
6.1

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Programmable Logic Device (PLD)

Today, complicated digital circuits are implemented using programmable logic 
devices.

These devices are integrated circuits that include many reconfigurable logic gates. 
(From several hundred to several million). 

Some PLDs also include memory units (flip-flops).

The designer can reconfigure the connections between logic gates in the PLD using 
a programming language and a programming device.

It is possible to implement complicated digital circuits with only a single IC (PLD). 

There are different kinds of PLDs:

• Programmable Logic Array – PLA

• Programmable Array Logic – PAL®

• Generic Array Logic – GAL

• Complex PLD – CPLD

• Field-Programmable Gate Array – FPGA

PAL is a registered trademark of Lattice Semiconductor 
Corp.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

6.2

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

In early versions of PLDs (PLA, PAL), bipolar transistors were used (See Chapter 11).

They have fuses on the connection points between gates, which provide 
reconfiguration (programming) of devices.

In these devices, fuses can be blown only once; therefore, they are called "one-time 
programmable (OTP)."

Today's devices (GAL, CPLD, FPGA) are made of CMOS transistors and contain
memory units for programming.

They can be erased and reprogrammed many times.

To program PLDs, various Hardware Description Languages  (HDL) and programming
devices are used.

Some examples of HDLs:

• PALASM

• ABEL

• Verilog

• VHDL (Very high speed integrated circuits HDL) 

Programming of PLDs:



6.3

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Product (AND)

terms

…inputs

…
outputs

A PLA has AND (product) units in the input layer and OR (sum) units in the 
output layer. 

Programmable Logic Array - PLA

AND and OR arrays can both be flexibly programmed. 

Sum (OR)

array

¨ ¨ ¨

¨

AND

array
¨

¨
¨

¨

6.4

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Parameters that determine the 
limitations of a PLA:

• Inputs : n
• Outputs : m
• AND gates (products) : p
Such a device is called  “n x m PLA 
with p products”.

I2     I1     I0  

O3         O2         O1        O0  

On the right, the internal structure 
of a 3x4 PLA with 5 products is 
shown.

In fact, real PLAs include about 100 
gates.

Example: 82S100
16 inputs, 8 outputs, 48 products

Fuses

Programmable Logic Array – PLA (contd)



6.5

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Example:

F0 = � + �� 	


F1 = � 	
 + � �

F2 = �� 	
 + � �

F3 = �� 	 + �

A B C

F1 F2 F3F0

� �

�� 	

� 	̅

�� 	̅

�

In the programming process, unnecessary fuses are blown.

Internal connections of a 3x4 PLA with 5 products after 
programming are shown below.

6.6

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

A B C D

F0 = � � + �� ��

F1 = 	 �� + 	
 �

� � + �� ��

	 �� + 	̅ �

 � �

 ��  ��

 	 ��

 	̅ �

For the sake of simplicity, we do not show all of the connections on a PLA.

Instead, we put an 'X' on the connection points which are connected to the 
inputs of gates.

Example:

Simple Representation:



6.7

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Programmable Array Logic - PAL

Inputs of AND gates can be flexibly programmed as in PLAs.

However, inputs of OR gates are fixed. To each OR gate, only outputs of certain 
AND gates can be connected.

For example, to the inputs of the first OR gate, only outputs of the first two AND
gates can be connected.

PALs can be easily programmed, they are cheaper than PLAs, and they can contain 
more gates.

PALs were introduced by the company 
Monolithic Memories, Inc. (MMI).

MMI obtained a registered trademark on the 
term PAL for use in "Programmable 
Semiconductor Logic Circuits."

The trademark is currently held by Lattice 
Semiconductor Corporation.

MMI was acquired by Advanced Micro 
Devices (AMD).

Lattice Semiconductor then acquired the 
programmable logic division of AMD (Vantis).

6.8

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

• Pins on the left 
side and 
bottom of the 
logic diagram 
(pins 1 to 9 and 
pin 11) are 
used for inputs

PAL16L8:

• 16 signifies the maximum number of 
potential inputs (10 dedicated inputs 
and 6 programmable I/O).

• 8 signifies the number of outputs.

• L signifies the output type, which is 
active low for this PAL part type.

• Pins 12 and 19 can be used 
only as outputs, but six of the 
outputs (pins 13 to 18) are 
also available as inputs via the 
feedback line connection 
after the inverting output 
buffer.

