
1

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.1http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Design Examples
In the previous section, we designed some operations of the basic flow of the
"UC1- Process Sale" use case.

: Cashier :System

enterItem(itemID, quantity)

endSale()

makePayment(amount)

description, total

total with taxes

change due, receipt

[more items]

makeNewSale()

loop

Now we will complete the missing parts.

Completed

Missing

Calculation of total
Completed

Missing

Completed

Missing

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.2http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The enterItem system operation occurs when a cashier enters the itemID and
(optionally) the quantity of an item the customer buys.

Actually, we could design this operation right after makeNewSale, but as this
operation is more complicated than others, I left it to this chapter.

Remember the contract of the operation.

Contract CO2: enterItem

Operation: enterItem(itemID: ItemID, quantity: integer)

Cross References: Use Cases: Process Sale

Preconditions: There is a sale underway

Postconditions: - A SalesLineItem instance sli was created (instance creation).

- sli was associated with the current Sale (association formed).

- sli.quantity became quantity (attribute modification)

- sli was associated with a ProductSpec. based on itemID match
(association formed)

Remember, postconditions give responsibilities.

Design Example: enterItem

2

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.3http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Responsibilities and assignments:

• Choosing the Controller:

We will continue to use Register as the facade controller.

• Displaying Item Description and Price:

Because of the principle of Model-View Separation, it is not the responsibility
of non-GUI objects.

Therefore, we ignore the design of the display at this time.

• Creating a New SalesLineItem:

Analysis of the Domain Model reveals that a Sale contains SalesLineItem
objects.

Therefore, by Creator, a makeLineItem message is sent to a Sale for it to
create a SalesLineItem.

The Sale creates a SalesLineItem and then stores the new instance in its
permanent collection.

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.4http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The SalesLineItem needs to be associated with the ProductSpecification that
matches the incoming itemID.

We must retrieve a ProductSpecification, based on an itemID match.

Analyzing the Domain Model reveals that the ProductCatalog logically contains
all the ProductSpecifications.

For example, the lookup can be implemented with a method called
getSpecification.

itemID Address of
Spec. object

123456 $spec1

435345 $spec2

780654 $spec3

Map in ProductCatalog

ProductSpecification
objects in memory

• Finding a ProductSpecification:

Spec1

id
Description
Price

Spec2

id
Description
Price

3

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.5http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Who will get the specification from the catalog; Register or Sale?

It is reasonable to assume that Register and ProductCatalog instances were
created during the initialization of the system (Store) and that the Register
object is permanently connected to the ProductCatalog object.

With that assumption (we must remember this during the design of
initialization operations), we know that the Register can send the
getSpecification message to the ProductCatalog.

Another possibility is that the Sale sends the getSpecification message to the
ProductCatalog.

Which assignment is better? Coupling, cohesion . . .

• Sending a message to a ProductCatalog to get the specification:

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.6http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

enterItem(id, qty)
:Register

Controller

2: makeLineItem(spec, qty)
:Sale

Creator

2.1: create(spec, qty)

sli : SalesLineItem

1: spec := getSpecification(id)

:Product
Catalog

Expert

1.1: spec := get(id)

:Map<id , ProductSpecification>

get message is sent to the map,
not to all elements in the map

List<SalesLineItem>

2.2: add(sli)

Add newly created sli
to the list

lineItems:

Design of enterItem:

4

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.7http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Partial design class diagram of the software system so far:

SalesLineItem

quantity : Integer

ProductCatalog

...

getSpecification(...)

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

descriptions
{Map}

1..*

lineItems
{ordered}

*

Register

enterItem(...)

....

Sale

date : Date
isComplete : Boolean
time : Time

makeLineItem(...)

currentSale

catalog

description

1 1

1

1 1

1

1

*

....

Payment

amount : Money

payment

1

1

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.8http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Design Example: endSale

The endSale system operation occurs when a cashier presses a button indicating
the end of entering line items into a sale.

Contract CO3: endSale
Operation: endSale()
Cross References: Use Cases: Process Sale
PreConditions: There is a sale underway

PostConditions: - Sale.isComplete became true (attribute modification)

Responsibilities and assignments:

• Choosing the Controller: We will continue to use Register as a controller.

• Setting the Sale.isComplete Attribute: By Expert, the Sale should set it
because it owns and maintains the isComplete attribute.

endSale()
:Register

Controller

1: becomeComplete()
:Sale

Expert

5

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.9http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The "Process Sale" use case implies that the balance due from payment should
be displayed somehow.

Because of the Model-View Separation principle, we do not concern ourselves
with how the balance will be displayed or printed, but we must ensure that it is
known.

Responsibility:

Who is responsible for knowing the balance?

To calculate the balance, we need the sale total and payment cash tendered.
Therefore, Sale and Payment are partial Experts on solving this problem.

Solution 1:

If we assign the responsibility for knowing the balance to Payment, it needs
visibility (coupling) to the Sale to ask the Sale for its total.

Since it does not currently know about the Sale (class diagram in 5.7), this
approach would increase the overall coupling in the design (violates the Low
Coupling pattern).

