
1

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.1http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Design with Software Design Patterns

• Software systems are complex.

• Large software systems include many components.

• Software systems tend to have a long life span. Requirements change.
• As a consequence, maintenance cost is too high.
Therefore, we need flexible (modifiable, extensible), reusable, and
maintainable software.

Knowledge in the field of OOP (coding) is not sufficient.

Design skills are also necessary.

• "Programming is fun, but developing quality software is hard."
Philippe Kruchten

• “Designing object-oriented software is hard, and designing reusable object-
oriented software is even harder.”

Erich Gamma

Remember the problems with software development:

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.2http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

1. Good design is innovative.
2. Good design makes a product useful.
3. Good design is aesthetic.
4. Good design makes a product understandable.
5. Good design is unobtrusive.
6. Good design is honest.
7. Good design is long-lasting.
8. Good design is thorough down to the last detail.
9. Good design is environmentally friendly.
10. Good design is as little design as possible.

Dieter Rams' ten principles of "good design":

Dieter Rams (1932-) is a German industrial designer.

His principles are not directly related to software development.

But most of them are also applicable to the world of software.

Principles:

Source:
http://www.vitsoe.com/en/gb/about/dieterrams

RT 20 tischsuper radio, 1961,

L 2 speaker, 1958

Cylindrical T 2 lighter,
1968

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.3http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The Starting Point for Design Patterns:

Design patterns were introduced by architect Christopher Alexander1,2 in the
field of architecture.

Questions:
What makes us know when an architectural design is good?
Can we know good design?
Is there an objective basis for such a judgment?

Alexander postulates that the judgment that a building is beautiful (well
designed) is not simply a matter of taste.

We can describe beauty on an objective basis that can be measured.

He studied the problem: "What is present in a good quality design that is not
in a poor quality design?"

1 Alexander, C., Ishikawa, S., Silverstein, M., A Pattern Language: Towns,
Buildings, Construction, Oxford University Press, 1977.
2 Alexander, C., The Timeless Way of Building, Oxford University Press, 1979.

Design Patterns

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.4http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The Starting Point for Design Patterns (contd)

Alexander observed buildings, towns, streets, and virtually every other aspect of
living spaces that humans have built for themselves.

He discovered that, for a particular architectural creation, suitable constructs
had things in common with each other.

Structures that solve similar problems (schools, hospital buildings, streets,
gardens, etc.), even though they look different, they have similarities if their
designs are high quality.

He called these similarities patterns.

He defined a pattern as “a solution to a problem in a context.”

Each pattern describes a problem, which occurs over and over again in our
environment,
and then describes the core of the solution to that problem
in such a way that you can use this solution a million times over without ever doing
it the same way twice.

The Works of Alexander have influenced the World of software development and
led to the creation of software design patterns.

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.5http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Software Design PatternsWhat:

• Software design patterns are our guidelines for making decisions at the design
level.

• Software designers face common (similar) problems in different projects.

• Experienced designers reuse solutions that have worked in the past.

• Patterns describe solutions discovered by experienced software developers for
common problems in software design.

• A software design pattern is a named and well-known problem/solution pair
that can be applied in new contexts.

Why:

• Using patterns allows designers to create flexible and reusable designs.

• Names of design patterns are also crucial as they constitute a new vocabulary
(common language) for designers.
A single word or noun phrase (controller, pure fabrication, adapter, strategy,
observer, etc.) can express many information pages.

Which:
• There are many software pattern sets.
• In this course, we will cover famous GoF design patterns.

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.6http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

GoF Design Patterns

GoF (Gang of Four) patterns are introduced by the book written by four authors.

Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements of
Reusable Object-Oriented Software, Reading MA, Addison-Wesley, 1995.

The book includes 23 patterns; 15 of them are used more frequently.

GoF patterns are grouped into three3 categories:

Creational Patterns:
Abstract Factory
Builder
Factory Method
Prototype
Singleton

Structural Patterns:
Adapter
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Behavioral Patterns:
Chain of Responsibility
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

2

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.7http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The Adapter Pattern (Structural)

Motivation 1:

We already have a class that can perform the required
job.

This class may have been designed in a previous project,
it can be provided by the development environment in its
library, or we may have bought such a class.

However, we cannot reuse this class because its
interface is incompatible with the interface of the
classes we have written in the new project so far.

We cannot change the interface of the existing class
because we may not have its source code.

Even if we did have the source code, we probably would
not prefer to re-program the class because it might be a
challenging job, and testing would be necessary.

In the future, this class can be replaced by another
class.

The Adapter Pattern converts the interface of a
class into another interface the client expects.

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.8http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Definition of the Adapter Pattern:

Problem:
You want to use an existing class, and its interface does not match the one you
need.
Solution:
Create an intermediate adapter object to convert the original interface of a class
into another interface.

