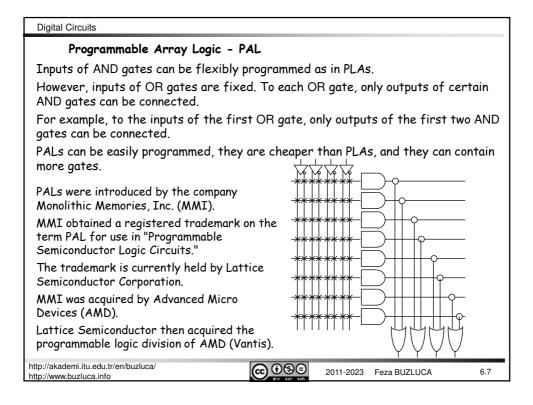
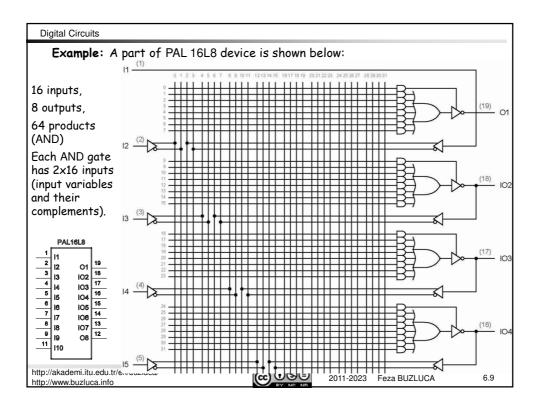
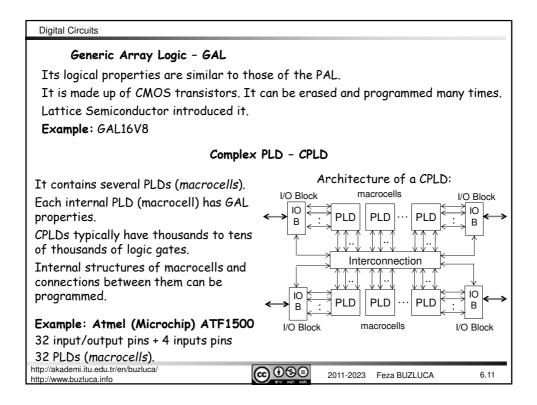

Digital Circuits	gital Circuits License: https://creativecommons.org/licenses/by-nc-nd/4.0		
Programmable Logic Device (PLD)			
Today, complicated digital circuits are devices.	implemented using programmable logic		
These devices are integrated circuits that include many reconfigurable logic gates. (From several hundred to several million).			
Some PLDs also include memory units (flip-flops).			
The designer can reconfigure the connections between logic gates in the PLD using a programming language and a programming device.			
It is possible to implement complicated digital circuits with only a single IC (PLD).			
There are different kinds of PLDs:			
 Programmable Logic Array - PLA Programmable Array Logic - PAL® Generic Array Logic - GAL Complex PLD - CPLD Field-Programmable Gate Array - F 	PAL is a registered trademark of Lattice Semiconductor Corp. PGA		
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011-2023 Feza BUZLUCA 6.1		

