

Digital Circuits							
Field-Programmable Gate Array - FPGA							
It consists of an array of configurable logic blocks (CLBs) connected via programmable interconnects.	Architecture of an FPGA:						
It can be erased and programmed many times.							
They contain several thousand to several million logic gates.							
They can be used to implement complex digital circuits, e.g., special- purpose microprocessors.							
Compared to CPLDs, FPGAs are more flexible and can implement more complicated circuits.							
However, the delay of FPGAs is higher.	ICB CB SCB SCB SCB SCB SCB						
Example: AMD Artix TM UltraScale+ TM AU25P 304 input/output pins 308000 system logic cells Switch and Connection Box Dock Block Block							
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	© 0 0 0 2011-2023 Feza BUZLUCA 6.12						

Digital Circuits	Digital Circuits		
ASIC (Application-specific integrated circuit)	HDL-Based Design		
An application-specific integrated circuit (ASIC) is an integrated circuit (IC) designed for a particular use.	It is difficult to design (describe) large and complex systems using Boolean algebra and logic functions.		
An ASIC is not a reprogrammable device like an FPGA.	Similar to software development, most digital design is now done at higher levels of		
During the design of an ASIC, functional blocks are taken from a library, interconnected, and verified via simulation.	abstraction. Software Design:		
ASICs often include entire microprocessors, memory blocks, and other blocks for I/O operations. Such an ASIC is called a SoC (system-on-chip) .	Although a CPU can only directly execute machine code, we do not use machine language or assembly language for large systems unless absolutely necessary.		
HDLs are also used for designing ASICs, just like they are used for PLDs.	We write complex programs using high-level programming languages such as C++, Java, C#, and Python, which are closer to human language than to machine language. Compilers convert these programs to machine code.		
ASIC are used in medical image processing, encoding/decoding data in communication devices, controlling the charging process in smartphones, etc.			
The non-recurring engineering (NRE) cost of an ASIC is very high.	Hardware Design:		
 Non-recurring engineering (NRE) cost is the one-time cost to research, design, develop, and test a new product. 	Designers use Hardware Description Languages (HDLs) such as Verilog or VHDL to describe circuits at an abstract level. They do not have to use Boolean algebra.		
 Production costs must be paid constantly to maintain the production of a product. 	In addition, designers can obtain commonly used functions and subsystems under a license from an intellectual property (IP) provider to integrate with their custom		
Therefore, device manufacturers usually choose FPGAs for prototyping and low- volume production, while ASICs are preferred for high-volume production with amortized NRE costs.	circuit. Finally, a Verilog or VHDL synthesis tool can produce a circuit by building an ASIC chip or programming an FPGA.		
http://akademi.itu.edu.tr/en/buzluca/	http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 6.14		

Digital Circuits	Digital Circuits
HDL-Based Design Flow	Verilog
Requirements Functional specifications • First, we identify the functional specifications of the required circuit. Using a text editor, we write the program in an HDL, e.g., Verilog, that describes the specifications of the circuit. Coding HDL • The compiler creates a file in a digital-design description language RTL (register-transfer language). The RTL file is the description of the logic operations and interconnections. Compilation • Using a simulation tool, we can verify if the designed circuit generates the expected outputs for given inputs. Synthesizer • A synthesizer tool is used to target the RTL design to a specific hardware technology such as an ASIC, CPLD, or FPGA. Synthesizer • Mapping • Placement of the necessary elements onto a physical chip layout. • Routing: Finding or creating paths between the inputs and outputs of placed elements. ASIC CPLD FPGA	 Verilog is one of the popular hardware description languages. The other one is VHDL. The syntax of Verilog is similar to that of the C programming language. Standards: Verilog-2001: IEEE standard 1364-2001. Verilog-2005: IEEE standard 1364-2005. System Verilog: IEEE standard 1800-2009. The 2009 standard, System Verilog, includes Verilog-2001/2005 as a subset and introduces new features for specifying, designing, and verifying complex systems. The basic unit of design and programming in Verilog is a module. A module may correspond to a single piece of hardware. Modules are similar to functions or procedures in programming. Modules can be used as building blocks in other larger modules. A Verilog module consists of declarations and statements. Declarations describe the names and types of the module's inputs and outputs, as well as local signals, variables, and constants used internally in the module.
http://kkademi.ltu.edu.tr/en/buzluca/ http://www.buzluca.info 2011-2023 Feza BUZLUCA 6.15	http://akademi.itu.edu.tr/en/buziuca/ http://www.buziuca.info 2011-2023 Feza BUZLUCA 6.16

Digital Circuits					
Verilog Examples					
The Verilog examples in this course have been compiled and tested using the Xilinx (AMD) Vivado® suite. https://www.xilinx.com/products/design-tools/vivado.html https://www.xilinx.com/support/download.html					
Example: XOR Function					
<pre>// Example: XOR Function module XOR(input in1,</pre>					
Simulation:					
Name	Value	0.000 ns 10.000 ns 120.000 ns 130.000 ns 1			
14 in1	0				
14 in2	0				
lä out	0				
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info		2011-2023 Feza BUZLUCA 6.17			

Digital Circuits				
Example: Full Adder u	ising XOR Module	Full A	dder: Slide 5.3	
// Example: Full Ada	ler			
module FullAdder(
input a,	// First number	•		
input b,	<pre>// Second numbe</pre>	r		
input Cin,	// Carry input			
output s,	// Output Sum			
output Cout	// Carry output			
);				
wire x;	// Internal wir	e		
// We use the XC	R module desianed	l in advance		
XOR XOR1(.in1(a), .in2(b), .out(x)): $//x = a XOR b$				
XOR XOR2(.in1(Cin), .in2(x), .out(s)); $//s = Cin XOR x$			// s = Cin XOR x	
// Cout = aCin + bCin + ab				
assign Cout = a && Cin b && Cin a && b;				
endmodule	_			
	1	Example:		
	1	FullAdder.v		
	4	Adder_Test.v		
http://akademi.itu.edu.tr/en/buzluca/	6	000 2011-2023	Feza BUZLUCA 6.18	
nttp://www.puziuca.info		BU MA MA		

