
1

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.1

GoF Design Patterns (contd)

The Strategy Pattern (Behavioral)

Example:

Such a design problem in the example POS system is the complex pricing policy.

The pricing strategy (which may also be called a rule, policy, or algorithm) for sale
can vary.

For example,

• Mondays, it may be 10%, and Thursdays, 5% off all sales (percentage)
• It may be 10TL off, if the sale total is greater than 200TL (absolute),
• For customers with a loyalty card, there may be other discounts (customer-

based).

All these different algorithms (pricing strategies) seem to be variations of the
getTotal() responsibility (behavior) of the Sale class.

However, adding all these algorithms into the getTotal() method of the Sale using
if-then-else or switch-case statements will cause coupling and cohesion problems.

All changes in pricing strategies will affect the Sale.

The behavior of a class may change during the
lifetime (runtime) of an object of this class.

Client

Algorithm 1

(Strategy)

Algorithm 2

(Strategy)

Algorithm 3

(Strategy)

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.2

Problem:

How should we design for varying but related algorithms or policies?

How should we design for the ability to change these algorithms or policies?

(A certain behavior of a class may change during the lifetime of an object of
this class.)

Solution:

Define each algorithm/policy/strategy in a separate class with a common
interface.

The solution to the problem with different pricing strategies:

According to the strategy pattern, we create multiple SalePricingStrategy classes
for different discount algorithms, each with a polymorphic getTotal method.

The implementation of each getTotal method will be different:
PercentDiscountPricingStrategy will discount by a percentage, and so on.

Each getTotal method takes the Sale object as a parameter so that the pricing
strategy object can get the pre-discount price from the Sale and then apply the
discounting rule.

Definition: Strategy

2

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.3

PercentDiscount
PricingStrategy

percentage : float

getTotal(s:Sale) : Money

{
return s.getPreDiscountTotal() * percentage

}

AbsoluteDiscount
OverThreshold
PricingStrategy

discount : Money
threshold : Money

getTotal(s:Sale) : Money

pdt := s.getPreDiscountTotal()
if (pdt < threshold)

return pdt - discount
}

{

return pdt
else

???
PricingStrategy

...

getTotal(s:Sale) : Money

«interface»
ISalePricingStrategy

getTotal(Sale) : Money

Sale

getTotal() : Money

pricingStrategy

Example (Different Discount Policies) :

The solution to the problem of different discount policies using the Strategy.

Reference in Java

or pointer in C++

getTotal() // in C++{
...
pricingStrategy -> getTotal(this)
...

The common interface for

all pricing strategies

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.4

A strategy object is attached to a context object, the object to which it applies
the algorithm.

In this example, the context object is the Sale.

When a getTotal message is sent to a Sale object, it delegates some of the work to
its strategy object.

The object s of Sale is

sent to the strategy object

to establish parameter

visibility.

Now, the strategy can ask

for the prediscount total.

s : Sale

st := getSubtotal()

t := getTotal()

:SalesLineItem
lineItems[i]

loop

pdt := getPreDiscountTotal()

:PercentDiscount
PricingStrategy

ISalePricingStrategy

t := getTotal(s)

{ t = pdt * percentage }

Example: The solution to the problem using the Strategy (contd)

For example, Sale is connected to
PercentDiscountPricingStrategy.

3

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.5

This is one of the principles that the Strategy pattern is based on.

In our case study, varying parts are different discount strategies.

We separate these varying parts (pricing policies) from the stable part (Sale) of
the system and encapsulate (group) them behind an abstract class (or interface
in Java) (slide 9.3).

Remember "Protected Variations" (GRASP).

The details (types) of these strategies are hidden from the user (Sale).

The context object (Sale) must include a reference or a pointer to the interface
(Java) or the base class (C++) of different strategies.

So, it gets attribute visibility to its strategy and can be connected to different
strategy objects in runtime.

