
5.1

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Combinational Circuits As Building Blocks

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Combinational logic circuits can perform commonly used operations (such as
arithmetic operations, comparison, selection, decoding, etc.)

There exist corresponding logic structures (such as adders, multiplexers, and
decoders) for performing these operations.

Instead of designing every complex function with basic logic gates, using these
common structures makes the design simpler.

Their level of functionality often matches a designer's level of thinking when
partitioning a large problem into smaller chunks (like functions in programming).

These structures can be interconnected to construct more extensive systems.

We design hardware using a hierarchical approach:

• We design a small component (e.g., a 1-bit adder) using basic logic gates.

• We build a large component by interconnecting many copies of the small
component + a few extra gates (e.g., a 32-bit adder).

• We build chips by interconnecting many large components (e.g., a CPU).

• Each component is truly made out of many gates but using a hierarchy makes
the design process faster and easier.

5.2

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

It adds two 1-bit numbers (without carry input).

Remember the rules of binary addition on slide 1.22.

a: First number
b: Second number
s: Sum (Result)
c: Carry output

Half

Adder

a

b

s

c

a b c s

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

a

b
s

c

The circuit can also be implemented using
XOR gates.

s = a ⊕ b
c = ab

From the truth table, the logical
expression is obtained.

� � ��� � ���

� � �� c

a
b

s

Truth table:

Always fully label all inputs and outputs.

Half Adder:

5.3

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Full Adder:

It adds two 1-bit numbers with a carry input.

a b cin cout s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Full

Adder

a
b

s

coutcin

1 0 1 0

0 1 0 1

00 01
bcin

a

0

1

11 10

a

cin

bs

� � ������	 � �����	 � �����	 � ����	

s = a ⊕ (b ⊕ cin)

s = a ⊕ b ⊕ cin

cout = acin + bcin+ ab

0 1 1 1

0 0 1 0

00 01

bcin
a

0

1

11 10

a

bco

cin

Truth table:

a : First number
b : Second number
cin: Carry Input
s : Sum (Result)
cout: Carry OutputAlways fully label all inputs and outputs.

5.4

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

It adds two n-bit binary numbers.
Depending on the size of the numbers, 1-bit full adders (FA) can be connected to
implement binary parallel adders.

Internal structure of a 4-bit binary parallel adder is shown below:

1. Number : A
3
A
2
A
1
A
0

2.Number : B
3
B
2
B
1
B
0

Result : S
3
S
2
S
1
S
0

Carry In : c
0

Carry Out : c
4

Example:
1. Num.: 0110
2.Num.: 1100

Result : 0010

Carry : 1

FAFA FA FA c0

(cin)

c1c2c3

c4

(cout)

B3 A3 B2 A2 B1 A1 B0 A0

S3 S2 S1 S0

ab

co
ci

s

ab

co
ci

s

ab

co
ci

s

ab

co
ci

s

n-Bit Binary Parallel Adder:

B4 Σ4 C4 C0 GND B1 A1 Σ1

7483

7483 IC is a 4-bit binary
parallel adder.

n-bit parallel

adder

B A

S

cincout

n n

n

5.5

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Subtraction is most easily accomplished as "addition using 2's complement".

A subtraction circuit can be implemented with an n-bit adder and NOT gates.

Subtraction Circuit

4-bit parallel adder
cout

Example: A 4-bit subtraction circuit

S = A – B

2's complement of B is added to A.

S= A – B = A + 2's complement(B) =
 � �� � ��

cin
'1'

B0B1B2B3

S0S1S2S3

A0A1A2A3

For +1 in the 2's complement
operationcout = 0: Borrow

cout = 1: No Borrow
(if unsigned)

b3 b2 b1 b0 a3 a2 a1 a0

s3 s2 s1 s0

cout
cin

Always fully
label all inputs
and outputs.

Here + is arithmetic operator
for addition (not logic OR).

5.6

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Multiplexer (MUX) (Data Selector):

• 2n data inputs (I), n selector (control) inputs (S), 1 data
output (Z).

• The control inputs (Select lines S) are used to select one of
the data inputs (Ix) and connect it to the output terminal (Z).

s Z
0 I0

1 I1

I1 I0 s Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Logic Expression:
Z � s�I� � sI�

Z
I0

I1

s

2:1
MUX

Function Table:
Truth Table:

Function:
if s=0, then Z=I0

if s=1, then Z=I1

ZI

S

2n:1
MUX

2n

n

• Multiplexers are named m:1, based on the number of data inputs. Here, m is the
number of data inputs.

Example: 2:1 Multiplexer (Read as "2 to 1 multiplexer”.)

I0

I1

s

Z

Always fully label all
inputs and outputs.

