
1

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.1http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

GoF Design Patterns (cont'd)
The Facade Pattern (Structural)

Problems:

Case 1:

Our software system has to get services from an existing, complex system.

We need either to use just a subset of the system or use the system in a
particular way.

In other words, we have a complicated system in which we need to use only a
part.

We want to avoid dealing with the internal structure of this complex system.

Case 2:

Our software system has to get services from a subsystem that has not been
implemented yet.

We do not know the internal structure of this subsystem, which may also
change.

Solution:

We create a new class (or classes) called Facade with the simple interface we
require to get the (only) necessary services from the complex external system.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.2http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Subsystem

Façade

operation1()
operation2()

The Class diagram of the Facade Pattern:

Client

Most of the work is done by the underlying subsystem.

The Facade provides a collection of easier-to-understand methods.

These methods use the underlying system to implement the newly defined
functions.

The Facade also reduces the number of objects that a client object must deal with.

Necessary
operations for

the Client

2

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.3http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

When to apply the Facade Pattern 1:

1Alan Shalloway, James R. Trott , Design Patterns Explained: A New Perspective on
Object-Oriented Design, Addison-Wesley, 2002.

• You do not need to use all of the functionality of a complex system and can
create a new class that contains all of the rules for accessing that system.

Usually, the API (Application Program Interface) you create in a new class
should be much simpler than the original system's API.

• You want to encapsulate or hide the original system.

• You want to use the original system's functionality and add some new
functionality as well.

• The cost of writing this new class is less than that of everybody learning
how to use the original system or less than you would spend on maintenance
in the future.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.4http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The Facade vs. The Adapter:
In both cases, there is a preexisting class (or a system with classes) that has the
needed functionality.

We create a new object (or class) with the desired interface in both cases.

They are both wrappers, but there are also following differences between them:

• In the Facade, we do not have an interface to which we must design our
system; we have a complex system.

In the Adapter pattern, we need to convert an existing interface to make it
compatible with the client object.

• In the Facade, we do not need polymorphism.

In the Adapter pattern, we often need to convert interfaces of many existing
classes to provide a stable interface (external tax calculators).
In this case, we need the polymorphism (slide 8.16).

Polymorphism may not be necessary when we design our system to a particular
API (XXCircle in 8.12).

• In the case of the Facade pattern, the motivation is to simplify the interface.
With the Adapter, we are trying to design a module to an existing interface.

A Facade simplifies an interface, while an Adapter converts the interface into a
preexisting interface.

3

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.5http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Example: Pluggable business rules in the NextGen POS system.

For example:

• When a new sale is created, it is possible to identify that it will be paid using a
gift certificate.

A store may have a rule to allow only one item to be purchased if a gift
certificate is used.

In this case, subsequent enterItem operations after the first should be
invalidated.

• If a gift certificate is used to pay the sale, invalidate all payment types of
change due back to the customer except for another gift certificate.

• These rules can vary for different stores.

Problem:

Different companies (stores) wishing to
purchase the NextGen POS would like to
customize its behavior at some predictable
points in the scenarios.

These rules may invalidate some actions.

if (rule_1) then …

…

if (rule_2) then …

…

These rules (conditions) may change.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.6http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The software architect (as always) wants a design that has a low impact on the
existing software components (open-closed principle).

According to the separation of concerns principle, the software architect puts
the rule handling into another subsystem (rule engine).

Furthermore, suppose that the architect is unsure of the best implementation for
this pluggable rule handling and may want to experiment with different solutions.

To solve this design problem, the Facade pattern can be used.

We will define a "rule engine" subsystem whose specific implementation is not yet
known. It will be responsible for evaluating a set of rules against an operation.

We will create a facade as a "front-end" object that is the single point of entry
for the services of a subsystem.

The implementation and other components of the subsystem (rule engine) are
private and can't be seen by external components.

Facade provides Protected Variations from changes in the implementation of a
subsystem.

The facade object to this subsystem will be called POSRuleEngineFacade.

Solution:

4

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.7http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Domain

+ Sale + Register ...

package name
Clients of the POSRuleEngine

In this example,
POSRuleEngineFacade is
the single entry point to
the POS Rule Engine
subsystem.

The internal structure
of the subsystem is not
directly accessible.
To improve the design
quality,

1. Variable rules are
designed as a
separate system.

2. Subsystem is
accessed via a facade.

POSRuleEngine

«interface»
- IRule

...

- Rule1

...

- Rule2

...

...+ POSRuleEngineFacade 1

instance : POSRuleEngineFacade

getInstance() :POSRuleEngineFacade

+ isInvalid(SalesLineItem, Sale): Bool
+ isInvalid(Payment, Sale) : Bool
...

*1

"-": Private class (Java)
Cannot be accessed
outside the package

Singleton
Facade

Methods (interface)
provided by the Facade to
access the rule engine.

The Rule engine facade:

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.8http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Example in Java:

public class Sale

{

public void makeLineItem (ProductSpecification spec, int quantity)

{

SalesLineItem sli = new SalesLineItem (spec, quantity);

// call to the Facade

if (POSRuleEngineFacade.getInstance().isInvalid(sli, this))

return; // not accepted

lineItems.add(sli); // OK, accepted

}

// ...

} // end of class

Calling the methods
of singleton Facade

Accessing the Rule Engine using the POSRuleEngineFacade

When the customer of the POS system tries to buy an item, the Sale object asks
the rule engine if this item is OK for itself.

The Sale object accesses the rule engine using the facade indirectly.

5

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.9http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The Observer Pattern (Behavioral)

Sometimes objects are interested in changes in another object's states
(attributes).

The number of interested objects (observers) can change in run-time.

