SEQUENTIAL CIRCUITS

- In the first part of the course, combinational circuits were covered. The outputs of combinational circuits depend only on current inputs.

Combinational circuit: Output $=\mathrm{G}$ (Input)

- In sequential circuits, the outputs depend both on the inputs and the "state" of the circuit.

$$
\begin{aligned}
& \text { Sequential circuit: Output }=\mathrm{G} \text { (Input, Current State) } \\
& \text { Next State }=\mathrm{H} \text { (Input }, \text { Current State })
\end{aligned}
$$

Memory units are required to store (remember) the state of the circuit.

For example, a vending machine keeps track of (remembers) the coins inserted into the machine.
With each coin, the state of the machine (the total amount of money corresponding to the inserted coins) is updated.

| http://akademi.itu.edu.tr/en/buzluca/
 http://www.buzlucainfo | Cc) | 2011-2023 Feza BUZLUCA | 8.1 |
| :--- | :---: | :---: | :---: | :---: | :---: |

Digital Circuits

Types of sequential circuits:
There are two types of sequential circuits:
A) Synchronous sequential circuits:

- Their states can change at a discrete instant of time.
- All memory elements are synchronized by a common clock signal.
- Therefore, these circuits are also called "clocked synchronous sequential" circuits.
B) Asynchronous sequential circuit:
- Their state can change at any instant of time depending upon the input signals.

In this course, we will deal only with clocked synchronous sequential circuits because nearly all sequential logic today is clocked synchronous.
For example, microprocessors are clocked synchronous sequential circuits.

Digital Circuits

Finite State Machine (FSM) Model

Sequential circuits are designed using the "finite state machine - FSM" model.
This model is also used in the design of many other systems.
An FSM has inputs, states, and outputs.

- When the machine is started, it is in a specific state (initial state: s_{0}).
- An output is produced depending on the inputs and the current state. $\mathrm{O}=\mathrm{G}(\mathrm{I}, \mathrm{S})$
- Transition into a new state occurs depending on the input and the current state.

To illustrate the behavior of an FSM, state/output diagrams are used.
Example: A state/output diagram for an FSM that models the behavior of a human

Digital Circuits

Finite State Machine (FSM) Model (cont.)

A digital circuit designed using the FSM model has two parts:
a) Combinational circuit for logic operations to determine output and next state
b) Memory unit to remember the current state

Block diagram of a clocked synchronous sequential circuit:

We will see details of the FSM and clocked synchronous sequential circuits (in chapters 9 and 10) after we cover memory units.

http://akademi.itu.edu.tr/en/buzluca/	(¢)®	2011-2023 Feza BUZLUCA
		2011-2023 Feza BUZLUCA

Memory Units

Latches and Flip-flops:

A basic memory cell is a circuit that stores one bit of information for as long as the device is powered.
This one-bit memory element is called a flip-flop or a latch because it latches (or locks) data in it.
A memory element that has no clock input is often called a latch.
It is not triggered by a control signal (i.e., a clock signal).
The value of the latch can be changed whenever the latch is enabled.
A flip-flop is a memory unit that is triggered by a clock signal.
In this chapter, we will cover the details of latches and flip-flops.

Digital Circuits

Latches and Flip-flops (cont'd):
There are different types of latches and flip-flops.
Depending on its type, a latch or a flip-flop has one or more data inputs, a single output, and control inputs.
Example: A general flip-flop:

The \mathbf{Q} output shows the current value (state) of the memory unit $(0,1)$.
The next value of the output Q (denoted by $Q(t+1), Q\left(t^{+}\right)$, or $\left.Q^{+}\right)$is a function of the current state (denoted by $\mathrm{Q}(\mathrm{t})$ or Q) and the current inputs.
The clock signal (denoted by CLK) determines when the next state function is evaluated, and the output of the flip-flop changes its value.
The output of the flip-flop can only change when the clock signal is active (the definition of being active will be described in the coming slides).
If CLK is not active, the flip-flop output will not change even if input values change.

Digital Circuits License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Clock Signal:

The clock signal is a periodic square wave that synchronizes the gates in the circuit.