5.7

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Parallel connection of multiplexers:

To select one of two n-bit data words, n units
of 2:1 multiplexers have to be connected in
parallel.

The circuit with the block diagram given on
the right side, forwards one of the n-bit
numbers (A or B) to the output Z according to
the selector line x.

2:1 MUX 3
0 1

s

A3 B3

Z3

2:1 MUX 2
0 1

s

A2 B2

Z2

2:1 MUX 1
0 1

s

A1 B1

Z1

x

2:1 MUX 0
0 1

s

A0 B0

Z0

n x 2:1

Multiplexer

A B

Z

x

n n

n

0 1
if X=0 → Z=A

if X=1 → Z=B

Example: A circuit that forwards one of the 4-bit numbers A or B to the output Z.

In this circuit, selector lines of all multiplexers are connected (short-circuited).

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

5.8

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Example 1:
The same adder circuit can be used to add different numbers from different
sources.

Sa Sb Result

0 0 X+W

0 1 X+Z

1 0 Y+W

1 1 Y+Z

W ZX Y

To select one of two n-bit numbers, we
can use n x 2:1 multiplexers

A B

n-bit Adder

Result

n

Cout

n n

S

Cout

MUX 1
0 1Sa s

n n

Sb
MUX 2
0 1

s

n n

Examples of Usage of Multiplexers:

5.9

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Example 2:
4-bit Adder/Subtracter

Adder/

Subtracter

A B

S

X

4 4

4

X = 0 → S = A + B

X = 1 → S = A - B

4-bit parallel adder
cout cin

S0S1S2S3

A0A1A2A3 B0B1B2B3

X

Input X is used to control the function of the
circuit.
If X is zero, it is an adder.
If X is one, it is a subtracter.

1 0 1 0 s 1 0 s 1 0 ss

X = 0 → � � � � �

X = 1 → � � � � �� � 1

� � � � �

Adder : � � � � �

Subtracter: � � � � ��� � 1�

a3 a2 a1 a0 b3 b2 b1 b0

5.10

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Example 2: (cont'd)

4-bit Adder/Subtracter

We can also design the adder/subtracter circuit using XOR gates instead of
multiplexers and NOT gates.

Remember: if one input of an XOR gate is 0, it functions as a buffer: 0 ⊕ � � �

if one input of an XOR gate is 1, it functions as an inverter: 1 ⊕ � � �̅

4-bit parallel adder
cout cin

S0S1S2S3

A0A1A2A3 B0B1B2
B3

X
X=0 → S = A + B

X=1 → S = A - B

a3 a2 a1 a0 b3 b2 b1 b0

5.11

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Logic Expressions:

2:1 mux: � � �̅ !" � � !�

4:1 mux: � � �� �" !" � �� �" !� � �� �" !# � �� �" !$

8:1 mux: % � �# �� �" !" � �# �� �" !� � �# �� �" !# � �# �� �" !$ �

 �# �� �" !& � �# �� �" !' � �# �� �" !(� �# �� �" !)

Multiplexers (MUX) of different sizes:

General Expression (k:1 MUX): k=2n , mj= jth minterm,
n = number of control

inputs

s1s0 Z
0 0 I0

0 1 I1

1 0 I2

1 1 I3

Function Table:

s2s1s0 Z
0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

Function Table:

Exemplary Integrated Circuit:

The IC 74151 contains an 8:1 multiplexer.

I0

I1

I2

I3

Z

s1 s0

4:1
mux

I0

I1

I2

I3

I4

I5

I6

I7

s2 s1 s0

8:1
mux

Z

Always fully label all inputs and outputs.

5.12

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Internal structure of the multiplexers:

2:1 mux

4:1 mux

Multiplexers can be implemented using logic gates.

≡

≡

I
1

I
0

s

I
1

I
0

s

I
0

I
1

I
2

I
3

s
0

s
1

I
0

I
1

I
2

I
3

s
0

s
1

5.13

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Design of Logic Circuits Using Multiplexers 1:

A logic circuit with n inputs and one output can be implemented by using a single
2n:1 multiplexer and no other logic gates.
Method:

• The n inputs of the function (circuit) to be implemented are connected to the
n selector lines of the multiplexer.

• Since each binary value of selector lines corresponds to an input combination,
connect:

• "0" to data input lines corresponding to 0-generating combinations, and
• "1" to data input lines corresponding to 1-generating combinations.

Example:

F(A,B,C) = m0 + m2 + m6 + m7 = ∪1(0,2,6,7)
1

0

1

0

0

0

1

1

CA B

0

1

2

3

4

5

6

7
S2

8:1 MUX

S1
S0

F

A B C F
0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 0
5 1 0 1 0
6 1 1 0 1
7 1 1 1 1

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Always fully label all
inputs and outputs.