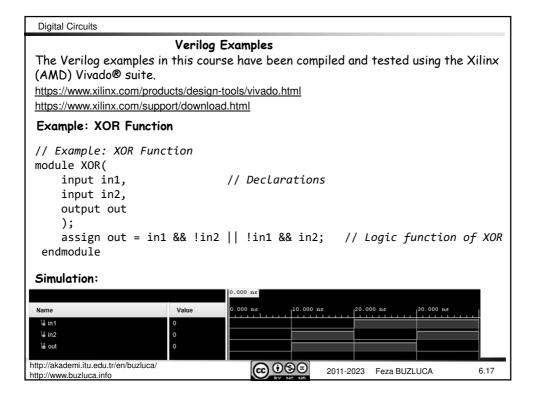

Digital Circuits		
Programming of PLDs:		
In early versions of PLDs (PLA, PAL), bipolar transistors were used (See Chapter 11) They have fuses on the connection points between gates, which provide reconfiguration (programming) of devices. In these devices, fuses can be blown only once; therefore, they are called "one-time		
programmable (OTP)." Today's devices (GAL, CPLD, FPGA) are made of CMOS transistors and contain memory units for programming. They can be erased and reprogrammed many times.		
To program PLDs, various Hardware Description Languages (HDL) and programming devices are used.		
Some examples of HDLs: PALASM ABEL Verilog VHDL (Very high speed integrated circuits HDL) 		
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 6.2		



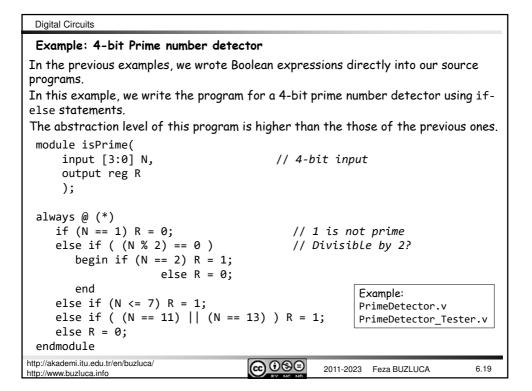


Digital Circuits				
Example: PAL16L8				
 Pins on the left side and side	Pins 12 and 19 can be used only as outputs, but six of the outputs (pins 13 to 18) are also available as inputs via the feedback line connection after the inverting output buffer. This feature, called programmable I/O, lets the user program each of these six pins as either input or output.			
 L signifies the output type, which is active low for this PAL part type. 				
http://akademi.itu.edu.tr/en/buzluca/	2011-2023 Feza BUZLUCA 6.8			

Digital Circuits				
Example: A part o	Example: A part of PAL16L8 device is shown below:			
• Eight AND 11 (1) gates are associated with each output pin.		(19) O1		
 Seven of them provide inputs to a fixed 7- input OR gate. 				
• The eighth (called output- enable gate) is connected to ¹³		(18) IO2		
the three- state enable input of the output buffer.		(17) IO3		
The buffer is enabled only when the output-enable gate has an output of one.		(16) IO4		
http://akademi.itu.edu.tr/esuc.ucc	2011-2023 Feza BUZLUCA	6.10		


Digital Circuits				
	mable Gate Array - FPGA			
It consists of an array of configurable logic blocks (CLBs)				
connected via programmable interconnects.				
It can be erased and programmed many times.				
They contain several thousand to several million logic gates.				
They can be used to implement complex digital circuits, e.g., special-				
purpose microprocessors. Compared to CPLDs, FPGAs are more flexible and can implement more complicated circuits.				
However, the delay of FPGAs is higher.				
Example: AMD Artix™ UltraScale+™ AU25P	Switch and Configurable I/O			
304 input/output pins 308000 system logic cells	Connection Box Logic Block Block			
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	CO O O O 2011-2023 Feza BUZLUCA 6.12			

Digital Circuits				
ASIC (Application-specific integrated circuit)				
An application-specific integrated circuit (ASIC) is an integrated circuit (IC) designed for a particular use.				
An ASIC <u>is not</u> a reprogrammable device like an FPGA.				
During the design of an ASIC, functional blocks are taken from a library, interconnected, and verified via simulation.				
ASICs often include entire microprocessors, memory blocks, and other blocks for I/O operations. Such an ASIC is called a SoC (system-on-chip) .				
HDLs are also used for designing ASICs, just like they are used for PLDs.				
ASIC are used in medical image processing, encoding/decoding data in communication devices, controlling the charging process in smartphones, etc.				
The non-recurring engineering (NRE) cost of an ASIC is very high.				
 Non-recurring engineering (NRE) cost is the one-time cost to research, design, develop, and test a new product. 				
 Production costs must be paid constantly to maintain the production of a product. 				
Therefore, device manufacturers usually choose FPGAs for prototyping and low- volume production, while ASICs are preferred for high-volume production with amortized NRE costs.				
http://akademi.itu.edu.tr/en/buzluca/				


