Digital Circuits	License: https://creativecommons.org/licenses/by-nc-nd/4.0/			
SEQUENTIAL CIRCUITS				
 In the first part of the course, combinational circuits were covered. The outputs of combinational circuits depend only on current inputs. Combinational circuit: Output = G (Input) 				
 In sequential circuits, the outputs depend both on the inputs and the "state" of the circuit. 				
Sequential circuit: Output = G (Input , Current State)				
Next State = H (Input , Current State)				
Memory units are required to store (remember) the state of the circuit.				
For example, a vending machine keeps track of (remembers) the coins inserted into the machine.				
With each coin, the state of the machine (the total amount of money corresponding to the inserted coins) is updated.				
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	2011 - 2023 Feza BUZLUCA 8.1			

Digital Circuits			
Types of sequential circuits:			
There are two types of sequential circuits :			
A) Synchronous sequential circuits:			
• Their states can change at a discrete instant of t	time.		
• All memory elements are synchronized by a comm	ion clock signal .		
 Therefore, these circuits are also called "clocked synchronous sequential" circuits. 			
B) Asynchronous sequential circuit:			
• Their state can change at any instant of time dep	pending upon the input signa		
In this course, we will deal only with clocked synchrobic because nearly all sequential logic today is clocked s			
For example, microprocessors are clocked synchron	ous sequential circuits.		
http://akademi.itu.edu.tr/en/buzluca/	2011 - 2023 Feza BUZLUCA 8,2		

Digital Circuits

Finite State Machine (FSM) Model

Sequential circuits are designed using the "finite state machine - FSM" model. This model is also used in the design of many other systems.

An FSM has inputs, states, and outputs.

- When the machine is started, it is in a specific state (initial state: $s_{\scriptscriptstyle 0}).$
- An output is produced depending on the inputs and the current state. $\mathsf{O}=\mathsf{G}\left(\mathsf{I},\mathsf{S}\right)$
- Transition into a new state occurs depending on the input and the current state. To illustrate the behavior of an FSM, state/output diagrams are used.

Example: A state/output diagram for an FSM that models the behavior of a human

Digital Circuits				
Memory Units				
Latches and Flip-flops:				
A basic memory cell is a circuit that stores one bit of information for as long as the device is powered.				
This one-bit memory element is called a flip-flop or a latch because it latches (or locks) data in it.				
A memory element that has no clock input is often called a latch .				
It is not triggered by a control signal (i.e., a clock signal).				
The value of the latch can be changed whenever the latch is enabled.				
A flip-flop is a memory unit that is triggered by a clock signal .				
In this chapter, we will cover the details of latches and flip-flops.				
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 - 2023 Feza BUZLUCA 8.5				

Digital Circuits	License: https://creative	commons.org/licenses/by-nc-nd/4.0/	
Clock Signal:		t _H t _L ←→→ ←→→	
The clock signal is a periodic synchronizes the gates in the			
A logic unit that has a clock si signal is active. If the clock s		is enabled only when the clock ip-flop preserves its state.	
There are two types of units	that differ in how they u	use the clock signal:	
a) Level-triggered un	its b) Edge-trigg	gered units	
Level-triggered units use a level of the clock signal (1 in positive logic) as active.			
A level-triggered unit become at the high level.	s active and changes its	output when the clock signal is	
It preserves its state when the	ne clock signal is at the le	ow level.	
When the clock signal is at th are being processed.	e high level ("1"), the inp	outs should not change as they	
Otherwise, the output of the indeterminate (random).	sequential circuit is		
This time is called the registe	er time.	Settling Register	
The inputs can change when t time is called the settling tim		time Time	
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	080	2011 - 2023 Feza BUZLUCA 8.7	

Digital Circuits			
Feedback Connections			
The combinational circuits we have studied so far have not had feedback connections. To construct a circuit that has memory, we must introduce feedback into the circuit.			
By feedback , we mean that the output of one of the gates is connected back to the input of another gate in the circuit to form a closed loop.			
Example:			
If, at some instant of time, the inverter input A is "0", this "0" will propagate through the inverter and cause the output Z to become "1".			
This "1" is fed back into the input, so after the propagation delay, the inverter output Z will become "0".			
When this 0 feeds back into the input A, the output Z will again switch to "1", and so forth.			
Inverter output Z will continue to oscillate back and forth between "0" and "1" as shown in the figure below, and it will never reach a stable condition (it will remain			
unstable). Z			
10 20 30 40 50 60 t[ns] http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info Image: Comparison of the second			