Data
(event)

Subject (publisher)

Window 1 Window 2
Network
Driver

Printer Driver

Observers (subscribers, listeners)

The object called the subject maintains a list of its dependents, called observers
and notifies them automatically of any state changes, usually by calling one of their
methods.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.10http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

When the Sale object changes its total, it sends a message to a window, asking it to
refresh its display.
Problems in this design:
• The publishing object (Sale) is connected to (must be aware of) the subscriber

(observer) object (window).
• It does not fit the Model-View Separation principle. The model object (Sale) is

connected to a view (window) object.
We do not want to impact the Sale object if a new one replaces the presentation
layer (window).

A possible solution (inappropriate):

Example:

In the POS system, when the total of the sale
changes, a GUI window has to refresh its
display of the sale total.

Sale

total
...

setTotal(newTotal)
...

When the total of the sale
changes, refresh the display
with the new value.

6

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.11http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Problem:

Different kinds of the observer (subscriber) objects are interested in the
state changes or events of a subject (publisher) object and want to react in
their own unique way when the publisher generates an event.

The publisher wants to maintain low coupling with the subscribers.

The number of subscribers may change in run-time.

Solution (advice):
Derive all observers from a common base class (interface) "observer" or
"listener".

The subject (publisher) has a dynamic list of observers (or listeners).

The subject can register observers (add to the list) interested in an event
and notify them when it occurs.

If needed, observers can also be deleted from the list.

Definition : The Observer pattern

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.12http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Sale

setTotal(Money newTotal)
...

SaleFrame1

onPropertyEvent(source, name, value)

initialize(Sale sale)
...

javax.swing.JFrame

...
setTitle()
setVisible()
...

addPropertyListener(PropertyListener lis)
publishPropertyEvent(name, value)

«interface»
PropertyListener

onPropertyEvent(source, name, value)

*
propertyListeners

{
for each PropertyListener pl in propertyListeners

pl.onPropertyEvent(this, name, value);
}

{
propertyListeners.add(lis);

}

{
total = newTotal;
publishPropertyEvent("sale.total", total);

}

{
if (name.equals("sale.total"))

saleTextField.setText(value.toString());
}

{
sale.addPropertyListener(this)
...

}

The list can be empty

Interface (or base class)

of all listeners (observers)

Publisher

Listener

7

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.13http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

s :Salesf :SaleFrame1

initialize(s : Sale)

addPropertyListener(sf)

PropertyListener

propertyListeners:
List< PropertyListener >

add(sf)

Registering the observer:

Subject
(Publisher) Listeners

List ofListener
(Observer)

When the observer (listener, subscriber) SaleFrame1 is interested in property
events of the Sale (publisher), it sends a subscription request to the publisher.

The Sale adds the SaleFrame object to its listeners (observers, subscribers) list.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.14http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

s :Sale

publishPropertyEvent
("sale.total", total)

Message is sent

to all subscribers in the list

saleTextField
: JTextField

setText(value.toString())

onPropertyEvent(source, name, value)

:SaleFrame1

PropertyListener

propertyListeners[i]:

PropertyListener

onPropertyEvent(s, "sale.total", total)loop

setTotal(total)

As the method is polymorphic

this part of the diagram

should be drawn for all

subscribers separately.

Publishing the event:

Receiving the event:

8

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.15http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

«interface»
AlarmListener

onAlarmEvent(source, time)

Beeper

onAlarmEvent(source, time)

...

{
display notification dialog box

}

AlarmClock

addAlarmListener(AlarmListener lis)
publishAlarmEvent(time)

setTime(newTime)
...

*
alarmListeners

{
time = newTime;
if (time == alarmTime)

publishAlarmEvent(time);
}

{
alarmListeners.add(lis);

}

{
for each AlarmListener al in alarmListeners

al.onAlarmEvent(this, time);
}

AlarmWindow

onAlarmEvent(source, time)
...

javax.swing.JFrame

...
setTitle()
setVisible()
...

ReliabilityWatchDog

onAlarmEvent(source, time)
...

{
beep

}

{
check that all required processes
are executing normally

}

Example:

An Alarm Clock, which
is a publisher of alarm
events

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.16http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The Publish-Subscribe (Pub/Sub) Design Pattern (Non GoF)

The Publish-Subscribe (Pub/Sub) design pattern differs from the Observer
pattern and is not one of the GoF patterns.

• In the pub/sub pattern, publishers do not send messages directly to
subscribers; instead, messages are sent via brokers.

• Publishers categorize messages into classes (topics).

• The Publisher sends messages (events) to related channels in the broker.

• Subscribers sign up for the topics they are interested in.

• The Publisher sends the message (event) to the message broker, and the
message broker broadcasts the message to the right subscriber(s).

• Publishers do not know who the subscribers are or which (if any) topics they
subscribe to. Similarly, subscribers are not aware of publishers either.

Publisher

Channel 1
(Topic A)

Channel 2
(Topic B)

Subscriber 1

Subscriber 2

Communication Infrastructure

Source: MS Learn: https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber

9

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.17http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The Decorator Pattern (Structural)
Remember: if a class's behavior changes according to some conditions in run time,
we define different behaviors as different strategies separately from the
context class (see the Strategy Pattern).

Sometimes it is not required to change the whole behavior of a class, but it is
needed to add some new functionalities dynamically to the main behavior.

For example, the behavior (responsibility) B() of an object sometimes may consist
of sub-behaviors (functions) b1,b2,b3,r, sometimes b3,r,b1; and sometimes
r,b4,b1,b3, where r is the main responsibility in B().

The Decorator pattern intends to attach additional responsibilities to an
object dynamically.

