Digital Circuits	License: https://creativecommons.org/licenses/by-nc-nd/4.0/	Digital Circuits
SEG	QUENTIAL CIRCUITS	Types of sequential circuits:
• In the first part of the The outputs of combine Combinational ci	e course, combinational circuits were covered. ational circuits depend only on current inputs. rcuit: Output = G (Input)	 There are two types of sequential circuits : A) Synchronous sequential circuits: Their states can change at a discrete instant of time. All memory elements are synchronized by a common clock signal.
• In sequential circuits, the circuit.	the outputs depend both on the inputs and the "state" of	 Therefore, these circuits are also called "clocked synchronous sequential" circuits.
Sequential circu	Next State = H (Input , Current State)	B) Asynchronous sequential circuit:Their state can change at any instant of time depending upon the input signals.
Memory units are require For example, a vending m the machine. With each coin, the stat	ed to store (remember) the state of the circuit. achine keeps track of (remembers) the coins inserted into e of the machine (the total amount of money corresponding	In this course, we will deal only with clocked synchronous sequential circuits because nearly all sequential logic today is clocked synchronous. For example, microprocessors are clocked synchronous sequential circuits.
to the inserted coins) is http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info	updated.	http://akademi.itu.edu.tr/en/buzluca/ CCOOSO 2011 - 2023 Feza BUZLUCA 8.2

Memory Units	
Latches and Flip-flops:	
A basic memory cell is a circuit that stores one the device is powered.	bit of information for as long as
This one-bit memory element is called a flip-flop locks) data in it.	o or a latch because it latches (or
A memory element that has no clock input is oft	en called a latch .
It is not triggered by a control signal (i.e., a cloc	ck signal).
The value of the latch can be changed whenever	the latch is enabled.
A flip-flop is a memory unit that is triggered by	a clock signal.
In this chapter, we will cover the details of latc	hes and flip-flops.
ttp://akademi.itu.edu.tr/en/buzluca/	2011 - 2023 Feza BUZLUCA 8.5

Digital Circuits	License: https://creativecommons.org/licenses/by-nc-nd/4.0/		
Clock Signal:	t _H t _L		
The clock signal is a periodic synchronizes the gates in th	e circuit.		
A logic unit that has a clock signal input (i.e., flip-flop) is enabled only when the clock signal is active. If the clock signal is not active, the flip-flop preserves its state.			
There are two types of units	that differ in how they use the clock signal:		
a) Level-triggered u	nits b) Edge-triggered units		
Level-triggered units use a l	evel of the clock signal (1 in positive logic) as active.		
A level-triggered unit becom at the high level.	es active and changes its output when the clock signal is		
It preserves its state when t	the clock signal is at the low level.		
When the clock signal is at the are being processed.	he high level ("1"), the inputs should not change as they		
Otherwise, the output of the indeterminate (random).	e sequential circuit is		
This time is called the regist	er time.		
The inputs can change when the inputs is called the settling time is called the settling time time time time time time time time	the clock signal is 0. This time Time ne .		
http://akademi.itu.edu.tr/en/buzluca/	2011 - 2023 Feza BUZLUCA 8,7		

r					
Digital Circuits					
Example: Edge-Triggered Toggle (or Trigger) (T) Flip-Flop					
There are four main types of	There are four main types of latches and flip-flops: S-R, D, T, and J-K.				
The major difference in these	e flip-flop types is their (characteristic function.			
Example: T flip-flop	Example: T flip-flop				
	FF Edge-	$Q(l^*)=1 \oplus Q(l)$			
Clock	triggered				
The next output (state) of the T flip-flop Q(t+) is equal to its current output					
(state) XORed with its input (T).					
According to this, the output of the flip-flop does not change when T=0 because $0 \oplus r = r$					
The output of the flip-flop is inverted (complemented) when $T=1$ because					
$1 \oplus x = \overline{x}$.					
T 0-1-	0 1				
Q 0 0 delay	1 delay ····> 0	0			
http://akademi.itu.edu.tr/en/buzluca/	080	2011 - 2023 Feza BUZLUCA 8.9			

	Feedback	Connections (cont'	d)	
A	z			
This ur	stable circuit car	not be used as a mer	nory unit.	
Howeve becaus delay ii	er, this circuit can e the rate at whic n the inverter.	t be used to measure th the circuit oscillat	the propagation delay of es is determined by the p	the inverter ropagation
	Z + 1	40 50 60 t[ns]		
The p	propagation delay	of the NOT gate is 1	0 ns in this example.	
Anot	her unstable circ	uit:		
	»- <u>)</u> •- <u>)</u> •-			
nttp://akadem	i.itu.edu.tr/en/buzluca/	@ 0 8 E	2011 - 2023 Eoza BL	70000 0.11

Digital Circuits

Characteristic Equations of Latches and Flip-Flops:

The functional behavior of a latch or flip-flop can be described by a **characteristic equation** that specifies the next state of the flip-flop (or latch) as a function of its inputs and current state.

Characteristic	equations of flip-flops:		
S-R FF :	$Q(t+1) = S + \overline{R} \cdot Q(t)$ (SR = 0)		
J-K FF :	$Q(t+1) = J \bullet \overline{Q(t)} + \overline{K} \bullet Q(t)$		
DFF :	Q(t+1) = D		
TFF :	$Q(t+1) = T \oplus Q(t)$		
mi.itu.edu.tr/en/buzluca/ uzluca.info	20	11 - 2023 Feza BUZLUCA	8.36

org/licenses/by-nc-nd/4.0/
1∐A vcc]14 2∐B C ₇]13 3∐C ₀ 74164 4∐C ₁ 64 0∏1
*[]Q ₂ Q ₄ []W 2 4[]Q ₃ MR ¹ [] 9 7[]GND CLK[] 8
ich ent

000

http://akademi.itu.edu.tr/en/buzluca/ http://www.buzluca.info

2011 - 2023 Feza BUZLUCA 8.43