Principle: “Find what varies and encapsulate it”

Underlying OO Principles of the Strategy pattern:

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.6

PercentDiscount
PricingStrategy

percentage : float

getTotal(Sale) : Money

AbsoluteDiscount
OverThreshold
PricingStrategy

discount : Money
threshold : Money

getTotal(Sale) : Money

«interface»
ISalePricingStrategy

getTotal(Sale) : Money

Sale

date

...

getTotal()
...

1*

pricingStrategy

Attribute visibility.

UML notation: Writing in the class is not

necessary

pricingStrategy: ISalePricingStrategy

getTotal() // in Java
{
...
return pricingStrategy.getTotal(this)

}

• Principle 1: “Find what varies and encapsulate it”
We found varying strategies and encapsulated them.

• Principle 2: “Design to interface, not to an implementation"

We designed the Sale according to the common interface of different strategies.

4

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.7

UML 2.X notation for interface implementation and usage.

(Same diagram as in 9.6)

Sale

date

...

getTotal()
...

1*

pricingStrategy

Uses

ISalePricingStrategy

interface

pricingStrategy: ISalePricingStrategy ISalePricingStrategy

getTotal(Sale) : Money

PercentDiscount
PricingStrategy

percentage : float

ISalePricingStrategy

Implements

ISalePricingStrategy

interface

AbsoluteDiscount
OverThreshold
PricingStrategy

discount : Money
threshold : Money

getTotal(Sale) : Money

ISalePricingStrategy

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.8

Creating strategies (Factory):

There are two problems in the POS system related to the pricing rules.

1. Discount policies (algorithms) for sale can vary (percentage, absolute, etc.).

2. Conditions to select the policies can vary (Monday, total > 200TL, customer).

The first problem is solved using the strategy pattern.

Details of the second problem:

• How to decide which strategy to use (create).

• Where should the code be about the conditions?

• How to establish visibility between the context object and the strategy
object.

The Factory pattern can be applied to create the necessary strategy object.

A PricingStrategyFactory can be responsible for creating strategies.

The new factory is different from the ServicesFactory (for adapters).

This supports the goal of High Cohesion; each factory is focused only on creating
a related family of objects.

5

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.9

Sale can get a strategy in
runtime and change its
behavior dynamically.

Creating strategies using a Factory:

1PricingStrategyFactory

instance : PricingStrategyFactory

getInstance() : PricingStrategyFactory

getSalePricingStrategy() : ISalePricingStrategy

...

:Register

makeNewSale()

:Sale
create()

1
:PricingStrategyFactory

ps :=
getSalePricingStrategy() create(percent)

ps : PercentDiscount
PricingStrategy

ISalePricingStrategy

Now, Sale is connected to an object PercentDiscountPricingStrategy.

Sale can access the discount algorithm using the pointer ps, as shown in 9.4.

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.10

Factory and strategies:

PercentDiscount
PricingStrategy

percentage : float

getTotal(s:Sale) : Money

AbsoluteDiscount
OverThreshold
PricingStrategy

discount : Money
threshold : Money

getTotal(s:Sale) : Money

???
PricingStrategy

...

getTotal(s:Sale) : Money

«interface»
ISalePricingStrategy

getTotal(Sale) : Money

Sale

getTotal() : Money

pricingStrategy

1PricingStrategyFactory

instance : PricingStrategyFactory

getInstance() : PricingStrategyFactory

getSalePricingStrategy() : ISalePricingStrategy

6

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.11

Discussion: Favor composition over inheritance principle

Is it possible to solve the same problem using Inheritance?

We assume that we have different Sale classes with various pricing policies.

PercentDiscount
Sale

percentage : float

getTotal() : Money

AbsoluteDiscount
OverThreshold

Sale

discount : Money
threshold : Money

getTotal() : Money

???
PricingStrategySale

...

getTotal() : Money

Sale

date : Date
time: Time

makeLineItem()

getBalance() : Money
getTotal() : Money

Not preferable!

This solution may work, but it has
some problems.

- Concerns are not separated.

- The behavior of objects cannot
be changed dynamically.

Each getTotal() method calculates
the total applying a different
discount policy.

Solution with "is-a"
(inheritance) ?