We have multiple classes that can provide the same or similar service.

For example storing data in different environments such as file system,
local database system, or cloud database.

These classes have different (incompatible) interfaces.

Later, other classes with different interfaces may be added to the system.

How can these classes that have incompatible interfaces work together?

How should we connect our classes to these classes?

Motivation 2:

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.9http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Example: Shapes Library 1

Requirements:

• Wee need a library of shapes (points, lines, and squares) with common
behavior such as display, fill, and undisplay.

• The client objects (library users) should not have to know the type of shape
they are actually using.

Solution (Design to interface principle):

• We create an abstract base class (or interface in Java) Shape.

• From this base (interface), we will derive the concrete classes representing
points, lines, and squares.

• With the help of polymorphism, we will have different objects (shapes) in the
system, but client objects will interact with them in a common way.

• This allows the client objects to deal with all these objects similarly.
• It enables us to add different kinds of shapes in the future without having to

change the clients.
• We have not used the adapter pattern yet!

1Alan Shalloway, James R. Trott , Design Patterns Explained: A New Perspective on
Object-Oriented Design, Addison-Wesley, 2002.

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.10http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Design Principle: Program (design) to an interface, not an implementation.

We will program the client (user) objects according to common properties of
the shapes (base/interface).

Solution: Shapes Library

Shape

+display()

+fill()
+undisplay()

abstract (italic)

Abstract base class

or Interface

Common properties

of all shapes.
The interface that
the client expects.

Point

+display()

+fill()
+undisplay()

Line

+display()

+fill()
+undisplay()

Square

+display()

+fill()
+undisplay()

Client
currentShape

….

+displayShape()

C++:

currentShape->display();
Java:
currentShape.display();

Reference in Java

or pointer in C++

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.11http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

New Problem with the Shapes Library:

Requirements change!

We need to implement a circle, a new kind of Shape.

We can create a new class Circle that implements the shape "circle" and derive
it from the Shape class.

Thanks to polymorphism (program to interface principle), this new class will not
affect the client.

However, we must write Circle's display, fill, and undisplay methods. That could
be a complex and time-consuming task.

Fortunately, we already have (or can buy) an existing class XXCircle that deals
with circles.

However, we cannot use this class XXCircle directly because

• It has different method names and parameter lists.
• We cannot derive it from Shape (we cannot use polymorphism).

XXCircle

+ setVisible()

+displayIt()
+fillit()
+hide()

A different interface
than the client

expects.

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.12http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Solution with the Adapter Pattern:

We can create an adapter class Circle that is derived from Shape.

The adapter will include (wrap) the XXCircle object.

The client will call the methods of the adapter Circle that converts these calls to
the interface of the XXCircle.

Shape

+display()

+fill()
+undisplay()

Expected interface

Point

+display()
+fill()
+undisplay()

Line

+display()
+fill()
+undisplay()

Square

+display()

+fill()
+undisplay()

XXCircle

+setVisible()

+displayIt()
+fillit()
+hide()

Existing class.

Interface is different.

CircleAdapter

+display()
+fill()
+undisplay()

1 1

Adapter

Client

currentShape

3

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.13http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

class CircleAdapter extends Shape { // Adapter

...

private XXCircle realCircle; // reference to the objects of the existing

// class

public Circle(....) { // constructor

realCircle = new XXCircle(....); // object of the existing class is

} // created

void public display() { // Adapting (conversion) method

realCircle.setVisible(); // Method calls are converted

realCircle.displayIt();

}

}

Coding in Java:

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.14http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

class CircleAdapter : public Shape { // Adapter

private:

XXCircle *realCircle; // pointer to the objects of the existing class

... // other members

};

CircleAdapter::CircleAdapter(....){ // constructor

realCircle = new XXCircle{....}; //object of the existing class is created

}

void CircleAdapter::display(){ // Adapting (conversion) method

realCircle->setVisible(); // Method calls are converted

realCircle->displayIt();

}

CircleAdapter::~CircleAdapter() { // destructor

delete realCircle; // contained object is destroyed

}

Coding in C++:

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.15http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The Adapter Pattern (cont'd)

Creating a Common Stable Interface

The adapter pattern is also used to solve a more complicated problem.

Sometimes, to get the same service, a client object must work with multiple
similar classes but with different interfaces.

Problem:

How to provide a stable interface to similar components with different
interfaces?

Example: The NextGen POS system with external tax calculators

Suppose the NextGen POS system must support different third-party external
tax calculator systems with different interfaces.

Depending on some conditions, the Sale class will sometime connect to the "Tax
Master" program and sometimes to the "Good as Gold Tax Pro" program to
calculate the tax.

In the future, other programs may also be added to the system.

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.16http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Solution using the adapter pattern:

«interface»
ITaxCalculatorAdapter

getTaxes(Sale) : List of TaxLineItems

TaxMaster

Program

GoodAsGoldTaxPro

Program

???