• This feature, called 
programmable I/O, lets the 
user program each of these 
six pins as either input or 
output.

Example: PAL16L8



6.9

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Example: A part of PAL 16L8 device is shown below:

16 inputs,

8 outputs,

64 products 
(AND)

Each AND gate 
has 2x16 inputs 
(input variables 
and their 
complements).

6.10

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Example: A part of PAL16L8 device is shown below:

• Eight AND 
gates are 
associated with 
each output pin.   

o Seven of them 
provide inputs 
to a fixed 7-
input OR gate.

o The eighth  
(called output-
enable gate) is
connected to 
the three-
state enable 
input of the 
output buffer.

• The buffer is 
enabled only 
when the 
output-enable 
gate has an 
output of one. 



6.11

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Generic Array Logic – GAL

Its logical properties are similar to those of the PAL.

It is made up of CMOS transistors. It can be erased and programmed many times.

Lattice Semiconductor introduced it.

Example: GAL16V8

Complex PLD – CPLD

It contains several PLDs (macrocells).

Each internal PLD (macrocell) has GAL 
properties. 

CPLDs typically have thousands to tens 
of thousands of logic gates.

Internal structures of macrocells and 
connections between them can be 
programmed.

Example: Atmel (Microchip) ATF1500

32 input/output pins + 4 inputs pins
32 PLDs (macrocells).

PLD

Interconnection

IO

B

IO

B

IO

B

IO

BPLD PLD

PLD PLD PLD

: :

: :

..

…

..

…

.. ..

I/O Block I/O Block

I/O Block I/O Block

..

..

macrocells

macrocells

Architecture of a CPLD:

6.12

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Field-Programmable Gate Array – FPGA
It consists of an array of 
configurable logic blocks (CLBs) 
connected via programmable 
interconnects.

It can be erased and programmed 
many times.

They contain several thousand to
several million logic gates.

They can be used to implement 
complex digital circuits, e.g.,  special-
purpose microprocessors.

Compared to CPLDs, FPGAs are more 
flexible and can implement more 
complicated circuits.

However, the delay of FPGAs is 
higher.

Example: 
AMD Artix™ UltraScale+™ AU25P
304 input/output pins
308000 system logic cells

Architecture of an FPGA:

Switch and 
Connection Box

CLB SCB

IOB

CLB CLB SCB

SCB

CLB SCB CLB SCB CLB SCB

SCB SCBSCB

SCB

SCB SCB

SCB

CLB SCB CLB SCB CLB SCB

SCB SCBSCB SCB SCB

SCB SCB SCBSCB SCB SCB

IOB IOB

SCB

SCB

SCB

SCB

SCB

SCB

IOB

SCB SCB SCBSCB SCB SCBSCB

IOB IOB IOB

IOB

IOB

IOB

IOB

IOB

I/O 
Block

Configurable 
Logic Block



6.13

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

ASIC (Application-specific integrated circuit)

An application-specific integrated circuit (ASIC) is an integrated circuit (IC) 
designed for a particular use. 

An ASIC is not a reprogrammable device like an FPGA.

During the design of an ASIC, functional blocks are taken from a library, 
interconnected, and verified via simulation.

ASICs often include entire microprocessors, memory blocks, and other blocks for 
I/O operations. Such an ASIC is called a SoC (system-on-chip).

HDLs are also used for designing ASICs, just like they are used for PLDs.

ASIC are used in medical image processing, encoding/decoding data in 
communication devices, controlling the charging process in smartphones, etc.

The non-recurring engineering (NRE) cost of an ASIC is very high.

o Non-recurring engineering (NRE) cost is the one-time cost to research, 
design, develop, and test a new product.

o Production costs must be paid constantly to maintain the production of a 
product.

Therefore, device manufacturers usually choose FPGAs for prototyping and low-
volume production, while ASICs are preferred for high-volume production with 
amortized NRE costs. 

6.14

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

HDL-Based Design

It is difficult to design (describe) large and complex systems using Boolean algebra 
and logic functions.

Similar to software development, most digital design is now done at higher levels of 
abstraction.

Software Design:

Although a CPU can only directly execute machine code, we do not use machine 
language or assembly language for large systems unless absolutely necessary.