In this case, a new arrow from Payment to Sale would be necessary.

Design Example: Calculating the balance

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.10http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

s : Sale
balance := getBalance()

p : Payment
1: amount := getAmount()

2: t := getTotal()

Solution 2:

If we assign the responsibility for knowing the balance to Sale, it needs visibility
(coupling) to the Payment to ask it for its cash tendered.

Since the Sale already has visibility to the Payment (remember the design of
makePayement in 4.21), the Sale creates the Payment.

Since this approach does not increase the overall coupling (in 5.7), it is preferable.

{ balance := p.amount - s.total }

6

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.11http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Design Example: Logging a Sale

The Process Sale use case:

8. System logs completed sale …

Responsibility:

Who is responsible for knowing all the logged sales and doing the logging?

Alternative 1:

With the goal of the low representational gap, we can expect a Store to know all
the logged sales because they are strongly related to its finances.

Alternative 2:

If Store has many other responsibilities, we can create a class such as SalesLedger.

Using a SalesLedger object makes sense as the design grows and the Store becomes
incohesive.

In this case, we would add SalesLedger to the Domain Model because a sales ledger
is a concept in the real-world domain.

This kind of discovery and change during design work is to be expected.

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.12http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Store

...

addSale(s: Sale)

logs-completed

1

Sale

...

…

*

Store can log sales.

Acceptable if the Store has
few responsibilities.

SalesLadger

...

addSale(s: Sale)

logs-completed

1

Sale

...

…

*

SalesLedger can log sales.

Suitable if the Store has many
responsibilities and becomes
incohesive.

Two alternatives for logging a sale:

7

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.13http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

:Register
makePayment(cashTendered)

: Payment

1.1: create(cashTendered)

s:Sale1:makePayment(cashTendered)

:Store

2: addSale(s)

completedSales:
List<Sale>

2.1: add(s)Expert

Register
coupled to

Store

s is a reference to
the same object

In this example, we assign this responsibility to Store.

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.14http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Design Example: Connecting the UI Layer to the Domain Layer

Remember, we put a controller object between the UI and domain layers to ensure
low coupling.

However, in some cases, UI objects may send messages to domain objects
directly.

For example, in the case of the enterItem message, we want the window to show
the running total after each entry.

Solution 1: Add a getTotal method to the Register.

The UI sends the getTotal message to the Register, which delegates to the Sale.

Then the Register gets the result from Sale and passes it to the UI layer

This provides low coupling but may overload the Register, making it less cohesive.

Solution 2: An object in the UI gets the reference of the current Sale object
from the Register.

When the UI requires the total, it directly sends messages to the Sale.

This design increases the coupling from the UI to the domain layer.
However, coupling to the Sale is not a major problem if the Sale is a stable object.
This makes the Register more cohesive.

8

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.15http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Connecting the UI Layer to the Domain Layer:

We assume that the Sale is a stable object.

: Cashier

presses button

actionPerformed(actionEvent)

:SaleJFrame

: Register

1: enterItem(itemID, qty)

User Interface
Layer

Domain

Layer

2: [s = NULL] s := getSale() : Sale

:Sale
1.1:makeLineItem(spec, qty)

3: total := getTotal()

A UI object sends a
message to a domain
object directly.
Sale is a stable object.

Later we will see the Observer (GoF) pattern, which provides a solution to
this problem in more complex systems.

s is a variable
(reference or pointer)
in SaleJFrame that
holds the address of
the current Sale.

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.16http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Design Example: Initializing the System

For most of the systems, it is necessary to write a "Start-up" use case that
includes system operations related to the starting up of the application.

What should happen when we start the program?

Although the "start-up" use case is the earliest one to execute, we delay its
design until after all other system operations have been considered.

Do the initialization design last.

In a start-up, we create an initial domain object (or a set of initial domain
objects).

The initial domain object is responsible for
• the creation of its direct child domain objects (which must be created at the

start up);
• ensuring the necessary visibility (connection) between related objects.
For example,
• Creating the Register and the ProductCatalog objects and establishing a

connection between them.
• Establishing the connection between the UI and the controller object.
In our example, we chose the Store as the initial object.

9

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.17http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

System initialization for our example:

1: create()

pc:
ProductCatalog

:Register2: create(pc, st)st:Storecreate()

specifications:
Map<id, ProductSpecification>

1.1: create()

1.2.2*: add(id, ps)

1.2.1*: create(id, price, description)

ps:
ProductSpecification

1.2: loadProdSpecs()

Reads the specifications of
products (from a database,
network, etc)

Initial domain object

Register gets the references of
ProductCatalog and Store.

It has visibility to these objects.
st is necessary to send completed sales.

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.18http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

public class Main // Java
{
public static main(String[] args)
{

// Store is the initial domain object
Store store = new Store();
Register register = store.getRegister(); // register is created by Store
ProcessSaleJFrame frame = new ProcessSaleJFrame(register); // Frame is connected
..... // to Register

}
}

Initialization in C++:
int main() // C++
{

// Store is initial domain object
Store store;
Register *register = store.getRegister();
ProcessSaleJFrame *frame = new ProcessSaleJFrame(register);
.....