Definition of the pattern:
Problem:

The object that you want to use does the basic functions you require.
However, you may need to add some additional functionality to the object,
occurring before or after the object's base functionality.

Solution:
Create an abstract class that represents both the original class and
the new functions to be added to the class.
In the decorators, place the new function calls before or after the trailing
calls to get the correct order.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.18http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The Case Study : Printing tickets in e-sale system1.

SalesUser is the client class of the SalesOrder class.

SalesOrder calls the SalesTicket object, requesting that it prints the ticket.

This modular design works.

Suppose that, during the design of the application, we get a new requirement to
add header and footer information to the SalesTicket.

SalesUser SalesTicket

+prtTicket()

SalesOrder

+process()

+prtTicket()

prtTicket(){
mySalesTicket.prtTicket();

}

mySalesTicket

1Alan Shalloway, James R. Trott , Design Patterns Explained: A New Perspective on
Object-Oriented Design, Addison-Wesley, 2002.

10

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.19http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The Case Study (contd): Printing headers and footers in a ticket

If we are writing the system only just for one company, it may be easiest to add
"if" statements in the SalesTicket class to control the printing of headers and
footers.

SalesUser SalesOrder

+process()

+prtTicket()

prtTicket(){
mySalesTicket.prtTicket();
}

mySalesTicket
SalesTicket

+prtTicket()

prtTicket():
{
if (header wanted) myHeader.prtHeader();
printTicket;
if (footer wanted) myFooter.prtFooter();

}

Header

+prtHeader()

Footer

+prtFooter()

myHeader

myFooter

This design works quite well if we do not have to deal with many options or
if these headers/footers do not change.

What happens if we have to deal with many different types of headers and
footers? For example, picture-header, text-header, QRCode-footer, etc.
Different for concerts, for football matches, different for cinema, etc.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.20http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The Case Study (contd): Printing different headers and footers in a ticket

Can we apply here the Strategy pattern?

If we had to deal with many different types of headers and footers, printing only
one each time, we might consider using one Strategy pattern for the header and
another for the footer.

What happens if we have to print more than one header and/or footer at a time?

Or what if the order of the headers and/or footers must change?

We can solve this problem by using the Decorator pattern.

Solution with the Decorator Pattern:

• We will design all functionalities (headers, footers) as separate Decorator
classes.

• The main (base) function will be designed as a concrete component.

• Concrete component and decorator classes are derived from the same base
class named Component class.

• A list (chain) of decorator objects and a concrete component will be created in
the desired order.

• The client object will call the first object in the chain. Then each object will
invoke the next object in the list.

11

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.21http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Solution with the Decorator Pattern:

SalesTicket

+prtTicket()

+prtTicket()

- prtHeader()

HeaderDecorator

. . .

Other Decorator classes
if necessary. For example,
Picture-header, Text-header

TicketDecorator

- myComp:Component

1

0..1
+prtTicket()

myCompComponent

+prtTicket()

Client

SalesOrder myTicket

İf (myComp!=NULL)
myComp->prtTicket();

Next component is invoked

Points to the next component
(In UML it is not necessary
to write it twice)

FooterDecorator

+prtTicket()

- prtFooter()

prtTicket:
prtHeader();
TicketDecorator::prtTicket();

prtTicket:
TicketDecorator::prtTicket();
prtFooter();

The concrete component

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.22http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

In the desired order, a chain of objects (decorators and a concrete component)
will be created in runtime.

Each chain starts with a Component (a Concrete Component or a Decorator).

Each Decorator is followed either by another Decorator or by the original
ConcreteComponent.

A Concrete Component always ends the chain.

The client object will get the address of the first object in the chain.

Example: If two headers and a footer are needed.

HEADER 1
HEADER 2
TICKET
FOOTER 1

header1:
HeaderDecorator1

footer1:
FooterDecorator1

ticket:
SalesTicket

header2:
HeaderDecorator2

Concrete ComponentDecorators

Client

SalesOrder

Decorating the method (Creating the decorators)

12

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.23http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

This program assumes that Header1 and Header2 (similarly Footer1 and Footer2)
classes have different functionalities.

Therefore, they are implemented as separate classes.

If only their printing messages were different, we would implement only one
Header class and one Footer class, with a text attribute, which can contain
different messages.

An Exemplary Program:

Implementation in C++:

class Component { // Abstract component

public:

virtual void prtTicket()=0;

};

class SalesTicket : public Component{ // Concrete component

public:

void prtTicket(){ // Base function

cout << "TICKET" << endl;

}

};

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.24http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

public:

Decorator(Component *myC) : myComp {myC} { // Constructor

} // Takes the address of the next component

void prtTicket(){ // Calls the next component

if (myComp) myComp->prtTicket();

}

private:

Component *myComp; // Pointer to the next component

};

class Header1 : public Decorator { // Header1 decorator

public:

Header1(Component *);

void prtTicket();

};

Header1::Header1(Component *myC) : Decorator{myC} {} // Constructor of Header1

void Header1::prtTicket(){

cout << "HEADER 1" << endl; // Header1’s specific function

Decorator::prtTicket(); // Calls the method of the base class.