We write complex programs using high-level programming languages such as C++, 
Java, C#, and Python, which are closer to human language than to machine language.

Compilers convert these programs to machine code.

Hardware Design:

Designers use Hardware Description Languages (HDLs) such as Verilog or VHDL to 
describe circuits at an abstract level. They do not have to use Boolean algebra.

In addition, designers can obtain commonly used functions and subsystems under a 
license from an intellectual property (IP) provider to integrate with their custom 
circuit.

Finally, a Verilog or VHDL synthesis tool can produce a circuit by building an ASIC 
chip or programming an FPGA.



6.15

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

HDL-Based Design Flow

Requirements
Functional

specifications

Coding
HDL

Compilation

Simulation

Mapping

Fitting

ASIC CPLD FPGA

Synthesizer

• First, we identify the functional specifications of the 
required circuit.

• Using a text editor, we write the program in an HDL, e.g., 
Verilog, that describes the specifications of the circuit.

• The compiler creates a file in a digital-design description 
language RTL (register-transfer language). The RTL file is 
the description of the logic operations and 
interconnections.

• Using a simulation tool, we can verify if the designed 
circuit generates the expected outputs for given inputs.

• A synthesizer tool is used to target the RTL design to a 
specific hardware technology such as an ASIC, CPLD, or 
FPGA.

- Mapping the RTL design into hardware elements in the 
target technology.

- Placement of the necessary elements onto a physical 
chip layout.

- Routing: Finding or creating paths between the inputs 
and outputs of placed elements.

6.16

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Verilog
Verilog is one of the popular hardware description languages.

The other one is VHDL.

The syntax of Verilog is similar to that of the C programming language.

Standards:
• Verilog-2001: IEEE standard 1364-2001.
• Verilog-2005: IEEE standard 1364-2005.
• System Verilog: IEEE standard 1800-2009.

The 2009 standard, System Verilog, includes Verilog-2001/2005 as a subset and 
introduces new features for specifying, designing, and verifying complex systems.

The basic unit of design and programming in Verilog is a module.
A module may correspond to a single piece of hardware.
Modules are similar to functions or procedures in programming.
Modules can be used as building blocks in other larger modules.

A Verilog module consists of declarations and statements.

Declarations describe the names and types of the module’s inputs and outputs, as 
well as local signals, variables, and constants used internally in the module.

The statements specify or “model” the operation of the module’s outputs and 
internal signals.



6.17

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

// Example: XOR Function
module XOR(

input in1, // Declarations
input in2,
output out
);
assign out = in1 && !in2 || !in1 && in2; // Logic function of XOR

endmodule

Verilog Examples

Example: XOR Function

The Verilog examples in this course have been compiled and tested using the Xilinx 
(AMD) Vivado® suite.
https://www.xilinx.com/products/design-tools/vivado.html

https://www.xilinx.com/support/download.html

Simulation:

6.18

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

// Example: Full Adder
module FullAdder(
input a, // First number
input b, // Second number
input Cin, // Carry input
output s, // Output Sum
output Cout // Carry output
);
wire x; // Internal wire

// We use the XOR module designed in advance
XOR XOR1(.in1(a), .in2(b), .out(x)); // x = a XOR b
XOR XOR2(.in1(Cin), .in2(x), .out(s));            // s = Cin XOR x

// Cout = a⋅Cin + b⋅Cin + a⋅b
assign Cout = a && Cin || b && Cin || a && b;     

endmodule

Example: Full Adder using XOR Module

Example:
FullAdder.v
Adder_Test.v

Full Adder: Slide 5.3



6.19

Digital Circuits

2011-2023     Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

module isPrime(
input [3:0] N, // 4-bit input
output reg R
);

always @ (*)
if (N == 1) R = 0;                  // 1 is not prime
else if ( (N % 2) == 0 )            // Divisible by 2?

begin if (N == 2) R = 1; 
else R = 0;

end
else if (N <= 7) R = 1;
else if ( (N == 11) || (N == 13) ) R = 1;
else R = 0;

endmodule

Example: 4-bit Prime number detector

In the previous examples, we wrote Boolean expressions directly into our source 
programs.
In this example, we write the program for a 4-bit prime number detector using if-
else statements.
The abstraction level of this program is higher than the those of the previous ones.

Example:
PrimeDetector.v
PrimeDetector_Tester.v