Program

TaxMasterAdapter

getTaxes(Sale) : List of TaxLineItems

GoodAsGoldTaxPro
Adapter

getTaxes(Sale) : List of TaxLineItems

Sale

getTotal()

<???>Adapter

...

getTaxes(Sale) :
List of TaxLineItems

A stable,

common interface

The Sale class knows only the getTaxes(Sale) method.

taxAdapter

Reference in Java

or pointer in C++

Example (contd): External tax calculators with different interfaces

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.17http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The Sale class always sends the same getTaxes message to calculate the tax
regardless of the external system used for calculation.

The current adaptor converts and directs this call to the tax calculator program.

The sequence diagram below presents the case if the pointer taxAdapter in Sale
points to the TaxMasterAdapter.

For example:
TCP socket connection

UML :
This class implements an interface

s : Sale :TaxMasterAdapter

taxLineItems := getTaxes(s)

t := getTotal()

«system»

: TaxMaster

connect

send

ITaxCalculatorAdapter

…

Example (contd): External tax calculators with different interfaces

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.18http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Protected Variation

Low Coupling High Cohesion

IndirectionPolymorphism Pure Fabrication

Adapter

A GoF pattern may include many design principles.

The relation between the Adapter Patterns and GRASP patterns (principles) is
shown below:

GRASP Patterns
(Principles):

GoF Pattern

Relation between Design Principles and GoF Patterns:

4

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.19http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The Abstract Factory Pattern (Creational)

Example: Creation of the adapters in the NextGen POS System

In the prior Adapter pattern solution for external tax calculators with varying
interfaces (8.16), we face two new problems:

1. Who creates the adapters?

2. And how to determine which type of adapter to create?

Discussion:

If some domain object (for example, Sale) creates them (as the Creator pattern
suggests), we will encounter the following problems.

• The domain objects (Sale) must know external systems (coupling).

• Adding or removing an external calculator will affect the Sale.

• Change in rules (or in conditions) about adapter usage (when, which adapter) will
affect the Sale.

• This responsibility lowers the cohesion of the domain object because connectivity
with external software components is not its primary job (separation of concerns).

Before the GoF Abstract Factory pattern, we will see a
simplification called Simple Factory, Concrete Factory,
or just Factory. (1) http://www.kellyskindergarten.com

(2) http://www.pamsclipart.com

Object
(1)

Object
(2)

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.20http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Warning: We will not use the Creator (GRASP) pattern here.

We will apply the Factory pattern, in which a Pure Fabrication object called
"factory" is defined to create objects (in this example, the adapter objects).

Advantages of Factory objects:
• Separate the responsibility of complex creation into cohesive helper objects.
• Hide potentially complex creation logic.
• Allow introduction of performance-enhancing memory management strategies,

such as object caching or recycling.

Definition: The Factory Pattern

Problem:
Who should be responsible for creating objects when there are special
considerations, such as complex creation logic and a desire to separate the
creation responsibilities for better cohesion?

Solution:
Create a Pure Fabrication object called a Factory that handles the creation.

Attention: Factory objects are defined not only to create adapters.
As the definition presents, this pattern can be applied to create different types
of objects with a complex creation logic.

The solution to the adapter-creation problem:

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.21http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : IInventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getAccountingAdapter() : IAccountingAdapter
getInventoryAdapter() : IInventoryAdapter
getTaxCalculatorAdapter() : ITaxCalculatorAdapter
...

1

Example: ServicesFactory is the factory object that creates necessary adapters for
the external systems (accounting, inventory, tax calculation) in the NextGen POS
system.

When the domain object (Sale) needs to access an external tax calculator, it will
call the getTaxCalculatorAdapter method of the ServicesFactory object.

This method (of the factory) will determine the appropriate adaptor according to
the current conditions. It will also create (if necessary) the adapter and return its
address to the domain object (Slide 8.23).

Advantages:

• The Sale object does not know from which external calculator it is being served.

• If a new adapter is added to the system or the creation logic changes, only the
factory object is affected (we know where to look).

Factories are often accessed with the Singleton pattern that is explained later.

A reference (or pointer) of base type

Singleton

Addresses of created objects (adapters)

Methods for creating objects (adapters)

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.22http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Adapters and the Factory:

«interface»
ITaxCalculatorAdapter

getTaxes(Sale) : List of TaxLineItems

TaxMaster

Program
GoodAsGoldTaxPro

Program

???

Program

TaxMasterAdapter

getTaxes(Sale)

GoodAsGoldTaxPro
Adapter

getTaxes(Sale)

Sale

getTotal()

<???>Adapter

...

getTaxes(Sale) :
List of TaxLineItems

1ServicesFactory

…

…

getTaxCalculatorAdapter():
ITaxCalculatorAdapter

The concrete

factory

A reference (or pointer)

of base type

taxAdapter

Reference in Java

or pointer in C++

The method for creating tax adapters

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.23http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Sale gets the address of the adapter object from the ServicesFactory.
In this example, the ServicesFactory decides to create the TaxMasterAdapter.

