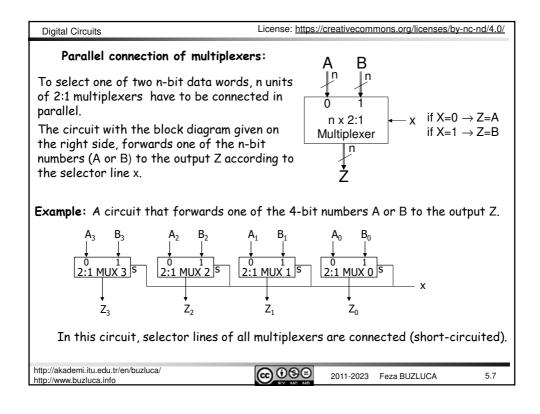
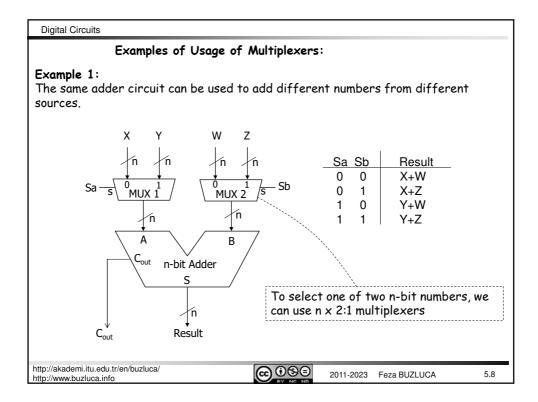
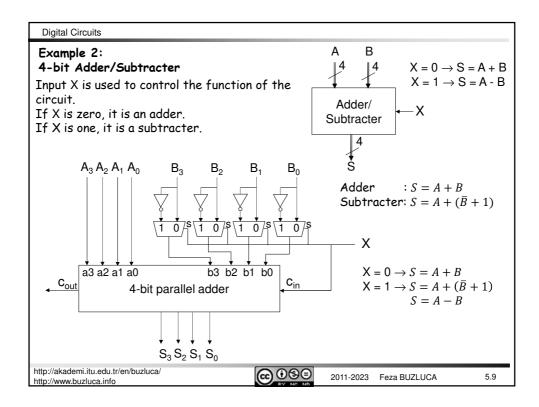
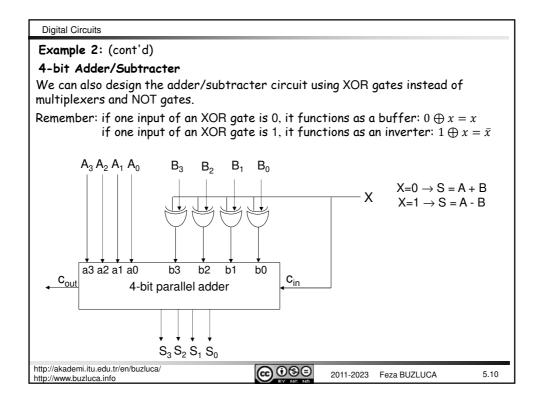
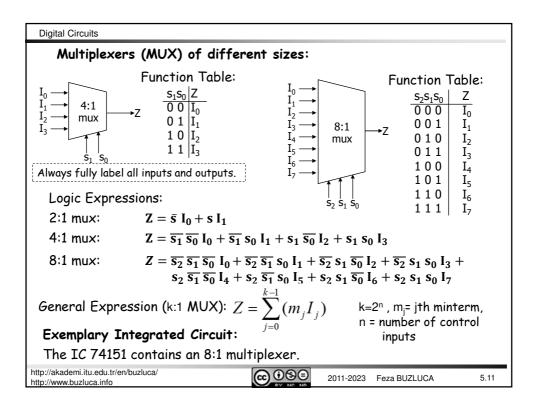

Digital Circuits	License: <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>
Combi	inational Circuits As Building Blocks
	circuits can perform commonly used operations (such as ons, comparison, selection, decoding, etc.)
	ponding logic structures (such as adders, multiplexers, and orming these operations.
	ng every complex function with basic logic gates, using these makes the design simpler.
	tionality often matches a designer's level of thinking when problem into smaller chunks (like functions in programming).
These structures c	an be interconnected to construct more extensive systems.
We design hardwar	e using a hierarchical approach:
• We design a sma	ll component (e.g., a 1-bit adder) using basic logic gates.
	component by interconnecting many copies of the small ew extra gates (e.g., a 32-bit adder).
• We build chips b	y interconnecting many large components (e.g., a CPU).
	is truly made out of many gates but using a hierarchy makes ass faster and easier.

