
1

9.1

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9 Multiprocessor / Multicore / Multicomputer Systems

To enhance system performance and (in some cases) to increase availability,
multiple processing units work in parallel.

Levels of parallelism in software:

• Instruction-level parallelism: Pipelining. Portions of different instructions run
in parallel.

• Parallel programming: Portions of a single program (task) run on multiple
processors simultaneously (a type of thread-level parallelism).

• Job-level or process-level parallelism : Independent applications run on
different processors (also a type of thread-level parallelism).

• Data-level parallelism: Data pipelining or multiple functional units, e.g
arithmetic logic units (ALU). For example different elements of an array can
be processed simultaneously.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

9.2

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9.1 Flynn's Taxonomy by Michael J. Flynn (1934-)

a) SISD: Single Instruction stream, Single Data stream

CU PU M
DS

IS (Instructions) CU: Control Unit
PU: Processing Unit
M: Memory
IS: Instruction Stream
DS: Data Stream

Data

A single processor executes a single instruction on a single piece of data at
a time (uniprocessor).

There are different types of parallel computers.
A taxonomy first introduced by Flynn is still the most common way of categorizing
systems with parallel processing capability.

Control Signals

Processor

9.3

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

b) SIMD: Single Instruction stream, Multiple Data stream

CU PU2

MM1

MM2

:

MMn

PU1

PUn

DS1

DS2

DSn

IS

CU: Control Unit
PU: Processing Unit
MM: Memory Module

Several PUs are under the control of the same CU. All PUs receive the same
instruction from the CU.

Each PU has its own data memory (hence multiple data), so that the same
instruction is executed by multiple PUs using different data streams.

Example: Vector and array processors.

c) MISD: Multiple Instruction stream, Single Data stream (No commercial
multiprocessor of this type has been built to date.)

Different instructions are executed on the same data at the same time.

It can be used to provide fault tolerance with different backup systems
operating on the same data to provide independent results that are
compared to each other.

Each PU can have its own
memory module.

9.4

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

d) MIMD: Multiple Instruction stream, Multiple Data stream

i. with shared memory

CU: Control Unit
PU: Processing Unit
LM: Local Memory
IS: Instruction Stream
DS: Data Stream

- Shared memory (tightly coupled) systems: The processors share a common
memory, and they communicate with each other (share data) through that
memory.

The processors may also have their local memories (cache).

A set of processors simultaneously execute different instruction sequences on
different data sets.

CU2 PU2
DS2

CU1 PU1

CUn PUn
DSn

DS1IS1

IS2

ISn

LM1

LM2

LMn

S
h
a
re

d
 M

e
m

o
ry

9.5

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

- Distributed memory (loosely coupled) systems: A collection of independent
uniprocessors are interconnected to form a cluster.

Communication among the computers is either via fixed paths or via some
network facility.

d) MIMD: Multiple Instruction stream, Multiple Data stream (cont'd)

ii. with distributed memory

CU: Control Unit
PU: Processing Unit
LM: Local Memory
IS: Instruction Stream
DS: Data Stream

CU2 PU2
DS2

CU1 PU1

CUn PUn
DSn

DS1IS1

IS2

ISn

LM1

LM2

LMn

In
te

rc
o
n
n
e
ct

io
n
 N

e
tw

o
rk

9.6

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Processor organizations

Single instruction,
single data stream

(SISD)

Multiple instruction,
multiple data stream

(MIMD)

Shared memory
(tightly coupled)

Distributed systems
(loosely coupled)
Multicomputer

Symmetric
multiprocessor

(SMP)
Uniform memory access

(UMA)

Nonuniform
memory
access

(NUMA)

Clusters

Single instruction,
multiple data stream

(SIMD)

Multiple instruction,
single data stream

(MISD)

Vector
processor

Array
processor

Uniprocessor

2

9.7

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9.2 Shared Memory (Tightly Coupled) Systems

• A shared memory multiprocessor offers the programmer a single physical
address space (shared memory).

• Processors communicate through shared variables in memory.

• All processors are capable of accessing any memory location via load and store
instructions.

• The system is controlled by an integrated common operating system that
provides interaction between processors and their programs at the job, task,
file, and data element levels.

• Because of shared variables, the operating system must support
synchronization among processors (processes, threads).

• There are two different types of shared memory systems:

a) Symmetric multiprocessor (SMP) or Uniform memory access (UMA) systems:
It takes about the same time to access main memory (symmetric) no matter
which processor requests it and no matter which word is requested.

b) Nonuniform memory access (NUMA) multiprocessors:
The processors still share the same single address space, but memory
modules are physically distributed in the system.
A processor can access nearby memory faster.

9.8

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9.2.1 Symmetric Multiprocessors (SMP) / Uniform memory access (UMA)
systems

Characteristics:

• Processors have access to a single, common address space (shared memory) and
are controlled by a single operating system.

• There are two or more processors with identical capabilities.