}

class Decorator : public Component { // Base of decorators

Exemplary Program (contd): Headers and footers

13

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.25http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

public:

Header2(Component *);

void prtTicket();

};

Header2::Header2(Component *myC):Decorator{myC}{} // Constructor of Header2

void Header2::prtTicket(){

cout << "HEADER 2" << endl; // Header2’s specific function

Decorator::prtTicket(); // Calls the method of the base

}

class Footer1 : public Decorator { // Footer1 decorator

public:

Footer1(Component *);

void prtTicket();

};

Footer1::Footer1(Component *myC):Decorator{myC}{} // Constructor of Footer1

void Footer1::prtTicket(){

Decorator::prtTicket(); // Calls the method of the base class.

cout << "FOOTER 1" << endl; // Footer1’s specific function

}

Class Footer2 is also written in a similar way.

class Header2 : public Decorator { // Header2 decorator

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.26http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

class SalesOrder { // A client class to test the system

Component *myTicket; // Pointer to printer component

public:

SalesOrder(Component *mT) : myTicket{mT} {}

void prtTicket(){

//call the method of the first object in the chain

myTicket->prtTicket();

}

};

int main() // The main function for testing

{

SalesOrder sale{new Header1{new Header2{new Footer1

{new SalesTicket{}}}}};

sale.prtTicket();

return 0;

} A list of components (decorators) is created.
In a real system, this chain can be created by a Factory.

In a real system this address can be
received from a Factory object.

See Example Ticket_Decorator.cpp

Exemplary Program (contd): Headers and footers

14

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.27http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

• The Decorator pattern is a way to dynamically add additional function(s) in a
desired order to an existing behavior (function).

• The Decorator pattern says, "to control the added functionality chain
together the functions desired in the correct order needed".

• The instantiation of the chains of objects is completely decoupled from the
Client objects that use it.

This is most typically accomplished through the use of factory objects that
create the chains based on some configuration information.

• Decorators provide a flexible alternative to subclassing (inheritance) for
extending functionality (Favor composition over inheritance).

Discussion and Summary:

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.28http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

ConcreteComponent

operation()

In the Case study:
SalesTicket

In the Case study:
prtTicket()

operation()

addedState

AddedBehavior()

ConcreteDecoratorB

operation()
AddedBehavior()

ConcreteDecoratorA

AddedBehavior()
Decorator::operation()

or
Decorator::operation()
AddedBehavior()

In the Case study:
Header and Footer

. . .

The number of the Decorator classes
depends on the number of required
added functions.
ConcreteDecoratorC,
ConcreteDecoratorD, …

The UML Class Diagram of the Decorator Pattern:

Component

operation()

UserClass

Decorator

operation()

1

0..1

myComponent

myComponent->operation()

15

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.29http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The Template Method Pattern (Behavioral)

An exemplary problem:

A school has various types of students, e.g., undergraduate and master's.

Sometimes, a report that presents the status of a student must be generated.

The creation of a report consists of some fixed steps.

However, the details of the steps may vary depending on the type of the student.

createReport():

1. Read the courses of the student.

It is common (same algorithm) for all student types.

2. Calculate the average.

It depends on the type of the student, i.e., different for different types.

The average of the undergraduate and master's students is calculated
differently (different algorithms).

3. Print report.

It depends on the type of the student.

Different information is printed for undergraduate and master students.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.30http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

We write the createReport() method for each student type again.

If we want to add PhD students to this system, we must rewrite the createReport
method.

Problems:

• The author of the subtype needs to know (remember) and repeat the steps of
the algorithm (how to create a report).

• There may exist code duplications (reading courses of the student).

Solution 1: Subtyping (not appropriate)

Student

+createReport ()

Abstract

UnderGradStudent

+createReport ()

MasterStudent

+createReport ()

Concrete

16

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.31http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Student::createReport():

1. Read the courses of the student. // Common (Same) for all students

This function may include many statements

Solution 2: Subtyping and avoiding code duplications (there are still problems)

UnderGradStudent::createReport():

1. Student::createReport(); // Calls the function of the base class (common part)

2. Calculate the average. // Specific to undergraduate students

3. Print report. // Specific to undergraduate students

Student

+createReport ()

UnderGradStudent

+createReport ()

MasterStudent

+createReport ()

Concrete method
It includes common parts.

Different parts

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.32http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Solution 2: (cont'd)

MasterStudent::createReport():

1. Student::createReport(); // Calls the function of the base class (common part)

2. Calculate the average. // Specific to master students

3. Print report. // Specific to master students

Problems:

• The author of the subtype still needs to know (remember) and repeat the steps
of the algorithm (how to create a report).

• The base class method is redefined (overridden), and it must be called in the
derived class.

However, the author of the subclass may forget to call it. The programming
languages do not enforce the calls to redefined methods.

If a subclass must call the base class method that it has been overridden, the
"call super anti-pattern" occurs.

"Whenever you must remember to do something every time, that's a sign of a
bad API. Instead, the API should remember the housekeeping call for you."

Martin Fowler: http://martinfowler.com/bliki/CallSuper.html

17

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.33http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Solution with the Template Method

The main problem with the previous solutions is that the subclasses must control
the process (creating a report).

When a new type is added to the system, the programmer of the subclass must
remember and repeat this process (how to create a report).

Template Method:

The control is inverted with the template method pattern, and the base class
controls the overall process.

• The designer of the base class defines the skeleton (steps) of the algorithm
in a template method.

• The designer decides which steps of the algorithm are invariant (common) and
which are variant (different or customizable for different types).

• The invariant (common) steps are implemented in the abstract base class.

• For the variant steps, empty virtual methods (primitive operation) are
written.

• The bodies of the primitive operations are implemented in subclasses.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.34http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Solution with the Template Method

Student

+createReport ()
calculateAverage()
printReport()

Template method
(skeleton of the algorithm)

Primitive operations
(abstract)

UnderGradStudent

- calculateAverage()
- printReport()

MasterStudent

- calculateAverage()
- printReport()

Student::createReport(): // Template method Skeleton (steps) of the algorithm

Read thecourses of the student // 1. invariant code (common)

calculateAverage(); // 2. calls primitive operation (implemented in a subclass)

printReport(); // 3. calls primitive operation (implemented in a subclass)

Concrete primitive operations

Can be private or
protected

18

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.35http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Solution with the Template Method

The authors of the subclasses need only to write the bodies of the primitive
operations calculateAverage() and printReport().