A logic unit that has a clock signal input (i.e., flip-flop) is enabled only when the clock signal is active. If the clock signal is not active, the flip-flop preserves its state.
There are two types of units that differ in how they use the clock signal:
a) Level-triggered units
b) Edge-triggered units

Level-triggered units use a level of the clock signal (1 in positive logic) as active.
A level-triggered unit becomes active and changes its output when the clock signal is at the high level.
It preserves its state when the clock signal is at the low level.
When the clock signal is at the high level ("1"), the inputs should not change as they are being processed.
Otherwise, the output of the sequential circuit is indeterminate (random).
This time is called the register time.
The inputs can change when the clock signal is 0 . This
 time is called the settling time.

http://akademi.itu.edu.tr/en/buzluca/ © http://www.buzlucainfo	CC) $2011-2023$ Feza BUZLUCA	8.7

Digital Circuits

Edge-triggered units:

These units use an edge (rising edge in positive logic) of the clock signal as active. A positive edge-triggered unit uses the $0 \rightarrow 1$ transition of the clock signal (risingedge) to change its state and output. At other times, it preserves its state.
As the inputs are used (processed) during a $0 \rightarrow 1$ (or $1 \rightarrow 0$)transition, inputs should be kept constant for a certain amount of time before and after the transition. Otherwise, the output of the sequential unit is indeterminate (random).

The register time is the sum of the setup and hold times.
Setup time is the minimum time the data signal should be steady before the clock transition. Hold time is the minimum time the data signal should be steady after the clock transition.

The inputs should be kept constant during the register time so that the sequential circuit works correctly.
In negative logic, this processing occurs at the $1 \rightarrow 0$ transition (falling edge)
http://akademi.itu.edu.tr/en/buzluca/ (CC) ©

Digital Circuits

Example: Edge-Triggered Toggle (or Trigger) (T) Flip-Flop

There are four main types of latches and flip-flops: S-R, D, T, and J-K.
The major difference in these flip-flop types is their characteristic function.
Example: T flip-flop

Characteristic Equation: $Q\left(\mathrm{t}^{+}\right)=\mathrm{T} \oplus \mathrm{Q}(\mathrm{t})$

The next output (state) of the T flip-flop $Q\left(t^{+}\right)$is equal to its current output (state) XORed with its input (T).
According to this, the output of the flip-flop does not change when $\mathrm{T}=0$ because $0 \oplus x=x$.
The output of the flip-flop is inverted (complemented) when $\mathrm{T}=1$ because $1 \oplus x=\bar{x}$.

Digital Circuits

Feedback Connections

The combinational circuits we have studied so far have not had feedback connections. To construct a circuit that has memory, we must introduce feedback into the circuit.

By feedback, we mean that the output of one of the gates is connected back to the input of another gate in the circuit to form a closed loop.
Example:

If, at some instant of time, the inverter input A is " 0 ", this " 0 " will propagate through the inverter and cause the output Z to become "1".
This "1" is fed back into the input, so after the propagation delay, the inverter output Z will become " 0 ".
When this 0 feeds back into the input A, the output Z will again switch to " 1 ", and so forth.
Inverter output Z will continue to oscillate back and forth between " 0 " and " 1 " as shown in the figure below, and it will never reach a stable condition (it will remain unstable).

http://akademi.itu.edu.tr/en/buzluca/
htte://www.buzluca.info

Feedback Connections (cont'd)

This unstable circuit cannot be used as a memory unit.
However, this circuit can be used to measure the propagation delay of the inverter because the rate at which the circuit oscillates is determined by the propagation delay in the inverter.

The propagation delay of the NOT gate is 10 ns in this example.

Another unstable circuit:

Digital Circuits

Feedback Loop with Two Inverters (Bistable Circuit)

Next, consider a feedback loop with two inverters, shown below.
In this case, the circuit has two stable conditions (bistable), often referred to as stable states.

Stable state 1:

If the input to the first inverter is 0 , its output will be 1 .
Then, the input to the second inverter will be 1 , and its output will be 0 .
This 0 will feed back into the first inverter, but since this input is already 0 , no changes will occur.
The circuit is then in a stable state.

Stable state 2

A second stable state of the circuit occurs when the input to the first inverter is 1 and the input to the second inverter is 0 .

Digital Circuits

Bistable (Two stable states) Circuit (cont'd)

We can also draw the bistable circuit in slide 8.12, as shown on the right (cross-coupled form).

Remember, this circuit will always be in one of the two possible stable states.