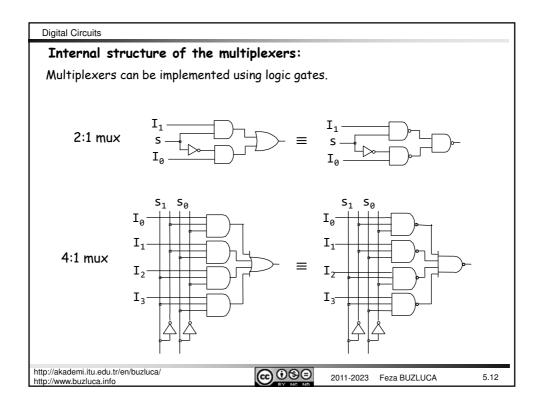

Digital Circuits	
Half Adder: It adds two 1-bit numbers (without carry input). Remember the rules of binary addition on slide 1.22.	Truth table: <u>a b c s</u> 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0
From the truth table, the logical a expression is obtained. $s = a\overline{b} + \overline{a}b$ c = ab	s c
The circuit can also be implemented using a_{\perp} XOR gates. b_{\perp} $s = a \oplus b$ c = ab	s c
http://akademi.itu.edu.tr/en/buzluca/	-2023 Feza BUZLUCA 5.2

