
1

©2012-2024 Feza BUZLUCA

Object-Oriented Modeling and Design

6.1http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Coding (Implementation)
The design model (design class diagram and interaction diagrams) provides some
of the information that is necessary to generate a part of the code.

Creating Class Definitions from Design Class Diagrams:

public SalesLineItem(ProductSpecification spec, int qty) {... }

public class SalesLineItem // Java
{

}

Basic attribute

Reference (or pointer)

private ProductSpecification description;

SalesLineItem

- quantity : Integer

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

description

* 1

+ getSubtotal() : Money

private int quantity;

public Money getSubtotal() { ... }

The addition of the constructor to the source code is derived from the
create(spec, qty) message sent to a SalesLineItem in the enterItem interaction
diagram (see 5.6).

©2012-2024 Feza BUZLUCA

Object-Oriented Modeling and Design

6.2http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Creating Methods from Interaction Diagrams:

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

currentSale

11

ProductCatalog

...

getSpecification(...)

catalog 1

1

public class Register
{
private ProductCatalog catalog;
private Sale currentSale;

public Register(ProductCatalog pc) {...}

public void endSale() {...}
public void enterItem(ItemID id, int qty) {...}
public void makeNewSale() {...}
public void makePayment(Money cashTendered) {...}

}

Register

...

endSale()
enterItem(id: ItemID, qty : Integer)
makeNewSale()
makePayment(cashTendered : Money)

Register(pc: ProductCatalog, st:Store)

The sequence of the messages in an interaction diagram is mapped to statements
in the method definitions.

Example: The Register class and the enterItem method

©2012-2024 Feza BUZLUCA

Object-Oriented Modeling and Design

6.3http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

{

}

Messages numbered as 1 and 2 are mapped to statements in the enterItem method
of the Register class.

2: makeLineItem(spec, qty)enterItem(id, qty)

1: spec := getSpecification(id)

:Register :Sale

:Product

Catalog

ProductSpecification spec = catalog.getSpecification(id);
…
currentSale.makeLineItem(spec, qty);

Example: The Register class and the enterItem method (cont'd)

©2012-2024 Feza BUZLUCA

Object-Oriented Modeling and Design

6.4http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Collection Classes in Code:

SalesLineItem

quantity : Integer

getSubtotal()

lineItems

*

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

1

One-to-many relations implemented with the introduction of a collection object,
such as a List, Map, or even a simple array.

Example: SaleLineItems in the Sale.

public class Sale

{

…

private List<SalesLineItem> lineItems =

new ArrayList()<SalesLineItem>;

…

}

©2012-2024 Feza BUZLUCA

Object-Oriented Modeling and Design

6.5http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

catalog

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

...

getSpecification(...)

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Store

address : Address
name : Text

addSale(...)

Payment

amount : Money

...

descriptions
{Map}

1..*

lineItems
{ordered}

*

Register

endSale()
enterItem(...)
makeNewSale()
makePayment(...)

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

currentSale

register

catalog

payment

description

1 0..1

1

1..* 1

1

1
1

1

1

1

1

1

*

completedSales
{ordered}

*

1

1

2

4

3

7

6
5

Classes need to be implemented (and fully unit tested)
from least-coupled to most-coupled.

Order of Implementation

©2012-2024 Feza BUZLUCA

Object-Oriented Modeling and Design

6.6http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Test-Driven (Test-First) Development
Unit testing: In object oriented programming classes are main individual
components (units) of the program.

So classes can (and must) be tested as individual units separately.

In test-driven (or test-first) development, unit testing code is written before the
code of the class to be tested,

and the developer writes unit testing code nearly for all production code.

The testing code should perform following operations:

• Creating (and deleting) objects of the class (testing the constructor and
destructor).

• Sending messages to objects and checking the results.

• Testing exceptional cases by sending parameters out of acceptable range.

All of the testing code is not written once.

The basic rhythm is to write a little test code, then write a little production
(class) code, make it pass the test, then write some more test code, and so forth.

Popular unit testing frameworks:
Junit: Java, http://www.junit.org
Nunit: .NET, http://www.nunit.org

CruiseControl: Open Source
http://cruisecontrol.sourceforge.net/

2

©2012-2024 Feza BUZLUCA

Object-Oriented Modeling and Design

6.7http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

• It ensures that the unit tests are really written.

Otherwise, programmers usually skip unit tests and leave them as the last work.

• Motivation (satisfaction) of programmers

In the traditional style (test-last development),

A developer first writes the code of the class,

Informally debugs it, and then, as an afterthought, is expected to add unit
tests.

It doesn't feel satisfying.

However, if the test is written first, we feel a challenge and question in front
of us: "Can I write code to pass this test?"

After the code passes the tests, there is some feeling of success.

It's human psychology.

Advantages of test-first programming:

©2012-2024 Feza BUZLUCA

Object-Oriented Modeling and Design

6.8http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

• Clarification of detailed interface and behavior of the class

As you write the test code first, you must imagine that the object code exists.

You must think through the details of the public view of the method: its name,
return value, parameters, and behavior.

That improves the quality of the code.

• The confidence to change things

When a developer needs to change existing classes, a unit test can be run,
providing immediate feedback if the change causes an error.

Advantages of test-first programming (contd):

©2012-2024 Feza BUZLUCA

Object-Oriented Modeling and Design

6.9http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Example: Unit test of the Sale class

Remember that we do not write all the unit tests for Sale first; rather, we write
only one test method, implement the solution in class Sale to make it pass, and
then repeat.

Assume that we use the unit testing framework Junit.

To use JUnit, you must create a test class that extends the JUnit TestCase
class; your test class inherits various unit testing behaviors.

Test code for the makeLineItem method of the Sale class
public class SaleTest extends TestCase
{

public void testMakeLineItem(){
Sale fixture = new Sale(); // Tested object
Money total = new Money(7.5); // Supporting objects
Money price = new Money(2.5);
ItemID id = new ItemID(1);
ProductSpecification spec = new ProductSpecification(id, price, “product 1”); //Supporting

// Method is being tested …
fixture.makeLineItem(spec, 1);
fixture.makeLineItem(spec, 2);
assertTrue(fixture.getTotal().equals(total)); // Is the total calculated correctly?
:::

©2012-2024 Feza BUZLUCA

Object-Oriented Modeling and Design

6.10http://www.akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Exceptions and Error Handling

To focus on the responsibility assignment and object design, we have ignored
exception handling so far in coding.

However, in application development, exception handling strategies should be
considered during design modeling and during implementation (coding).

Coding Examples

The code for the NextGen POS is generated from the design class diagrams and
interaction diagrams defined in the design work.

The given example codes define simple cases; they are not, fully developed
programs with exception handling, and so on.

Same programs are written in Java and C++.

Please refer to following files.

Java: NextGenPos_java.pdf

C++: NextGenPos_cplusplus.pdf