5.14

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

*�

*�

0

1

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

*�

*�

0

1

F

A B

S1
S0

0

1

2

3

4:1 MUX

Design of Logic Circuits Using Multiplexers 2:

A logic circuit with n inputs and one output can be implemented using a single
2n-1:1 multiplexer and a NOT gate.

Method:

• Connect the n-1 inputs (variables) of the function to the n-1 select lines of the
multiplexer.

• Then, connect the remaining single variable, or its complement, or 0, or 1 to the
selection inputs of the multiplexer according to the values in the truth table.

Example:
F(A,B,C) = m0 + m2 + m6 + m7 = ∪1(0,2,6,7) Solution with a 4:1 MUX:

Here, both *̅ values are
obtained from the same
NOT gate.

Reminder:
Solution with

a 8:1 MUX:
(Previous method)

1

0

1

0

0

0

1

1

CA B

0

1

2

3

4

5

6

7
S2

8:1 MUX

S1
S0

F

5.15

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Implementing multiplexers of larger sizes using smaller multiplexers:

The following examples illustrate the implementation of an 8:1 multiplexer using
other multiplexers in two different ways.

1. Method:

Here, s0 and s1 selector lines are common
for 4:1 multiplexers.

The same inputs are selected for both
multiplexers.
Selector s2 determines which
multiplexer's output is selected.

2. Method:

s0

Z

s2 s1

4:1

mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1

mux

0

1

2

3

1

0

1

0

1

0

1

0

s0s1

s

s

Z

I0
I1
I2
I3

s2

I4
I5
I6
I7

s1 s0

4:1

mux

4:1

mux

2:1

mux

8:1

mux
0

1

1

2

3

0

1

2

3

0
s0s1

s

s0s1

Always fully label all inputs and outputs.

5.16

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Demultiplexer:

• 1 data input, n selector (control) lines, 2n data outputs.

• It selects one of the many data output lines and connects it to
the single input.

• The binary value on the select inputs determines the output
line to which the data input is forwarded.

•The value on the not-selected output lines is "0".

O0
G

S

O1

s O1 O0

0 0 G
1 G 0

s G O1 O0

0 0 0 0
0 1 0 1
1 0 0 0
1 1 1 0

Function Table: Truth Table:
O0

s

1:2
DeMUX O1

G

Example: 1:2 Demultiplexer

O0

O1

s

G

ZI

S

1:2n

DeMUX

2n

n

• Demultiplexers are named 1:m, based on the number of data outputs.

5.17

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

S2 S1 S0

O0

O1

O2

O3

O4

O5

O6

O7

0
1
2
3
4
5
6
7

3:8 DEC

Decoder:
• n selector (control) inputs, 2n outputs.

• According to the value on the select lines, only one output gets
the value "1", and other outputs are "0".

• The decoder can be considered as a demultiplexer that has a
constant "1" on its input.

• Decoders are named n:2n according to their lines. Here, n is the
number of selector lines, and 2n is the number of outputs.

Example: 3:8 Decoder

S2 S1 S0 O7 O6 O5 O4 O3 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

2 0 1 0 0 0 0 0 0 1 0 0

3 0 1 1 0 0 0 0 1 0 0 0

4 1 0 0 0 0 0 1 0 0 0 0

5 1 0 1 0 0 1 0 0 0 0 0

6 1 1 0 0 1 0 0 0 0 0 0

7 1 1 1 1 0 0 0 0 0 0 0

Z

S

n:2n

DEC

2n

n

5.18

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

�"

��

�#

O

O

O

O

O

O

O

O

Internal Structure of a 3:8 Decoder

An Exemplary IC:
74138 includes a 3:8 decoder.

�# �� �"

0 0 0 → 1

�# �� �"

0 0 1 → 1

�# �� �"

0 1 0 →1

�# �� �"

0 1 1 →1

�# �� �"

�# �� �"

�# �� �"

�# �� �"

5.19

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Design of Logic Circuits Using Decoders:

Method:

A general logic circuit with n inputs and m outputs can be implemented by using
only one n:2n decoder and, in addition with OR gates.

• n inputs (variables) of the function are connected to the n select lines of the
decoder.

• Each output of a decoder corresponds to a minterm.

• The outputs of the decoder, which correspond to the minterms of the function
are added by using an OR gate.

Each possible input to the decoder can be considered as a minterm.

A decoder can be viewed as a “minterm generator” because each output is "1"
only when a particular minterm evaluates to "1" (Slide 5.18).