}

Initialization in Java:

10

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.19http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

...

getSpecification(...)

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Store

address : Address
name : Text

addSale(...)

Payment

amount : Money

...

descriptions
{Map}

1..*

lineItems
{ordered}

*

Register

endSale()
enterItem(...)
makeNewSale()
makePayment(...)

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

currentSale

register

catalog

payment

description

1 1

1

1 1

1

1
1

1

1

1

1

1

*

completedSales
{ordered}

*

1

The Design Class Diagram reflecting our design decisions until now:

Navigability

Dependency

If Store logs
completed sales.

See 5.13

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.20http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Visibility Between Objects

Visibility means that one object can "see" or have reference to another object.

To send a message to another object, the sender must have a reference or a
pointer to the receiver object.

How can the Sender call Receiver's mR() method?

The sender must "see" the receiver.

obj.method(); ref.mR();

objPointer->method(); ref->mR();

During the design of a system as a set of interacting objects, it is necessary to
ensure that the required visibility is achieved between objects to support message
interaction.

Types of visibility:

There are four ways that visibility can be established from object A to object B:

• Attribute visibility: B is an attribute of A.

• Parameter visibility: B is a parameter of a method of A.

• Local visibility: B is a (non-parameter) local object in a method of A.

• Global visibility: B is in the global space of A.

Sender

mS();

ref

ref: Receiver

A B

A B

Receiver

mR();

11

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.21http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getProductSpec(itemID)

class Register
{

.....
private ProductCatalog catalog;

.....
} // assignment in the constructor

Attribute visibility:

It exists from A to B when B is an attribute of A.
It is relatively permanent visibility because it persists as long as A and B exist.
Example:
Objects of Register have attribute visibility to ProductCatalog.
It is established during system initialization (see 5.17).
This visibility is necessary because, in the enterItem diagram, a Register needs to
send the getProductSpec message to a ProductCatalog.

public void enterItem(itemId,qty)
{

.....
spec= catalog.getProductSpec(itemID);

.....
}

// Constructor of Register
public Register(pc: ProductCatalog, st:Store)

{
.....
catalog=pc; // attribute visibility

….
}

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.22http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Parameter visibility:

It exists from A to B when B is passed as a parameter to a method of A.
It is temporary visibility because it persists only within the scope of the method.
Example:
Objects of Sale have parameter visibility to ProductSpecification in the
makeLineItem method.

enterItem(id, qty)
:Register

2: makeLineItem(spec, qty)
:Sale

2.1: create(spec, qty)

sli: SalesLineItem

1: spec := getSpecification(id)

:Product
Catalog

{
makeLineItem(ProductSpecification spec, int qty)
{

...
sli = new SalesLineItem(spec,qty);
...

}
}

{ // Constructor of theSalesLineItem
SalesLineItem(ProductSpecification spec, int qty)
{

...
description = spec; // from parameter visibility

// to attribute visibility
}
}

12

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.23http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Local visibility:

It exists from A to B when B is declared as a local object within a method of A.
It is temporary visibility because it persists only within the scope of the method.

Example:

Objects of Register have local visibility to ProductSpecification in the enterItem
method.

public void enterItem(itemId,qty)
{

//local visibility to ProductSpecification (spec is a local object)
ProductSpecification spec = catalog.getProductSpec(itemID);

.....
}

: Register

enterItem(itemID, quantity)

: ProductCatalog

spec := getProductSpec(itemID)

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.24http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Navigability refers to attribute visibility, and solid line arrows Show it.
Dependency refers to the parameter and local visibility. Dashed line arrows Show it.

Navigability

Dependency

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

...

getSpecification(...)

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Store

address : Address
name : Text

addSale(...)

Payment

amount : Money

descriptions
{Map}

1..*

lineItems
{ordered}

*

Register

endSale()
enterItem(...)
makeNewSale()
makePayment(...)

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

currentSale

register

catalog

payment

description

1 1

1

1 1

1

1
1

1

1

1

1

1

*

completedSales
{ordered}

*

1

Navigability and Dependency in UML Class Diagrams of the design model

13

©2012 - 2022 Feza BUZLUCA

Object Oriented Modeling and Design

5.25http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

SalesLineItem

- quantity : Integer

+ getSubtotal() : Money

ProductCatalog

...

+ getSpecification(id: ItemID) : ProductSpecification

ProductSpecification

- description : Text
- price : Money
- itemID : ItemID

...

Store

- address : Address
- name : Text

+ addSale(s : Sale)

Payment

- amount : Money

...

Register

...

+ endSale()
+ enterItem(id : ItemID, qty : Integer)
+ makeNewSale()
+ makePayment(cashTendered : Money)

Sale

- date : Date
- isComplete : Boolean
- time : Time

+ becomeComplete()
+ makeLineItem(spec : ProdSpecification , qty : Integer)
+ makePayment(cashTendered : Money)
+ getTotal() : Money

If necessary, access modifiers of the class members and data types may be shown
in class diagrams.

In most cases, class diagrams are used to indicate the design decisions.
Therefore, programming details are optional.

Details of UML Class Diagrams