State 1: $\mathrm{In}_{1}=0$, Out $_{1}=\mathrm{In}_{2}=1$, Out $_{2}=0$
If the output of the inverter at the top is Out $(Q)=1$, the input of the inverter at the bottom becomes $\mathrm{In}_{2}=1$, and its output becomes Out $(\mathrm{Q} L)=0$.
This is a stable state as it requires $\ln =0$ and $Q=1$.
State 2: $\ln _{1}=1$, Out $_{1}=\ln _{2}=0$, Out $_{2}=1$
If the output of the inverter at the top is $\mathrm{Out}_{1}(Q)=0$, the input of the inverter at the bottom becomes $\mathrm{In}_{2}=0$, and its output becomes $\mathrm{Out}_{2}\left(\mathrm{Q}_{-} \mathrm{L}\right)=1$.
This is also a stable state as this state requires $\mathrm{In}_{1}=1$ and $\mathrm{Q}=0$.
This circuit has two stable states: $\mathrm{Q}=1$ and $\mathrm{Q}=0$,
$Q_{-} L$ is the complement of $Q\left(Q_{L}=\bar{Q}\right)$.

Bistable (Two stable states) Circuit (cont'd)

This circuit has two stable states: $\mathrm{Q}=1$ and $\mathrm{Q}=0$.
Having two stable states is a necessary property for a memory unit.
However, this circuit has no external inputs.
It is impossible to control (change) the state of the circuit as it has no inputs.
When this circuit is turned on, the latch assumes a random state depending on the time delay of the gates.
Therefore, it cannot be used as a memory unit.
A memory unit must have

1. two stable states,
2. control input(s), which can be used to change or preserve the state of the unit.

Digital Circuits
 S-R (Set-Reset) Latch

The S-R latch is a one-bit memory device constructed by introducing feedback into a circuit with two NOR (or NAND) gates.
All other latches and flip-flops can be built from this fundamental memory device
by adding external gates. \quad To emphasize the symmetry between the operation

S-R latch with NOR gates:-.. of the two gates, the circuit is often drawn in "cross-coupled" form.

S: Set
R: Reset
Q: Output (State)
Q_{N} : Complemented output $\mathrm{Q}_{\mathrm{NOT}}(\bar{Q})$

Recall: For a NOR gate,

- When one of the inputs is "1", the output will be "O" regardless of the other input
- The output is " 1 " only when both inputs are " 0 ".

S	R	Q	Q_{N}	
1	0	1	0	
0	0	1	0	After $S=1, R=0$
0	1	0	1	
0	0	0	1	After $S=0, R=1$
1	1	0	0	Forbidden input
			Q and	Q_{N} should be complements

- The input S is used to write (store) a "1" to the latch (an input $S=1$ "sets" the output to $Q=1$).
- The input R is used to write a "0" (an input $R=1$
"resets" the output to $\mathrm{Q}=0$)
- If both inputs are " 0 ", the S-R latch preserves its state.
- Both inputs should not be "1" at the same time.

Digital Circuits

State Changes of the S-R (Set-Reset) Latch

To show how states of an S-R latch change, we can draw the circuits:
$\mathrm{S}=1, \mathrm{R}=0 / \mathrm{Q}=1$:

If $S=1, R=0, Q_{N}$ will be 0 . Since both inputs of the second gate are $0, Q$ will become 1 .
$S=0, R=1 / Q=0:$

If we now change R to $1, Q$ will become 0 and Q_{N} will then change back to 1 .
http://akademi.itu.edu.tr/en/buzluca
$S=0, R=0 / Q=1$:

If we change S to 0 , the latch will remain in the present state (1) because $Q=1$ feeds back into the first gate, causing Q_{N} to remain 0, as shown above.

If we then change R back to 0 , the latch remains in the present state (0).

Digital Circuits

Truth table and the characteristic equation of the S-R latch:

The next value of the output (next state) $Q(t+1)$ depends on the inputs and current output (state) Q(t).

Truth table:

$\mathrm{Q}(\mathrm{t})$	S	R	$Q(\mathrm{t}+1)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	Φ (forbidden)
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	Φ (forbidden)

Block Diagrams for the S-R Latch:

Characteristic Equation:

The condition $\mathrm{SR}=0$ implies that S and R cannot both be 1 at the same time.

Characteristic Equation:
$Q(t+1)=S+Q(t) \bar{R} \quad(S R=0)$

Timing Properties of the S-R latch:

Because of the propagation delay, the changes in the S and R inputs will not affect the output instantaneously.
During the delay, the inputs should be kept constant.
The duration of the S (or R) input pulse must normally be at least as great as the delay for a change in the state of Q to occur.
Otherwise, the value of the output is indeterminate (random).