Remember that any logic expression can be represented as the sum (OR) of
minterms, so it follows that we can implement any logical expression by ORing the
related output(s) of a decoder.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

5.20

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

F(A,B,C) = ∪1(0,2,6,7)

0
1
2
3
4
5
6
7

3:8
DEC

S2 S1 S0

A B C

F

= m0 + m2 + m6 + m7 = + , *� � + , *� � + , *� � + , *

Example:

F(A,B,C) = ∪1(0,2,6,7)

Implement the given function F(A,B,C) using a decoder and one OR gate.

Solution:

As the function F(A,B,C) has three inputs, we need a 3-to-8 decoder.

Generated minterms

Always fully label all
inputs and outputs.
The boxes can be drawn
in different ways.

+ , *̅
+ , *
+ , *̅
+ , *
+ , *̅
+ , *
+ , *̅
+ , *

Inputs of the function are
connected to the selector
lines of the decoder.

5.21

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

F1(A,B,C,D) = + , *� -+ + , * - + + , * -

F2(A,B,C,D) = + , *� -+ + , *

F3(A,B,C,D) = (+ + , + *� + -)

Example: Implementation of a function with 4 inputs and 3 outputs

F1

F2

F3

A B

0 + , *̅ -

1 + , *̅ -
2 + , * -

3 + , * -
4 + , *̅ -

5 + , *̅ -
6 + , * -

7 + , * -
8 + , *̅ -

9 + , *̅ -
10 + , * -

11 + , * -
12 + , *̅ -

13 + , *̅ -
14 + , * -

15 + , * -

4:16
DEC

C D

s0s1s2s3

Since the function has
four inputs, we need a
4:16 decoder.

5.22

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

A decoder with an Enable (EN) input:

Decoders may also have an "enable" (EN) input.

If the EN input is “1”, the decoder functions normally.

If the EN input is “0”, all outputs of the decoder become “0”.

Example: A 2:4 decoder with enable input is shown below:

EN S1 S0 Y3 Y2 Y1 Y0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

0 X X 0 0 0 0 Disabled

Truth Table:

2: 4

Decoder

S0

S1

S1

S0

." ." .� .�
.� ." EN

.� ." EN

.� ." EN

.� ." EN

5.23

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Some systems require only one unit (device) in a group to be active at a certain
instant of time.
In other words, two devices cannot be active at the same time.
For example, memory modules connected to a common bus.

These types of devices have "chip select" (CS) inputs, which are used to activate or
deactivate them. They have three-state outputs, as explained in the following slides.

Decoders can be used to select the active unit.
Example: A decoder that controls 4 devices, which are connected to a common bus.

An example of the usage of the decoders:

Device
#0

CS

Common Bus

EN s1 s0 #0 #1 #2 #3

1 0 0 + - - -

1 0 1 - + - -

1 1 0 - - + -

1 1 1 - - - +

0 X X - - - -2:4

Decoder

O0 O1 O2
O3

s1 s0

s1 s0

EN

EN

Device
#1

Device
#2

Device
#3

CS CS CS

5.24

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Three-State Logic

Normally, the output of a logic device is in one of the two logic states, i.e., "0" or "1".

Some logic devices are designed this way so their outputs can be in a third state.

This is often referred to as a Hi-Z (high-impedance) state of the output because
the circuit offers a very high resistance or impedance to the flow of current.

In this state, the output behaves like it is not connected to the circuit.

The use of three-state logic permits the outputs of two or more gates or other logic
devices to be connected together.

For example, the devices on slide 5.23 are designed to connect to a common bus.

When the chip select input of a device is not asserted, its output is in the third
state.

We will cover the implementation of the devices with three-state outputs in section
11, "Internal Structures of Electronic Digital Circuits."

5.25

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

• IF EN = HIGH, THEN OUT = A

• IF EN = LOW, THEN OUT = Hi-Z

EN A OUT
0 0 Hi-Z
0 1 Hi-Z
1 0 0
1 1 1

• When the enable input EN is 1, the output OUT

equals A;
when EN is 0, the output OUT acts like an open
circuit (disconnected).

• In other words, when EN is 0, the output OUT
is effectively disconnected from the buffer
output so that no current can flow.

EN

A OUT

Example: Three-state buffer

EN

A OUT

Logical equivalent of the three-state buffer:

5.26

Digital Circuits

2011-2023 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Three-State Common Bus
Several three-state outputs can be wired together to form a three-state common
bus.

At any given moment, only one unit is enabled to drive the bus.

Example:
Common bus

X EN

A

1 EN

B

2
• If X=0, buffer #2 drives the bus. B is on bus.

• If X=1, buffer #1 drives the bus. A is on bus.

Common bus

EN

A

1 EN

B

2
EN

C

3
EN

D

4

Example:

0

1

2

3
2:4

Decoder

S0

S1

X

Y

Y X Bus
0 0 A
0 1 B
1 0 C
1 1 D