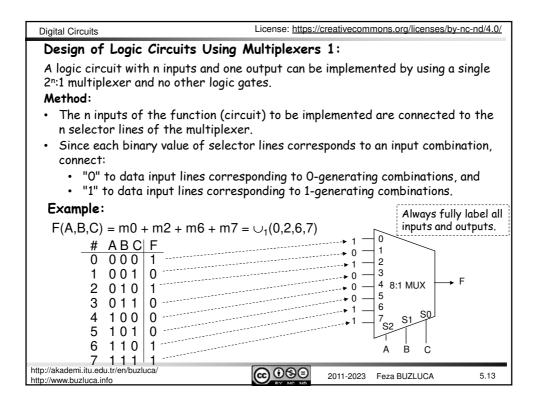


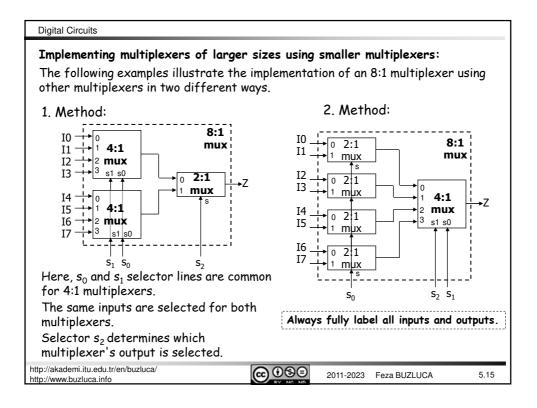


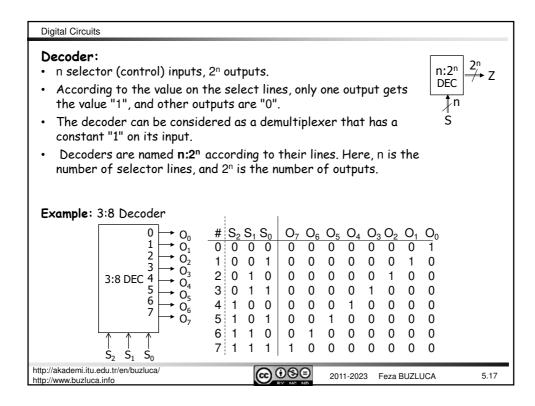


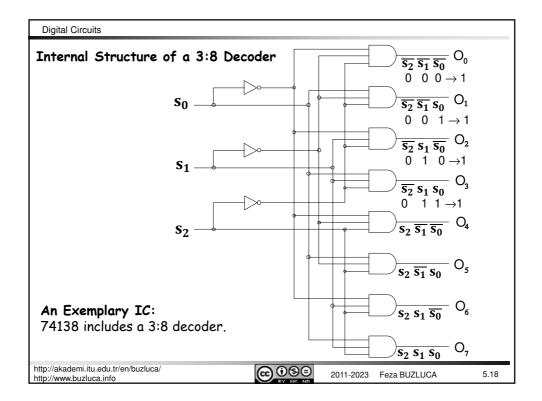




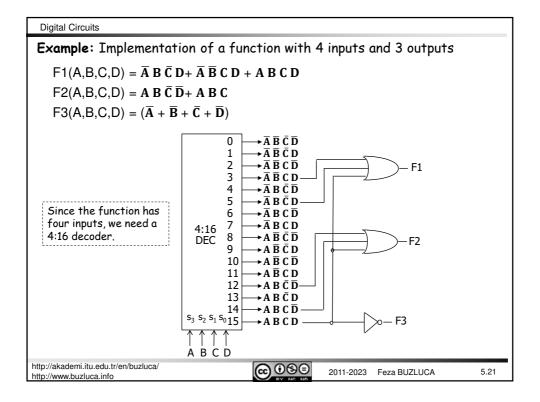


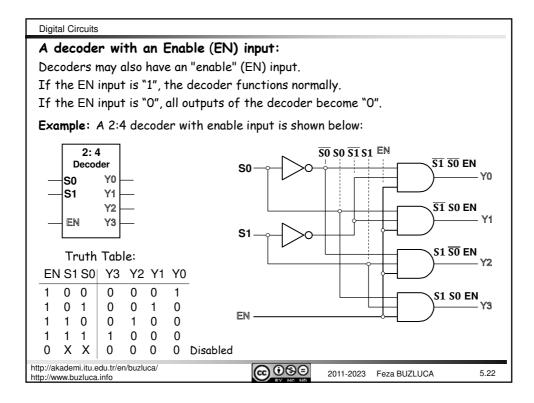


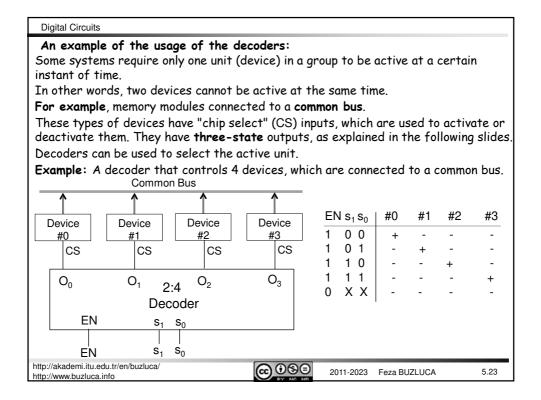




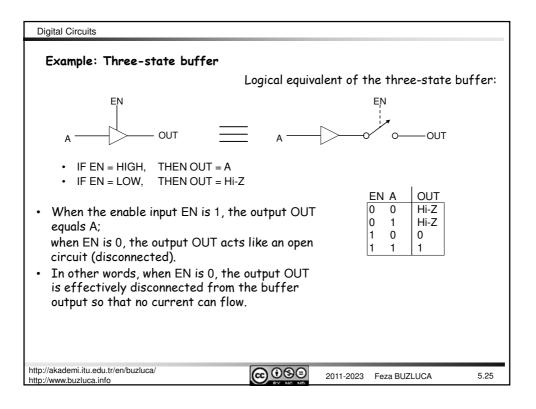
Digital Circuits				
Design of Logic Circuits Using Multiplexers 2: A logic circuit with n inputs and one output can be implemented using a single 2 ⁿ⁻¹ :1 multiplexer and a NOT gate.				
 Method: Connect the n-1 inputs (variables) multiplexer. Then, connect the remaining single 	of the function to the n-1 select lines of the e variable, or its complement, or 0, or 1 to the			
Example: F(A,B,C) = m0 + m2 + m6 + m7 = 0 Reminder: $1 - 1$ Solution with $1 - 2$ a 8:1 MUX: 0 - 3 (Previous method) $0 - 4 8:1 MUX \rightarrow F$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
0 - 5 1 - 6 7 - 5 7 - 5 7 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