$\mathrm{t}_{\mathrm{pLH}(\mathrm{SQ})}$: Delay in the 0-1 transition of the output when S changes.
$\mathrm{t}_{\mathrm{pH} L(\mathrm{RQ})}$: Delay in the 1-0 transition of the output when R changes.
$\mathrm{t}_{\mathrm{pW}(\text { min })}$: Minimum duration for which the inputs should be kept constant.

| http://akademi.itu.edu.tr/en/buzluca/
 http://www.buzlucainfo | CC) 2011-2023 Feza BUZLUCA | 8.19 |
| :--- | :---: | :---: | :---: | :---: |

Digital Circuits

S-R Latch with Enable Input

AND gates are connected to S and R inputs so that the latch is active only when it is enabled.

The value of the latch can only be changed when $E=1$.
When $E=1: S_{\text {in }}=S$ and $R_{\text {in }}=R$ (normal operation of the basic $S-R$ latch)
When $E=0$, the value of the latch is preserved regardless of the inputs.
When $E=0: S_{\text {in }}=0$ and $R_{\text {in }}=0$ (the basic $S-R$ latch preserves its value)

Digital Circuits

$\overline{\mathbf{S}}-\overline{\mathbf{R}}$ Latch

Remember: On slide 8.15, we implemented an S-R latch using NOR gates.
An S-R latch can be also implemented using NAND gates instead of NOR.
This results in an $\overline{\mathbf{S}}-\overline{\mathbf{R}}$ latch.

\bar{S} : Complement of Set
\bar{R} : Complement of Reset
Q: Output (State)
Q_{N} : Complemented output (\bar{Q})

Recall: For a NAND gate

- If one of the inputs of a NAND gate is " 0 ", the output will be "1" regardless of the other input.
- The output is " 0 " only when both inputs are "1".

\bar{S}	\bar{R}	Q	Q_{N}	
0	1	1	0	
1	1	1	0	After $\bar{S}=0, \bar{R}=1$
1	0	0	1	
1	1	0	1	After $\bar{S}=1, \bar{R}=0$ 0
0	1	1	Forbidden inputs	
			Q and Q_{N} should be complements!	

| http://akademi.itu.edu.tr/en/buzluca/ ©
 http://www.buzluca.info | CC) $2011-2023$ Feza BUZLUCA | 8.23 |
| :--- | :---: | :---: | :---: | :---: | :---: |

Digital Circuits

Delay (D) Latch

Other types of latches can be built from the S-R latch by adding external gates.
One way to eliminate the undesirable condition of the indeterminate state in the S R latch is to ensure that inputs S and R are never equal to 1 at the same time.
If an inverter is added to an S-R latch to make R the complement of S, the D-latch

$$
\begin{aligned}
& E=1 \begin{array}{l|ll|l}
\mathrm{D} & \mathrm{~S}_{\text {in }} \mathrm{R}_{\text {in }} & \mathrm{Q}(\mathrm{t}+1) \\
\hline 0 & 0 & 1 & 0 \\
1 & \text { (Reset) } \\
1 & 1 & 0 & 1
\end{array} \\
& \mathrm{E}=0 \begin{array}{l|l|l|l|l|}
\mathrm{D} & \mathrm{~S}_{\text {in }} \mathrm{R}_{\text {in }} & \mathrm{R} \quad \mathrm{Q}(\mathrm{t}+1) \\
\hline \mathrm{X} & 0 & 0 & \mathrm{Q}(\mathrm{t}) & \text { (Don't change })
\end{array}
\end{aligned}
$$

If $E=1$, the value of input D is written to the latch.
If $E=0$, the latch preserves its previous value.

This latch is different from the latches on slides 8.20 and 8.22 .

Characteristic Equation: $Q(t+1)=D$
Digital Circuits License: $\underline{h t t p s: / / c r e a t i v e c o m m o n s . o r g / l i c e n s e s / b y-n c-n d / 4.0 / ~}$

Timing diagram of the Delay (D) Latch

Characteristic Equation:

$$
Q(t+1)=D
$$

A D-latch without an enable input is not preferable because it can not preserve its value if its input changes.

Digital Circuits

Difference between a Latch and a Flip-Flop:

- A latch is not triggered by a clock signal. The value of the latch can be changed whenever the latch is enabled.
- A flip-flop is a memory unit that is triggered by a clock signal.

Remember that the clock signal is a periodic square wave that synchronizes the gates in the circuit.