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.12

Discussion: Favor composition over inheritance principle

Disadvantages of the solution with inheritance (is-a relation):

• Concerns are not separated: In the real world, we have only Sale classes (not
different types). Various tasks are mixed in the same class.

• Inflexibility: If we create a Sale object of a specific type (for example
PercentDiscountSale), we cannot change its behavior dynamically.

• We must decide on the pricing strategy during the creation of the sale.

• If we want to use another pricing strategy, we must delete the existing object
and create a new one.

There is a strong connection between the base class and the derived classes.

Advantages of the solution with composition (has-a relation) (Strategy):

• Separation of concerns: Each class focuses on its own task (Sale – Pricing
Strategy)

• Flexibility: Sale can request a new strategy from the factory at any time and
change its behavior dynamically.

There is a weak connection (only a pointer or reference) between the context
object (Sale) and strategies.

7

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.13

The Open-Closed Principle

"Software entities (classes, modules, functions, etc.) should be open for
extension but closed for modification”.

• We should strive to write code that does not have to be changed every time
the requirements change or new functionalities are added to the system.

• We should create flexible designs to take on new functionality to meet
changing requirements without modifying the existing code.

The OOP concept polymorphism and the principles “Find what varies and
encapsulate it” and “Design to interface not to an implementation" support the
"Open-Closed Principle".

Remember the Shape Library in slide 7.13. We can add a new shape arc without
changing the existing code.

Similarly, we can get services from new external systems (using adapters) or add
new policies (using strategies) to our system without modifying the existing code.

Later, we will cover other patterns based on the "Open-Closed Principle".

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.14

The Composite Pattern (Structural)

Sometimes a client object may get a service from an
individual (atomic) object; sometimes, it may get the same
service from a composition (collection) of objects.

The client object treats them (atomic or composition)
identically (polymorphically) and does not have to make this
distinction.

Problem: How to treat the composition structure of objects the same way
(polymorphically) as a non-composite (atomic) object?

Solution: Define classes for composite and atomic objects so that they
implement the same interface.

Add a list in the composite class that can include individual (atomic)
objects.

Definition:

Client

atomic

atomic

composition

8

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.15

Graphic

+draw()

+add (Graphic)

+remove(Graphic)

Line

+draw()

Circle

+draw()

Text

+draw()

Picture

+draw()

+add (Graphic)

+remove(Graphic)

Client
currentGraphic

Atomic Composite
foreach g in graphics

g.draw();

graphics

1..*

Example: (From the book of the GoF)

List of atomic objects

In this example, we have atomic shape objects (Line, Circle, Text) and
a composite object (Picture) that consists of atomic shape objects.

The class Client can get the same service (draw) from an atomic object (Line,
Circle, Text) and at the same time from a composite object (Picture).

is-a

has-a

Picture is a Graphic,

Picture also has

Graphic

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.16

Example: (contd)

Objects can be composed into tree structures to represent part-whole
hierarchies.
Composite lets clients treat individual objects (leaf nodes) and compositions of
objects (branch nodes) uniformly.

The following diagram shows a typical composite object structure of recursively
composed Graphic objects.

aText aLine aRectangle

aPictureClient

Object

of class Picture

Branch node

aPicture aLine aRectangle
Object

of class Rectangle

Leaf node

Atomic objects are leaf nodes, and composite objects are branch nodes of the tree.

9

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.17

How do we handle the case of multiple conflicting pricing policies?

For example, suppose that a store has the following policies:

• On Monday, there is 10TL off purchases over 100TL

• Preferred customer discount of 15%.

• Buy the product of the day, and get a 5% discount on everything.

If a preferred customer buys the product of the day and spends 150TL on
Monday, what pricing policy should be applied?

Components of the problem:

1. Objects of the Sale class are sometimes connected to a single pricing strategy
(atomic) and sometimes to a collection (composition) of strategies.

The composite strategy solves this part of the problem.

2. The pricing strategies depend on different attributes of the Sale: Date, total,
customer type, and a particular line item product.

3. Different strategies are conflicting.

We need to find solutions also for 2 and 3.