They don't have control over the main algorithm (createReport()) and don't
need to remember to call some base class methods.

The template method of the base class calls the methods (primitive
operations) of the subclass.

This inverted control structure is called "the Hollywood principle" or "don't
call us, we'll call you".

Suppose we need to add a new subtype (such as PhDStudent) to the system.

In that case, we only need to implement primitive operations
(calculateAverage() and printReport()) that are specific to the new type.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.36http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

class Student{ // Abstract base class
public:

void createReport (); // Template Method

protected:
virtual void calculateAverage() =0; // Abstract primitive operation, pure virtual function
virtual void printReport() =0; // Abstract primitive operation, pure virtual function

};

void Student::createReport () // Template Method: Skeleton of the algorithm
{

// Step 1, common for all types
cout << "Read Courses from a database (common for all students)" << endl; // Step 1

calculateAverage(); // Step 2, specific to different types
printReport(); // Step 3, specific to different types

}

The primitive operations calculateAverage() and printReport() are abstract (virtual
functions) in the base class.
They will be implemented in the subclasses according to the requirements of the
subtypes.

Source code of the solution with the Template Method in C++

19

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.37http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

//-------- Subtype: Undergraduate Student ----------
class UnderGradStudent : public Student{

private: // It can also be protected
void calculateAverage(){ // Concrete primitive function, specific to Undergraduate Students

cout << "Average of the Undergraduate Student" << endl;
}

void printReport(){ // Concrete primitive function, specific to Undergraduate Students
cout << "Report of the Undergraduate Student" << endl;

}
};

//-------- Subtype: Master Student ----------
class MasterStudent : public Student{

private: // It can also be protected
void calculateAverage(){ // Concrete primitive function, specific to Master Students

cout << "Average of the Master Student" << endl;
}

void printReport(){ // Concrete primitive function, specific to Master Students
cout << "Report of the Master Student" << endl;

}
};

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.38http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

// Testing the implentation
int main()
{

UnderGradStudent uStudent;
uStudent.createReport();
cout<< "------------" << endl;

MasterStudent mStudent;
mStudent.createReport();

return 0;
}

Output:

Read Courses from a database (common for all students)
Average of the Undergraduate Student
Report of the Undergraduate Student

Read Courses from a database (common for all students)
Average of the Master Student
Report of the Master Student See Example

Student_Template.cpp

20

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.39http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Hook operations

Note that primitive operations in the base class are abstract and must be
implemented in the subclasses.

Bases classes can also include hook operations, which provide default behavior
that subclasses can extend if necessary.

A hook operation often does nothing by default in the base class.

If necessary, the subclass's author can override the default hook operation.

Example:

Student::createReport(): // Skeleton (steps) of the algorithm

// Read courses of the student // 1. invariant code (common)

calculateAverage(); // 2. calls primitive operation (implemented in a subclass)

printReport(); // 3. calls primitive operation (implemented in a subclass)

printAdditionalInfo(); // 4. hook operation, default (prints nothing)

};

void Student::printAdditionalInfo() { } ; // Default hook operation does (prints) nothing

Now only the subclasses that need to print additional information will override this
method. Other subclasses do not need to redefine this method.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.40http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Intent:

Define the skeleton of an algorithm, deferring some steps to subclasses.
Subclasses can redefine specific steps of an algorithm without changing the
algorithm's structure.

The base class declares the algorithm 'placeholders', and derived classes
implement the placeholders.

Problem:

Two different components have significant similarities but demonstrate no reuse
of a common interface or implementation.

If a change common to both components becomes necessary, duplicate effort
must be expended.

Discussion:

The component designer decides which steps of an algorithm are invariant (or
standard) and which are variant (or customizable).

The invariant steps are implemented in an abstract base class, while the variant
steps are either given a default or no implementation.

The variant steps (hook or primitive operations) can or must, be supplied by the
component's client in a concrete derived class.

Summary: Template Method Design Pattern

21

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.41http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

General Structure of the Template Method Pattern

AbstractClass

+TemplateMethod ()
PrimitiveOperation1()
PrimitiveOperation2()
Hook1()
Hook2()

TemplateMethod():
…. // invariant code
PrimitiveOperation1();
…. // invariant code
Hook1();
PrimitiveOperation2();
Hook2();
…. // invariant code

Primitive operations
(abstract)

must be implemented in
the subclasses.

ConcreteClass_1

- PrimitiveOperation1()
- PrimitiveOperation2()
- Hook2()

Hook operations
(concrete)

can be implemented in the
subclasses, if necessary.

ConcreteClass_2

- PrimitiveOperation1()
- PrimitiveOperation2()
- Hook1()
- Hook2()

Concrete primitive operations
and hook operations (if necessary)

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.42http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The Bridge Pattern (Structural)

According to the Gang of Four:

“De-couple an abstraction from its implementation so that the two can vary
independently."

Abstraction is how different things are related to each other conceptually.

For example, undergraduate student, graduate student, book, journal, line,
rectangle, and circle are abstractions in different contexts.

The implementation here means the supporting algorithms and/or objects that
the abstractions (business classes) use to implement themselves.

It is difficult to understand the Bridge pattern by only considering its intent.

However, it is powerful and applies to so many situations.

It is based on the following two important design principles:

• “Find what varies and encapsulate it”
• “Favor object composition over class inheritance”

I will explain the Bridge pattern using the following case study.