Edge-triggered units:

These units use an edge (rising edge in positive logic, or falling edge in negative

Digital Circuits

Timing diagram for the rising-edge triggered D flip-flop

- When CLK=0, latch \#1 is enabled. It gets the value from input D . $\mathrm{QM}=\mathrm{D}$
- When CLK=1, latch \#2 is enabled. It gets the value from latch \#1. $Q=Q M$

$\mathrm{t}_{\mathrm{pLH}(\mathrm{CQ})}$: Delay between the active edge of clock and the 0-1 transition of the output.
$\mathrm{t}_{\mathrm{pHL}(\mathrm{CQ})}$: Delay between the active edge of clock and the 1-0 transition of the output.
$t_{\text {setup }}$: Time before the active edge when inputs should be kept constant.
$t_{\text {hold }}$: Time after the active edge when inputs should be kept constant.

Digital Circuits

Falling-Edge Triggered D Flip-Flop

Data is written to the D flip-flop during the falling edge of the clock signal.

- When CLK = 1 , latch \#1 is enabled. It gets the value from input D. Latch \#2 is disabled.
- When CLK goes to 0, latch \#2 is enabled. It gets the value from latch \#1. The value in latch \#2 determines the value of the flip-flop.

D CLK_L			
0	$Q(t+1)$	$Q_{N}(t+1)$	
1	L	0	1
x	$-L$	1	0
x	0	$Q(t)$	$Q_{N}(t)$
x	1	$Q(t)$	$Q_{N}(t)$

Characteristic Equation:

$$
\mathrm{Q}(\mathrm{t}+1)=\mathrm{D}
$$

Digital Circuits

Edge-Triggered D Flip-Flop with Enable Input (cont'd)

Can we design a simpler circuit by connecting an AND gate to the CLK input of the D flip-flop?

This is not a proper solution.
This circuit has some problems.

1. It is not a good idea to increase the delay at the CLK input.
It can cause synchronization problems.
2. If Clock=1 and EN=0, then CLK=0 and the flip-flop is disabled (that is fine). On the other hand, if EN becomes 1 while Clock=1, the flip-flop will get a rising edge on the CLK input, and it will process its input D .
However, the real clock signal is 1 ; there is no 0-1 transition on the clock input.

Digital Circuits

Asynchronous "Clear" and "Preset" inputs

Clocked integrated circuit flip-flops often have additional inputs, which can be used to set the flip-flop to an initial state independent of the clock (asynchronous).

- PR (Preset) is used to write a "1" to the flip-flop.
A "1" applied to the preset (PR) input will set the flip-flop to $Q=1$.
- CLR (Clear) is used to write a " 0 ".

A "1" applied to the clear (CLR) input will reset the flip-flop to $Q=0$.
These asynchronous inputs override the clock and D inputs.
That is, a "1" applied to the clear input will reset the flip-flop regardless of the values of D and the clock.
These asynchronous inputs can be used to assign initial values to the flip-flops after power-on reset.
Some devices use negative logic for PR and CLR inputs.
For example, in such a device, a "0" must be applied to the clear (CLR) input to reset the flip-flop to $\mathrm{Q}=0$.

| http://akademi.itu.edu.tr/en/buzluca/ ©
 http://www.buzlucainfo | Cc) | 2011-2023 Feza BUZLUCA | 8.33 |
| :--- | :---: | :---: | :---: | :---: | :---: |

Digital Circuits

Edge-Triggered J-K Flip-Flop

The J-K flip-flop combines the features of the S-R and T flip-flops.

- A "1" input applied to J or K alone acts exactly like an S or R input, respectively.
- if $\mathbf{J}=\mathbf{1}, \mathrm{K}=0$, the latch output is set to $\mathrm{Q}=1$;
- if $J=0, K=1$, the latch output is reset to $Q=0$.
- If a "1" input is applied to both simultaneously ($\mathbf{J}=1$ and $\mathrm{K}=1$), the flip-flop changes state (toggles) just like a T flip-flop.

J	K	CLK	$Q(t+1)$	$Q N(t+1)$
x	x	0	$Q(t)$	$Q N(t)$
x	x	1	$Q(t)$	$Q N(t)$
0	0	B	$Q(t)$	$Q N(t)$
0	1	$\sqrt{3}$	0	1
1	0	$\sqrt{3}$	1	0
1	1	$\sqrt{3}$	$Q N(t)$	$Q(t)$

Digital Circuits

Characteristic Equations of Latches and Flip-Flops:

The functional behavior of a latch or flip-flop can be described by a characteristic equation that specifies the next state of the flip-flop (or latch) as a function of its inputs and current state.