Digital Circuits			
Feedback Loop with Two Inverters (Bistable Circuit)			
Next, consider a feedback loop with two inverters, shown below. In this case, the circuit has <u>two stable</u> conditions (<u>bistable</u>), often referred to as stable states.			
Stable state 1: 0 1 1 In1 Out1 In2 Out2			
If the input to the first inverter is 0, its output will be 1. Then, the input to the second inverter will be 1, and its output will be 0. This 0 will feed back into the first inverter, but since this input is already 0, no changes will occur. The circuit is then in a stable state.			
Stable state 2: 1 0 0 1 In1 Out1 In2 Out2			
A second stable state of the circuit occurs when the input to the first inverter is 1 and the input to the second inverter is 0.			
Ittp://akademi.itu.edu.tr/en/buzluca/			

Digital Circuits				
Edge-Triggered Toggle (T) Flip-Flop				
An edge-triggered T flip-flop can be implemented using an edge-triggered D flip-				
flop and an XOR gate.				
$T \longrightarrow T \longrightarrow Q$				
$ \begin{array}{c} \downarrow \\ \neg \\$				
If the input is $0(T, 0)$ the value of the flip flep is preserved as $0 = 0$				
If the input is 0 (T=0), the value of the flip-flop is preserved as $0 \oplus Q = Q$. $T = 0 \rightarrow Q(t + 1) = Q(t)$				
If the input is 1 (T=1), the value of the flip-flop is complemented (toggled) becau	ise			
$1 \oplus Q = Q.$ $T = 1 \rightarrow O(t+1) = \overline{O(t)}$ Characteristic Fauation: $O(t+1) = T \oplus O(t)$				
$T = 1 \rightarrow Q(t+1) = Q(t)$ Characteristic Equation: $Q(t+1) = T \oplus Q(t)$				
-				
Q				
http://akademi.itu.edu.tr/en/buzluca/	.34			

nuructeristic c	quano	ns of Latches and Flip-F	loha	
haracteristic e	quatio	r of a latch or flip-flop ca n that specifies the next its and current state.		
Charact	eristi	c equations of flip-flops	s:	
S-R FF	:	$Q(t+1) = S + \overline{R} \bullet Q(t)$	(SR = 0)	
J-K FF	:	$Q(t+1) = J \bullet \overline{Q(t)} + \overline{K} \bullet 0$	Q(t)	
D FF	:	Q(t+1) = D		
T FF	:	$Q(t{+}1)=T\oplus\ Q(t)$		

Digital Circuits				
Shift Register Configurations				
Four register configurations (the combinations resulting from a choice of parallel or serial for the inputs and the outputs) are possible:				
 Parallel-in, Parallel-out 				
 Serial-in, Serial-out 				
 Parallel-in, Serial-out 				
 Serial-in, Parallel-out 				
 Shift Register Applications Many computers operate on parallel data, but this data must sometimes be converted to serial format to be sent. 				
 Throughout most of the history of personal computers, data has been transferred through serial ports to devices such as modems, terminals, and various peripherals and directly between computers. 				
 ICs called UARTs (universal asynchronous receiver-transmitters) are used to interface microprocessors and parallel data to communications links that use serial data. 				
 Shift registers can perform this parallel-to-serial conversion and serial-to- parallel conversion. 				
 Shift registers are available in IC form or can be constructed from discrete flip-flops. 				
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info 2011 - 2023 Feza BUZLUCA 8.41				

Digital Circuits	License: <u>https://creativecommons.org/</u>	licenses/by-nc-nd/4.0/
Example: 74164 8-Bit Serial-I	In Parallel-Out Shift Register	
Serial data is entered through synchronous with the LOW-to (CLK).		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
This register does not have pa outputs).	arallel load capability (Q_7 - Q_0 are	6 [Q ₂
	ronous Master Reset (MR'), which ng all outputs to LOW independent	
For details, you may refer to t	the datasheet of the device.	
http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	© 0SE 2011 - 20	23 Feza BUZLUCA 8.43