HDI	-Based Design		
It is difficult to design (des and logic functions.	cribe) large and comp	blex systems using Boolea	n algebr
Similar to software development, most digital design is now done at higher levels of abstraction.			
Software Design:			
Although a CPU can only directly execute machine code, we do not use machine language or assembly language for large systems unless absolutely necessary.			
We write complex programs using high-level programming languages such as C++, Java, C#, and Python, which are closer to human language than to machine language			
Compilers convert these programs to machine code.			
Hardware Design:			
Designers use Hardware Description Languages (HDLs) such as Verilog or VHDL to describe circuits at an abstract level. They do not have to use Boolean algebra.			
In addition, designers can ob license from an intellectual p circuit.			
Finally, a Verilog or VHDL sy chip or programming an FPG/		luce a circuit by building c	ın ASI(
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	@ 080	2011-2023 Feza BUZLUCA	6.14

Digital Circui	its			
		HDL-Based Design Flow		
	Requirements Functional	• First, we identify the functional specifications of the required circuit.		
l	specifications	• Using a text editor, we write the program in an HDL, e.g., Verilog, that describes the specifications of the circuit.		
	Coding HDL	• The compiler creates a file in a digital-design description language RTL (register-transfer language). The RTL file is the description of the logic operations and interconnections.		
	Compilation	• Using a simulation tool, we can verify if the designed circuit generates the expected outputs for given inputs.		
	Simulation	• A synthesizer tool is used to target the RTL design to a specific hardware technology such as an ASIC, CPLD, or FPGA.		
Synthesizer		- Mapping the RTL design into hardware elements in the		
	Mapping	target technology.		
		 Placement of the necessary elements onto a physical chip layout. 		
	Fitting	 Routing: Finding or creating paths between the inputs and outputs of placed elements. 		
and outputs of placed elements.				
ASIC	CPLD	FPGA		
http://akademi.itu http://www.buzlue	u.edu.tr/en/buzluca/ ca.info	2011-2023 Feza BUZLUCA 6.15		

Digital Circuits			
Verilog			
Verilog is one of the popular hardware description languages.			
The other one is VHDL.			
The syntax of Verilog is similar to that of the C programming language.			
Standards:			
Verilog-2001: IEEE standard 1364-2001.			
 Verilog-2005: IEEE standard 1364-2005. 			
 System Verilog: IEEE standard 1800-2009. 			
The 2009 standard, System Verilog, includes Verilog-2001/2005 as a subset and introduces new features for specifying, designing, and verifying complex systems.			
The basic unit of design and programming in Verilog is a module . A module may correspond to a single piece of hardware. Modules are similar to functions or procedures in programming. Modules can be used as building blocks in other larger modules.			
A Verilog module consists of declarations and statements.			
Declarations describe the names and types of the module's inputs and outputs, as well as local signals, variables, and constants used internally in the module.			
The statements specify or "model" the operation of the module's outputs and internal signals.			
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 6.16			

Digital Circuits				
Example: Full Adder	using XOR Module	Full A	dder: Slide 5.3	
<pre>// Example: Full Ad module FullAdder(</pre>				
,	// First number	,		
	// Second numbe	2r		
	// Carry input			
output Cout	// Output Sum // Carry output	:		
); wire x;	// Internal wir	re		
<pre>// We use the XOR module designed in advance XOR XOR1(.in1(a), .in2(b), .out(x));</pre>				
		Example: FullAdder.v Adder_Test.v		
http://akademi.itu.edu.tr/en/buzluca http://www.buzluca.info	í e	000 2011-2023	Feza BUZLUCA 6.18	