22

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.43http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Requirements:

Our customer needs a program that will draw rectangles with either of two
drawing programs (drawing program 1 – DP1 or drawing program 2 – DP2).

Abstraction: Rectangles, Implementation: Drawing programs

Caution: The way of implementation varies.

The rectangles are defined as two pairs of corner points.

Case Study*:

*Alan Shalloway, James R. Trott , Design Patterns Explained: A New Perspective on
Object-Oriented Design, Addison-Wesley, 2002.

(x1,y1)

(x2,y2)

The contents of the drawing programs:

DP1 DP2

Drawing a line : draw_a_line(x1, y1, x2, y2) drawline(x1, x2, y1, y2)
Drawing a circle: draw_a_circle(x, y, r) drawcircle(x, y, r)

The client of the rectangles (the user class) does not need to worry about what
type of drawing program it should use.

During the instantiation of the rectangle, the drawing program is determined, and
other classes can draw rectangles without knowing the type of the drawing program.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.44http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

In this solution, we will not apply the Bridge Pattern; instead, we will use
inheritance to design different rectangles.

The way of thinking:

We have two different kinds of rectangle objects: one that uses DP1 and one
that uses DP2.

Do we have really different rectangles?

Each would have a draw method but would implement it differently.

First, we write an abstract class Rectangle.

It has a template method (draw) that contains the skeleton to draw a rectangle.

Then we drive different types of rectangles from this base class implementing
the drawLine methods (primitives) differently.

Solution 1: Using the Inheritance (Not a proper solution!)

Rectangle

+draw()

#drawLine(..)

V1Rectangle

+drawLine(..)

DP1

+draw_a_line(..)

V2Rectangle

+drawLine(..)

DP2

+drawline(..)

ClientThe drawLine methods in V1Rectangle calls
the draw_a_line method of the DP1.

The drawLine methods in V2Rectangle calls
the drawline method of DP2.

Discussion:
Is this solution object oriented? YES
Does it work? YES
But! Flexibility, extensibility, changes?

23

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.45http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Program of the Solution 1 in Java:
abstract class Rectangle {
private double _x1,_y1,_x2,_y2;
public void draw () { // Rectangle is responsible to draw itself (Template)

drawLine(_x1, _ y1, _x2 ,_y1); // Primitive operations (see Template method pattern)
drawLine(_x2, _y1, _x2, _y2);
drawLine(_x2, _y2, _x1, _y2);
drawLine(_x1, _y2, _x1, _y1);

}
abstract protected void drawLine (double x1, double y1, double x2, double y2);

}

class V1Rectangle extends Rectangle {
drawLine(double x1, double y1, double x2, double y2) { // Primitive operation

DP1.draw_a_line(x1,y1,x2,y2); // It is connected to DP1
}

}

class V2Rectangle extends Rectangle {
drawLine(double x1, double y1, double x2, double y2) { // Primitive operation

// arguments are different in DP2 and must be rearranged
DP2.drawline(x1,x2,y1,y2); // It is connected to DP2

}
}

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.46http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Requirements change!

The customer wants that we support another kind of shape, i.e., a circle.

It is also required that the client object does not know the difference between
Rectangles and Circles.

Solution 1 extended:

We continue with inheritance

V1Rectangle

+drawLine()

V2Rectangle

+drawLine()

Shape

+draw()

Client

V1Circle

+ drawCircle()

V2Circle

+ drawCircle()

Rectangle

+draw()

#drawLine()

Circle

+draw()

#drawCircle()

DP1
+draw_a_line()

+draw_a_circle()

DP2
+drawline()

+drawcircle()

Abstract

Concrete

Do we have really four
different types of shapes?

24

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.47http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Operation of the system:
Assume that the client object is associated with a rectangle of type V1Rectangle.

:Client

draw()

draw is inherited
from the Rectangle

myRectangle

:V1Rectangle
:DP1

drawLine(_x1,_y1,_x2,_y1)

draw_a_line(_x1,_y1,_x2,_y1)

drawLine(_x2,_y1,_x2,_y2)

draw_a_line(_x2,_y1,_x2,_y2)

drawLine(_x2,_y2,_x1,_y2)

draw_a_line(_x2,_y2,_x1,_y2)

drawLine(_x1,_y2,_x1,_y1)

draw_a_line(_x1,_y2,_x1,_y1)

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.48http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

When the client object is associated with a rectangle of type V2Rectangle:

:Client

draw()

draw is inherited
from the Rectangle

myRectangle

:V2Rectangle
:DP2

drawLine(_x1,_y1,_x2,_y1)

drawline(_x1,_x2, _y1,_y1)

drawLine(_x2,_y1,_x2,_y2)

drawline(_x2,_x2,_y1,_y2)

drawLine(_x2,_y2,_x1,_y2)

drawline(_x2,_x1,_y2,_y2)

drawLine(_x1,_y2,_x1,_y1)

drawline(_x1,_x1,_y2,_y1)

25

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.49http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

When the client object is associated with a circle of type V1Circle:

:Client

draw()

draw is inherited
from the Circle

myCircle

:V1Circle
:DP1

draw_a_circle(_x, _y, _r)

drawCircle(_x,_y,_r)

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.50http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

abstract class Shape {
abstract public void draw ();

}
abstract class Rectangle extends Shape {

public void draw () { // Template method
drawLine(_x1, _y1, _x2, _y1);
drawLine(_x2, _y1, _x2, _y2);
drawLine(_x2, _y2, _x1, _y2);
drawLine(_x1, _y2, _x1, _y1);