Example: (From Larman)

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.18

We create a composite class CompositePricingStrategy derived from the same
base class (ISalePricingStrategy) as the atomic strategies.

This composite class can also contain other ISalesPricingStrategy objects.

A list in the CompositePricingStrategy class contains currently valid pricing
strategies. (Composite pattern)

How to handle different conflicting strategies in the composite object is another
strategy. (Strategy pattern again)

For example, the CompositeBestForCustomerPricingStrategy can try all strategies
in its list and apply the strategy which returns the lowest total.

Another composite strategy (not so realistic) can be
CompositeBestForStorePricingStrategy, which returns the highest total.

We can attach either a composite CompositeBestForCustomerPricingStrategy
object (which contains other strategies inside of it) or an atomic
PercentDiscountPricingStrategy object to the Sale object.

The Sale does not know or care if its pricing strategy is atomic or composite;
they look the same to the Sale object because they are all derived from the same
base class ISalePricingStrategy.

Solution:

10

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.19

CompositeBestForCustomer
PricingStrategy

getTotal(Sale) : Money

CompositeBestForStore
PricingStrategy

getTotal(Sale) : Money

{
lowestTotal = INTEGER.MAX
for each ISalePricingStrategy strat in pricingStrategies

{
total := strat.getTotal(sale)
lowestTotal = min(total, lowestTotal)
}

return lowestTotal
}

«interface»
ISalePricingStrategy

getTotal(Sale) : Money

AbsoluteDiscount
OverThreshold
PricingStrategy

discount : Money
threshold : Money

getTotal(Sale) : Money

PercentageDiscount
PricingStrategy

percentage : float

getTotal(Sale) : Money

{
return sale.getPreDiscountTotal() * percentage

}

Composite
PricingStrategy

add(ISalePricingStrategy)
getTotal(Sale) : Money

1..*

pricingStrategies

pricingStrategies : List

List of ISalePricingStrategy

{

Sale

date

...

getTotal()
...

1*

pricingStrategy

...
return pricingStrategy.getTotal(this)
}

Solution for multiple, conflicting pricing policies:

Atomic strategies

Composite strategies

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.20

Collaboration with a Composite:

Sale can be attached to any object that implements the ISalePricingStrategy
interface and understands the getTotal message.

Example: A CompositeBestForCustomerPricingStrategy object is attached to Sale.

s : Sale

t := getTotal()

:CompositeBestForCustomer
PricingStrategy

ISalePricingStrategy

t := getTotal(s)

{ t = min(set of all x) }

st := getSubtotal()

:SalesLineItem

SalesLineItem

loop

lineItems[i]:

loop x := getTotal(s)

strategies[j]

:ISalePricingStrategy

11

// superclass so all subclasses can inherit a List of strategies
public abstract class CompositePricingStrategy implements ISalePricingStrategy
{

protected List pricingStrategies = new ArrayList();

public add(ISalePricingStrategy s)
{
pricingStrategies.add(s);

}
public abstract Money getTotal(Sale sale);

} // end of class

// a Composite Strategy that returns the lowest total of its inner SalePricingStrategies
public class CompositeBestForCustomerPricingStrategy extends CompositePricingStrategy
{

public Money getTotal(Sale sale)
{
Money lowestTotal = new Money(Integer.MAX_VALUE);
// iterate over all the inner strategies
for(Iterator i = pricingStrategies.iterator(); i.hasNext();)
{

ISalePricingStrategy strategy = (ISalePricingStrategy)i.next();
Money total = strategy.getTotal(sale);
lowestTotal = total.min(lowestTotal);

}
return lowestTotal;

}
} // end of class

Abstract Composite

List of atomic strategies

Concrete Composite

This composite strategy
returns the lowest total.

To add a new atomic strategy
to the list

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.22

When an object of the Sale is created, it can request a strategy from the
factory PricingStrategyFactory.

According to current conditions, the factory can decide to create a composite
strategy such as the CompositeBestForCustomerPricingStrategy.

Initially, the factory can add the present moment's store discount policy (which
could be set to 0% discount if none is active), such as some
PercentageDiscountPricingStrategy, to the composite object.

