(C) () () () () () () () () () () () () ()

Digital Circuits	3	L	icense: <u>https://creative</u>	ecommons.org/li	censes/by-nc-nd/4.0/
	Find the set of a luskey method.	ll prime im	plicants of the f	ollowing fun	ction using
$f(x_1, x_2, x_3,$	$x_4) = \Sigma_m(0, 1, 2, 8)$, 10, 11, 1	4, 15)		
1-generatii	ng (true) input combi	nations	Groups with 2 poin	nts Group	s with 4 points
Num.	x ₁ x ₂ x ₃ x ₄	Num.	$x_1 x_2 x_3 x_4$	Num.	x ₁ x ₂ x ₃ x ₄
0	0000	≩0,1	000-	0,2,8,10	- 0 - 0
1	0001 V	0,2 0,8	00-0√ -000√	0,8,2,10	- 0 - 0
ò 8	1000 √	2,10 8,10	- 0 1 0 1 -	0,11,14,15 0,14,11,15	
10	1010 √	10,11	101-√		
11 14	1011 √ 1110 √	10,14			d to rewrite
15	1 1 1 1 1 1	11,15 14,15		The sar	ne items.
Set of all p	prime implicants (,	x ₃ ' , x ₂ ' x ₄	', x ₁ x ₃
To find t	he minimal covering	g sum (low	est cost), the pri	ime implican	t chart is used.
http://akademi.itu. http://www.buzluca				2011-2022 Feza	BUZLUCA 4.31

$f(x_1, x_2, x_3,$	Huskey method. $x_4) = \Sigma_m(3, 4, 7, 8, 5)$ mg (true) input combined		ints Groups with 4 points
Num. 4 8 3 9 12 7 13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Num: $x_1 x_2 x_3 x_4$ 4,12 - 1 0 0 8,9 1 0 0 - 8,12 1 - 0 0 3,7 0 - 1 1 9,13 1 - 0 1 12,13 1 1 0 -	Num. x ₁ x ₂ x ₃ x ₄ 8,9,12,13 1 - 0 - 8,12,9,13 1 - 0 - No need to rewrite the same items.
containing to group bo should cons	a single 1. Also, note th	at we have 3 following 8, o ot on the increasing order	We start with combinations r 7 following 12 because we need of combinations. This is how you $\frac{1}{3} x_4'$, $\frac{1}{3} x_1' x_3 x_4$, $\frac{1}{3} x_1 x_3'$

Digital Circui	its				
Example: (same exa					nplicants of the following function in POS form. 4.14)
For some 1-generat					asier to work on O-generating input combinations than on
F CD AB	01	11	C 10		Set of all prime implicants:
00 1	0	1	1		A+C+D', A'+B+D
01 1	0	1	1	в	Since A+C+D' and A'+B+D are essential prime implicants, we must take them.
A ¹¹ 1	1	1	1		By including these prime implicants, we cover all O-generating points.
10	-		U	_	The expression for F in POS form:
					$F = (A + C + \overline{D})(\overline{A} + B + D)$
					corems of Boolean algebra on this expression (POS) to form given on slide 4.14.
					$F = \overline{A}\overline{D} + AD + CD + AB$
					$F = \bar{A}\bar{D} + AD + \bar{A}C + B\bar{D}$
					sions have the same truth table. They generate the same e input values.
http://akademi.itu http://www.buzlu	u.edu.t	tr/en/b			2011-2022 Feza BUZLUCA 4.34

, in the second se	al Circu ming		orim	ne i	mpli	can	t cł	hart	:						
	5				•					all prime i	implicants:				
x ₁ -	+X4'	х ₁ +>	κ ₂ +Χ	3	x ₁ +x	(2'+X	3	x2'+x	x ₃ '+x ₄	x ₁ '+x ₂ '+x ₄	x ₂ +x ₃ '+x ₄ '	$x_1' + x_3' + x_4$	x ₁ '+x ₂ +x ₃ '		
	A		В			С			D	E	F	G	Н		
Cost: !	5		6			8			8	8	8	8	8		
1,	3,5,7		0,1			7			14	14	3,11	14	11		
	False	e (0)	poi		-	the					hen we are	forming t	he		
		0	1	3	5	7	11	14	Cost	_ pri	ime implice	int chart f	or		
<u>ت</u>	A		X	Χ	(X)	X			5	a f	unction in	POS form	,		
^o rime implicants	В	(\mathbf{X})	X						6	we	we assign 1 to Φ 's.				
lici l	С					X			8			,J			
l it	D							Х	8	As t	there is no r	need to cove	er the		
2	E							X	8				ified values,		
rin	F			Χ			Χ		8		se points ar		in the		
	G							Х	8	prin	ne implicant	chart.			
	Н						Х		8						
										its, they ar d out (remo	e selected. oved).	The rows a	nd		
http://ak http://ww				uzlu	ca/						2011-202	2 Feza BUZLUCA	A 4.36		

uits	Digital Ci
114Costx8 <td>f f f f All des Since</td>	f f f f All des Since