}
abstract protected void

drawLine(double x1, double y1,
double x2, double y2);

private double _x1, _y1, _x2, _y2;
}

class V1Rectangle extends Rectangle {
void drawLine (double x1, double y1,

double x2, double y2) {
DP1.draw_a_line(x1,y1,x2,y2);

}
}
class V2Rectangle extends Rectangle {

void drawLine (double x1, double x2,
double y1, double y2) {

DP2.drawline(x1,x2,y1,y2);
}

}

abstract class Circle extends Shape {
public void draw () {

drawCircle(cornerX, cornerY, radius);
}
abstract protected void
drawCircle (double x, double y, double r);
private double cornerX, cornerY, radius;

}
class V1Circle extends Circle {

void drawCircle(x,y,r) {
DP1.draw_a_circle(x,y,r);

}
}
class V2Circle extends Circle {

void drawCircle(x,y,r) {
DP2.drawcircle(x,y,r);

}
}

Program of the extended Solution 1 in Java:

26

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.51http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Is this solution object-oriented? YES
Does it work? YES
But!

a) What happens if we get another drawing program (DP3), another variation in
implementation?

We will have six kinds of Shapes (two Shape concepts times three drawing
programs).

To add just only one new drawing program (implementation), we have to add two
shape classes.

b) What happens if we get another type of Shape, another variation in concept
(abstraction)?

We will have nine types of Shapes (three Shape concepts times three drawing
programs).

The class explosion problem!

Reason for the problem: The abstraction (the kinds of Shapes) and the
implementation (the drawing programs) are tightly coupled.

We used inheritance incorrectly and unnecessarily.
Remember: “Favor object composition over class inheritance”

Discussion:

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.52http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Solution 2: We continue still with inheritance
We think that we were using the wrong kind of inheritance hierarchy.
Therefore, we try an alternate hierarchy.

V1Rectangle

+draw()

V1Circle

+draw()

Shape

+draw()

Client

V2Rectangle

+draw()

V2Circle

+draw()

V1Shape

#drawLine()

#drawCircle()

V2Shape

#drawLine()

#drawCircle()

DP1
+draw_a_line()

+draw_a_circle()

DP2
+drawline()

+drawcircle()Not much better.
The class explosion problem continues.
The abstraction (the kinds of Shapes) and the implementation (the drawing
programs) are still tightly coupled.

We still have the same four
classes representing all of
possible combinations.

27

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.53http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The proper solution: The abstraction and the implementation are de-coupled

Instead of using the Bridge pattern directly, we will see that it is possible to find
a proper solution by applying two principles.

These principles are:

• “Find what varies and encapsulate it”.

• “Favor composition over inheritance”.

What is varying in our system?

In our system, we have different types of Shapes and different types of drawing
programs.

Shape

+draw()

Drawing

+drawLine()

+drawCircle()

We will encapsulate varying concepts behind abstract classes.

Here, encapsulating means putting things in the same package and hiding the
details (types) of these things from the users.

For example, we derive concrete classes Rectangle and Circle from the abstract
base Shape, and the Client object is not aware of the particular kinds of shapes.

It is the base strategy of the "design to interface" principle.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.54http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Shape

+draw()

Rectangle

+draw()

Circle

+draw()

Drawing

+drawLine()

+drawCircle()

Encapsulating varying concepts (shapes and drawing programs):

In the case study, the drawing programs DP1 and DP2 are external systems with
different interfaces.
Therefore we apply the Adapter pattern and encapsulate the different adapters.
Actually, the Adapter pattern is not part of the Bridge pattern.

The Shape class encapsulates the concept of the types of shapes.
Shapes are responsible for knowing how to draw (+draw()).

Drawing objects are responsible for drawing lines and circles (drawLine(),
drawCircle()).

Adapters

DP1
+draw_a_line()

+draw_a_circle()

DP2
+drawline()

+drawcircle()

V1Drawing

+drawLine()

+drawCircle()

V2Drawing

+drawLine()

+drawCircle()

28

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.55http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Connecting two groups:

Now, we have two groups of classes.

How will they relate to each other?

Principle: "Favor object composition over class inheritance"

Can classes of one group use (have) classes of the other group?

There are two possibilities:
1. Shape uses (has) the Drawing programs or
2. The Drawing programs use (have) Shape.

Consider the second case:

If drawing programs draw shapes directly, it violates encapsulation (Separation of
concerns).
Drawing objects have to know specific information about the Shapes (the kind
of shapes, how to draw them).
In this case, the objects are not responsible for their behaviors.

Consider the first case:
If Shapes use Drawing objects to draw themselves, they don’t need to know what
type of Drawing object is used.
We can connect Shapes to the Drawing class over a reference (or pointer) to the
base class (interface).

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.56http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Abstraction

Implementation

Shape

+draw()

#drawLine()

#drawCircle()

Rectangle

+draw()

Circle

+draw()

Drawing

+drawLine()

+drawCircle()

V1Drawing

+drawLine()

+drawCircle()

V2Drawing

+drawLine()

+drawCircle()

DP1
+draw_a_line()

+draw_a_circle()

DP2
+drawline()

+drawcircle()

drawProg

Solution: with the Bridge pattern

The Bridge

29

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.57http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Program of the solution in C++:

//DP1 and DP2 are external drawing programs
class DP1 { // First drawing program
public:

void static draw_a_line (double x1, double y1, double x2, double y2);
void static draw_a_circle (double x, double y, double r);

};
class DP2 { // Second drawing program
public:

void static drawline (double x1, double x2, double y1, double y2);
void static drawcircle (double x, double y, double r);

};

// Adapters to access the external drawing programs (implementation)
class Drawing { // Abstract base class of adapters
public:

virtual void drawLine (double, double, double, double)=0;
virtual void drawCircle (double, double, double)=0;