Characteristic equations of flip-flops:

S-R FF:	$Q(t+1)=S+\bar{R} \cdot Q(t) \quad(S R=0)$
J-K FF :	$Q(t+1)=J \cdot \overline{Q(t)}+\bar{K} \cdot Q(t)$
D FF $:$	$Q(t+1)=D$
T FF $:$	$Q(t+1)=T \oplus Q(t)$

Registers
A register is a group of binary memory units that can store binary information. An n-bit register has a group of n flip-flops (or latches) and can store n bits.
Example: 4-bit parallel in/out register with write enable

Digital Circuits

Example: 4-bit parallel in/out register with clock signal
(constructed with four D flip-flops)

Digital Circuits

Shift Registers: Serial vs. Parallel Inputs/Outputs

Shift registers can store and shift binary numbers to the left or right by one bit at each active transition of the clock signal.
Serial-in, Serial-out:
The figure on the right illustrates an n-bit serial-in,

serial-out right-shift register.

- Serial in means that data is shifted into the first flip-flop one bit at a time, and the flip-flops cannot be loaded in parallel.
- Serial out means that data can only be read out of the last flip-flop and the outputs from the other flip-flops are not available.

Parallel-in, parallel-out:

The figure on the right illustrates a 4-bit parallel-in, parallel-out shift register.

- If all the bits of the register are loaded simultaneously with a single clock pulse, we say that the loading is done in parallel.
- Parallel-in implies that all four bits can be loaded at the same time, and parallel-out implies that all bits can be read out at the
 same time.
http://akademi.itu.edu.tr/en/buzluca/ (CC) ©) 2011-2023 Feza BUZLUCA 8.39

Digital Circuits

Shift Registers (cont'd)

Example: 4-bit serial-in, serial-out left-shift register with CLEAR input

The data is shifted to the left by one bit at each active transition of the clock signal.
In this design, it is not possible to load initial values (except zero) in parallel into the flip-flops (serial-in).
Data can only be read from the last flip-flop, and the outputs from the other flipflops are not available (serial-out).

A right-shift register can be implemented by changing the order of the flip-flops.

Digital Circuits

Shift Register Configurations

Four register configurations (the combinations resulting from a choice of parallel or serial for the inputs and the outputs) are possible:

- Parallel-in, Parallel-out
- Serial-in, Serial-out
- Parallel-in, Serial-out
- Serial-in, Parallel-out

Shift Register Applications

- Many computers operate on parallel data, but this data must sometimes be converted to serial format to be sent.
- Throughout most of the history of personal computers, data has been transferred through serial ports to devices such as modems, terminals, and various peripherals and directly between computers.
- ICs called UARTs (universal asynchronous receiver-transmitters) are used to interface microprocessors and parallel data to communications links that use serial data.
- Shift registers can perform this parallel-to-serial conversion and serial-toparallel conversion.
- Shift registers are available in IC form or can be constructed from discrete flip-flops.

| http://akademi.itu.edu.tr/en/buzluca/ ©
 http://www.buzluca.info | (C) 8.41 |
| :--- | :---: | :---: |

Digital Circuits

Example: 4-bit left-shift register with parallel load (inputs), serial output In this design, we can load an initial value to the register in parallel.

The shift register has the control input SHIFT/LOAD, which enables either a shift or a load:

- If $\overline{\text { SHIFT }} / \mathrm{LOAD}=0$, clocking the register causes the serial input $\left(I_{0}\right)$ to be shifted into the first flip-flop Q_{0}, while the data in flip-flops Q_{3}, Q_{2}, and Q_{1} are shifted left.
- If $\overline{\text { SHIFT }} / \mathrm{LOAD}=1$, clocking the shift register will cause the four data inputs (l_{3}, I_{2}, I_{1}, and I_{0}) to be loaded in parallel into the flip-flops.
http://akademi.itu.edu.tr/en/buzluca

Example: 74164 8-Bit Serial-In Parallel-Out Shift Register
Serial data is entered through a 2 -input AND gate (A and B) synchronous with the LOW-to-HIGH transition of the clock (CLK).

This register does not have parallel load capability $\left(Q_{7}-Q_{0}\right.$ are outputs).

This device also has an asynchronous Master Reset (MR'), which clears the register by resetting all outputs to LOW independent of the clock.

For details, you may refer to the datasheet of the device.