:Sale

create()

1
:ServicesFactory

taxAdapter :=
getTaxCalculator() [adapterInstance == null]

create()
: TaxMaster Adapter

ITaxCalculatorAdapter

Creating and using Adapters:

s : Sale

t := getTotal()

«actor»
: TaxMaster

X()

Y()

:TaxMasterAdapter

taxes := getTaxes(s)

ITaxCalculatorAdapter

lineItems := getLineItems()

taxAdapter

Using the TaskMasterAdapter pointed by the pointer (reference) taxAdapter:

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.24http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Abstract Factory (GoF)

After the "Concrete Factory", we
will discuss the more general
Abstract Factory pattern.

In some cases, objects that are
related to each other must be
created together.

For example, we have two groups
of products, i.e., Group A and
Group B.

If ProductA1 is selected (created)
from Group A, then ProductB1
must be created from Group B.

Similarly, objects ProductA2 and
ProductB2 must be created
together.

Now we will define two concrete
factories derived from an
abstract base (abstract factory).

5

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.25http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

HighschoolFactory

CreateTeacher()
CreateStudent()

UniversityFactory

CreateTeacher()
CreateStudent()

AbstractSchoolFactory

CreateTeacher()

CreateStudent()

AbstractTeacher

getCourses()

UnivProfessor

getCourses()

HSchoolTeacher

getCourses()

AbstractStudent

getAVG():float

Client

UnivStudent

getAVG():float

HSchoolStudent

getAVG():float

Example: University / Highschool
Teachers and Students

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.26http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The Singleton Pattern (Creational)

The Factory object ServicesFactory in the NextGen POS system raises another
new problem in the design:

Who creates the factory itself, and how is it accessed?

Requirements:

• Only one factory instance (object) is needed within the process.

• The methods of this factory may need to be called from various places in the
code.

Definition of the Singleton pattern:

Problem: Exactly one instance of a class is allowed (singleton). Objects need a
global and single point of access.

Solution: Define a static method of the class that creates and returns the
address of the singleton.

Remember: static methods of a class can be called before an object of that class
has been created.

1

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.27http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

...

1ServicesFactory

- accountingAdapter : IAccountingAdapter
- inventoryAdapter : IInventoryAdapter
- taxCalculatorAdapter : ITaxCalculatorAdapter

+ getAccountingAdapter() : IAccountingAdapter
+ getInventoryAdapter() : IInventoryAdapter
+ getTaxCalculatorAdapter() : ITaxCalculatorAdapter

{
// static method
public static synchronized ServicesFactory getInstance()
{

if (instance == null)
instance = new ServicesFactory()

return instance
}
}

static attribute

static method

UML notation:

Static members
are underlined

- instance : ServicesFactory

+ getInstance() : ServicesFactory

Critical section

indivisible

- ServicesFactory()

Private constructor

prevents
object creation

UML notation: Singleton

Example:
A Singleton Factory:

Factory instance (object)

stores its own address.

Factory class creates its

instance (object).

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.28http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

When a domain object needs an adapter, at any point in the code, it can access
the singleton factory object and get the address of an adapter.

public class Register
{

public Register(ProductCatalog catalog) // constructor
{

...
accountingAdapter = ServicesFactory.getInstance().getAcountingAdapter();
...

}
// Other methods

}

Example: The Register gets the address of an accounting adapter (in Java)

Using the Factory:

Example: Constructor of the Register in C++

Register(const ProductCatalog & catalog) // constructor
{

...
accountingAdapter = ServicesFactory::getInstance()->getAcountingAdapter();
...

}

The factory class creates the
factory object, if necessary,
and returns the address of
the factory object.

The factory object creates
the adapter object, if
necessary, and returns the
address of this object.

Create the factory object, if necessary Create the adapter

©2012 - 2023 Feza BUZLUCA

Object Oriented Modeling and Design

8.29http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Summary: External Services with Varying Interfaces Problem

A combination of Adapter, Factory, and Singleton patterns have been used to
provide Protected Variations from the varying interfaces of external systems
(tax calculators, accounting systems, etc.).

:Register accountingAdapter:
SAPAccountingAdapter

postSale(s)

makePayment(cash)

«system»
: SAP

xxx

IAccountingAdapter

s : Sale

SOAP over
HTTP

makePayment(cash)

:Register

1
:ServicesFactory

accountingAdapter :=
getAccountingAdapter()

:Store

create()
create()

[adapterInstance == null]
create() : SAPAccounting

Adapter

IAccountingAdapter

implements
an interface

Notation:

«singleton» or 1