};

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.58http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

class V1Drawing : public Drawing { // Adapter of DP1)
public:

void drawLine (double x1, double y1, double x2, double y2);
void drawCircle(double x, double y, double r);

};

void V1Drawing::drawLine (double x1, double y1, double x2, double y2) {
DP1::draw_a_line(x1,y1,x2,y2); // Access to DP1

}
void V1Drawing::drawCircle (double x, double y, double r) {

DP1::draw_a_circle (x,y,r);
}

class V2Drawing : public Drawing { // Adapter of DP2
public:

void drawLine (double x1, double y1, double x2, double y2);
void drawCircle(double x, double y, double r);

};
void V2Drawing::drawLine (double x1, double y1, double x2, double y2) {

DP2::drawline(x1,x2,y1,y2); // Access to DP2
}
void V2Drawing::drawCircle (double x, double y, double r) {

DP2::drawcircle(x, y, r);
}

30

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.59http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

// Shapes (Abstraction)

class Shape { // Abstract base class of Shapes
public:

Shape (Drawing *); // Constructor: Parameter is pointer to a drawing program
virtual void draw()=0;

protected:
void drawLine(double, double, double , double);
void drawCircle(double, double, double);

private:
Drawing *drawProg; // Pointer to the related drawing program (bridge)

};

Shape::Shape (Drawing *dp) : drawProg{ dp }
{} // Constructor: Connection to the related implementation

void Shape::drawLine(double x1, double y1, double x2, double y2){
drawProg->drawLine(x1, y1, x2, y2); // Currently connected drawing program is used

}

void Shape::drawCircle(double x, double y, double r){
drawProg->drawCircle(x, y, r);

}

The bridge
It connects shape to
the drawing program.

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.60http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

//Concrete shape classes

class Rectangle : public Shape{
public:

Rectangle (Drawing *, double, double, double, double);
void draw();

private:
double m_x1, m_y1, m_x2, m_y2;

};

Rectangle::Rectangle (Drawing *dp, double x1, double y1, double x2, double y2)
: Shape{ dp }, m_x1{x1}, m_x2{ x2 }, m_y1{ y1 }, m_y2{ y2 }

{}

void Rectangle::draw () {
drawLine(m_x1, m_y1, m_x2, m_y1); // drawLine is inherited from the Shape
drawLine(m_x2, m_y1, m_x2, m_y2);
drawLine(m_x2, m_y2, m_x1, m_y2);
drawLine(m_x1, m_y2, m_x1, m_y1);

}

31

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.61http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

class Circle : public Shape{
public:

Circle (Drawing *, double, double, double);
void draw();

private:
double _x, _y, _r;

};

Circle::Circle (Drawing *dp, double x, double y, double r)
: Shape(dp), m_x{ x }, m_y{ y }, m_r{r}

{}

void Circle::draw () {
drawCircle(m_x, m_y, m_r); // drawCircle is inherited from the Shape class

}

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.62http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

// The Client (user) class that uses the Shapes library written for testing purposes

class Client{

public:

Client (Shape * inputShape) : shapePtr { inputShape } //Initial shape to be used

{}

void setShape(Shape * inputShape) { //change current shape

shapePtr = inputShape;

}

void operate(); // Responsibility of the Client

private:

Shape *shapePtr; // It can point to any type of Shape

};

void Client::operate () {

shapePtr->draw(); //The client does not know the type of the shape

}

32

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.63http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

int main () { // The main function for testing purposes
// Drawing objects
Drawing *dp1, *dp2;
dp1= new V1Drawing;
dp2= new V2Drawing;

// Shape objects

Rectangle *rectangle1 = new Rectangle{ dp1, 1, 1, 2, 2 }; // Rectangle1 uses dp1

Rectangle *rectangle2 = new Rectangle{ dp2, 10, 15, 20, 30 }; // Rectangle2 uses dp2

Circle *circle = new Circle{dp2 , 2, 2, 4 }; // Circle uses dp2

Client user{ rectangle1 }; //The client (user) will use the rectangle1
user.operate();
user.setShape(circle); //The client (user) will use the circle
user.operate();
user.setShape(rectangle2); //The client (user) will use the rectangle2
user.operate();

delete rectangle1; delete rectangle2; delete circle; // Housekeeping
delete dp1; delete dp2;
return 0;

}

The adapters (or implementation
objects) can be created by a factory

The shapes do not know the type of
the drawing programs.

See Example
Shapes_Bridge.cpp

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.64http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Definition of the Bridge Pattern:

Abstraction

Implementor * imp

#operation()

imp->operationImp()
(can be public)

Implementor

operationImp()

Concrete
ImplementorA

+operationImp()

...
Concrete
ImplementorX

+operationImp()

Problem:
The derivations of an abstract class must use multiple implementations without
causing an explosion in the number of classes.

Solution:
Define an interface for all implementations to use and have the derivations of
the abstract class use that.

Redefined
AbstractionA

...Redefined
AbstractionB

Redefined
AbstractionX

A concrete object (of redefined abstraction) can get the address of the proper
Implementor object from a factory.

The bridge

33

©2013 - 2023 Feza BUZLUCA

Object-Oriented Modeling and Design

10.65http://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Summary: Important design principles

To develop flexible and reusable software, you have to consider the following
design principles:

• Separation of concerns

Each class focuses on its own responsibilities.

• Find what varies and encapsulate it

Separate varying parts from stable parts.

• Favor object composition over class inheritance

Do not use inheritance to add dynamic behavior to objects.

• Design to interface, not to implementation

Client (user) classes should only consider (be aware of) common properties
(interface) of varying objects.