Then, if another pricing strategy is discovered at a later step in the scenario
(such as preferred customer discount), it will be easy to add it to the
composite using the CompositePricingStrategy.add method.

Creating Multiple Sale Pricing Strategies

12

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.23

:Register

makeNewSale()
:Salecreate()

1
:PricingStrategyFactory

ps :=
getSale

PricingStrategy()

create(percent) st : PercentageDiscount
PricingStrategy

ISalePricingStrategy

add(st)

ISalePricingStrategy

create() ps :CompositeBestForCustomer
PricingStrategy

Example: Creating Multiple Sale Pricing Strategies

Initial discount strategy

Percent can be zero.

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.24

If there are preferred customers in this system, we need to handle a new system
operation: enterCustomerForDiscount

If there is a valid discount for this customer, it needs to be added to the
composite strategy.

Example: Creating the pricing strategy for a preferred customer discount:

:Register

enterCustomerForDiscount(custID)

Controller

Customer

ID number

:Store

c := getCustomer(custID)

Customer

object

Expert:

From ID to

object

s :Sale

enterCustomerForDiscount(c : Customer) ref

Enter Customer For
Discount

13

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.25

1
:PricingStrategy

Factory
s :Sale ps: CompositeBestForCustomer

PricingStrategy

ISalePricingStrategy
Factory
High Cohesion

pct :=
getCustomer

Percentage(c)

enterCustomer
ForDiscount(c : Customer)

addCustomer
PricingStrategy(s)

c := getCustomer()

ps := getPricing
Strategy()

create(pct) st : PercentageDiscount
PricingStrategy

ISalePricingStrategy

add(st)

Expert

Factory and Composite

Instead of

attributes,

pass object
as parameter

sd enter Customer For Discount

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.26

• Why does the Register not send a message to the PricingStrategyFactory, to
create this new pricing strategy and then pass it to the Sale?

The reason is to support Low Coupling. The Sale is already coupled with the
factory.

Furthermore, the Sale is the Information Expert that knows its current pricing
strategy.

• Why should we transform the customerID (perhaps a number) into a Customer
object?

It doesn't have a pattern name, but this is a common practice in object design to
transform keys and IDs for things into actual objects.

Having an actual Customer object containing information about the customer,
which can have functions, becomes beneficial and flexible as the design grows.

For example, itemID is transformed into a ProductDescription object in the
enterItem operation.

• customerID is transformed into a Customer object by the Store.

Reason: By Information Expert and the goal of the low representational gap, the
Store can know all the Customers.

The Register asks the Store because the Register already has attribute visibility
to the Store (from earlier design work).

Considering principles and patterns in the design about customer discount

14

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/
http://www.buzluca.info

Object Oriented Modeling and Design

9.27

• Passing aggregate object as a parameter:

In the addCustomerPricingStrategy(s: Sale) message, we pass a reference to the
Sale object s to the factory. Then the factory asks for the Customer and
PricingStrategy from the Sale.

Why d not we send just these two parameters to the factory?

Principle: Instead of individual attributes or child objects, pass the aggregate
object (actually the reference) that contains child objects (or attributes).

Reason: Following this principle increases flexibility because the factory can
collaborate with the entire Sale in ways we may not have previously considered
necessary.

In future design steps, new parameters (attributes) may be necessary.

In this case, we don't need to change the interfaces of our methods; the
factory can get them from Sale by calling the necessary get functions.

Note: The composite pattern is not used only with the strategies.

This pattern provides that a client object treats individual objects (atomic) and
group of objects (composition) identically (polymorphically), and does not have
to make this distinction.

Considering principles and patterns in the design (contd)

© 2012-2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object Oriented Modeling and Design

9.28

Composite

remove(Component)
operation()

1..*

add(Component)

The General Structure of the Composite Pattern:

Component

operation()

myComponent
Client

job ()

public class Client {
private Component myComponent; // reference (or pointer)

public job()
{

……
myComponent.operation(); // it can be atomic (leaf) or composite (branch node)

}

}

is-a

has-a

Atomic

operation()

Leaf