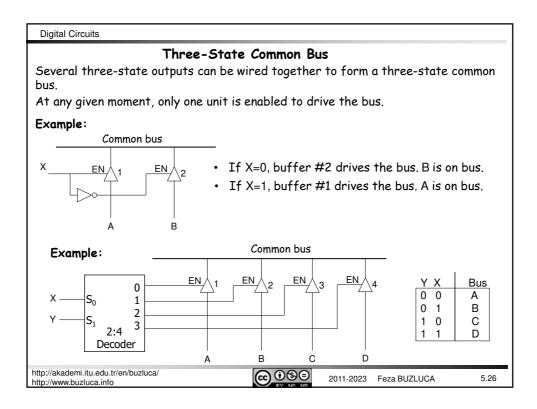

Digital Circuits				
Demultiplexer:				
• 1 data input, n selector (control) lines, 2 ⁿ data outputs. $I \longrightarrow 1:2^n \xrightarrow{2^n}_{\longrightarrow} 7$				
• It selects one of the many data output lines and connects it to the single input.				
• The binary value on the select inputs determines the output S line to which the data input is forwarded.				
•The value on the not-sel	ected output lines is '	'0".		
• Demultiplexers are nam	ed 1:m , based on the	number of data outputs.		
Example: 1:2 Demultiple>	er Function Table:	Truth Table:		
$G \longrightarrow 1:2 \longrightarrow 00$ DeMUX \longrightarrow 01	s O ₁ O ₀	$\frac{\mathbf{s} \mathbf{G} \mathbf{O}_1 \mathbf{O}_0}{0 0 0 0}$		
s	0 0 G 1 G 0	0 1 0 1 1 0 0 0		
G 00	G			
01	s	O₀		
S S		$ - O_1 $		
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info		O 2011-2023 Feza BUZLUCA 5.16		





Digital Circuits	License: https://creativecommons.org/licenses/by-nc-nd/4.0/		
Design of Logic Circuits	Using Decoders:		
Each possible input to the decoder can be considered as a minterm.			
	A decoder can be viewed as a " minterm generator " because each output is "1" only when a particular minterm evaluates to "1" (Slide 5.18).		
Remember that any logic expression can be represented as the sum (OR) of minterms, so it follows that we can implement any logical expression by ORing the related output(s) of a decoder.			
Method:			
A general logic circuit with n inputs and m outputs can be implemented by using only one n:2 ⁿ decoder and, in addition with OR gates.			
 n inputs (variables) of the function are connected to the n select lines of the decoder. 			
 Each output of a decoder 	r corresponds to a minterm.		
 The outputs of the decoder are added by using an OF 	der, which correspond to the minterms of the function R gate.		
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011-2023 Feza BUZLUCA 5.19		


Digital Circuits			
Example: Implement the given function $F(A,B,C)$ using a decoder and one OR gate. $F(A,B,C) = \bigcup_1(0,2,6,7)$			
Solution: As the function F(A,B,C) has three inputs, we need a 3-to-8 dec	coder.		
$F(A,B,C) = \bigcup_{1}(0,2,6,7) = m0 + m2 + m6 + m7 = \overline{A} \overline{B} \overline{C} + \overline{A} I$	$\mathbf{B}\overline{\mathbf{C}} + \mathbf{A}\mathbf{B}\overline{\mathbf{C}} + \mathbf{A}\mathbf{B}\mathbf{C}$		
Always fully label all inputs and outputs. The boxes can be drawn in different ways. $0 \rightarrow \overline{A} \ \overline{B} \ \overline{C}$ $2 \rightarrow \overline{A} \ \overline{B} \ \overline{C}$ $3:8 3 \rightarrow \overline{A} \ \overline{B} \ \overline{C}$ $DEC 4 \rightarrow \overline{A} \ \overline{B} \ \overline{C}$ $A \ \overline{B} \ \overline{C}$ $A \ \overline{B} \ \overline{C}$ $A \ \overline{B} \ \overline{C}$ 	F		
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza	BUZLUCA 5.20		



Digital Circuits		
Three-State Logic		
Normally, the output of a logic device is in one of the two logic states, i.e., "0" or "1".		
Some logic devices are designed this way so their outputs can be in a third state .		
This is often referred to as a Hi-Z (high-impedance) state of the output because the circuit offers a very high resistance or impedance to the flow of current.		
In this state, the output behaves like it is not connected to the circuit.		
The use of three-state logic permits the outputs of two or more gates or other logic devices to be connected together.		
For example, the devices on slide 5.23 are designed to connect to a common bus.		
When the chip select input of a device is not asserted, its output is in the third state.		
We will cover the implementation of the devices with three-state outputs in section 11, "Internal Structures of Electronic Digital Circuits."		
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 5.24		