• All processors can perform the same functions (symmetric).

• Processors share the same main memory and I/O facilities.

• System components are interconnected by a bus or other internal connection
scheme such as a crossbar switch.

• The memory access time is approximately the same for each processor
(symmetric) (UMA).

9.9

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9.2.1 Symmetric Multiprocessors (SMP) / Uniform memory access (UMA)
systems (cont'd)

Potential benefits:

• Performance: In situations where more than one program executes at the
same time, an SMP system will have considerably better performance than a
uniprocessor because different programs can run on different processors
simultaneously.

• Availability: Since all processors can perform the same functions, the failure
of a single processor does not halt the machine.

• Incremental growth (scaling): A user can increase the performance of a system
by adding another processor.

However! As more processors are added, competition for access to the bus
leads to a decline in performance (64 processors max.).

9.10

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Organization (SMP, UMA):

Interconnection System
(Shared bus or a switching mechanism)

I/O

I/O

Main
Memory
Modules

• Each processor consists of a control unit, ALU, registers, and, typically, one
or more levels of cache.

• The memory can be interleaved or a multiported, allowing simultaneous
accesses to separate blocks of memory.

• The interconnection system can be designed in different ways (e.g., a shared
bus or a crossbar switch).

. . .
Processor

Cache

Processor

Cache

Processor

Cache

Shared Cache

9.11

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Symmetric Multiprocessor Organization Using a Shared Bus:

Shared BUS

Main Memory

. . .

I/O

I/O

Processor

L1 Cache

Processor

L1 Cache

Processor

L1 Cache

I/O
Bus

Time-sharing: When one module is controlling the bus, other modules are locked
out and must, if necessary, suspend operation until bus access is achieved.
Bus arbitration is necessary.

There may be also
DMACs and IOPs in the
system.

There may be one or
more levels (L1, L2) of
private cache.

The L2 cache can be
either private or shared
by a group of processors.

(Shared) L2 Cache

9.12

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Advantages:
• Simplicity: The physical interface and the addressing, arbitration, and time-

sharing logic of each processor remain the same as in a single-processor system.

• Flexibility: It is generally easy to expand the system by attaching more
processors to the bus (but, there is a limit).

• Reliability: The bus is essentially a passive medium, and the failure of any
attached device should not cause failure of the whole system.

Drawback:

• Performance:

• All memory references pass through the common bus.

• The bus cycle time limits the speed of the system.

• The common bus is used on a time-sharing basis. When a processor or DMAC is
accessing the bus, other processors cannot access main memory.

• The shared bus limits the number of processors in the system to 16-64.

Solution:

• Equip each processor with a local cache memory: Most frequently used data are
kept in cache memories. Hence, the need to access the main memory is reduced.

• Cache coherence problem: If a word is modified in one cache, the copies of the
same word in other caches will be invalid. Other processors must be alerted
that an update has taken place (explained in chapter 9.4 Cache Coherence).

3

9.13

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9.2.2 Nonuniform memory access (NUMA) multiprocessors

In SMP systems, the common bus is a performance bottleneck.

The number of processors is limited.

Loosely coupled systems (clusters) can be a solution, but in these systems,
applications cannot see a global memory.

NUMA systems are designed to achieve large-scale multiprocessing while
retaining the advantages of shared memory.

Characteristics:

• Processors have access to a single address space (shared memory) and are
controlled by a single operating system.

• The shared memory is physically distributed to all CPUs. These systems are
also called distributed shared memory systems.

• A CPU can access its own memory module faster than other modules.

Performance:

• If processes and data can be distributed in the system so that CPUs are
mostly accessing their own main memory modules (or local cache memories) and
rarely remote memory modules, then the performance of the system increases.

• Spatial and temporal locality of programs and data play an important role again.

9.14

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

A NUMA Multiprocessor Organization:

Interconnection Structure

I/O

Processor

L1 Cache

Data can be distributed
in different ways over
the memories.

Logical structure of
shared main memory

Fast

Main
Memory

#0

I/O

Main
Memory

#1

Processor

L1 Cache
. . .

I/O

Main
Memory

#n

Processor

L1 Cache

. . .

Slow

9.15

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9.3 Distributed (loosely coupled) systems, Multicomputers

• Each processor has its own physical address space.

• These processors communicate via message passing.

• The most widespread example of the message passing system are clusters.

• Clusters are collections of computers that are connected to each other over
standard network equipment.

• When these clusters grow to tens of thousands of servers and beyond, they
are called warehouse-scale computers (cloud computing).

Benefits:

• Scalability:

• A cluster can have tens, hundreds, or even thousands of machines, each of
which is a multiprocessor.

• It is possible to add new systems to the cluster in small increments.
• High availability:

• Each node in a cluster is a standalone computer; therefore, the failure of
one node does not mean loss of service.

• Superior price/performance:
• Using cheap commodity building blocks, it is possible to build a cluster with

great computing power.

9.16

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

A Loosely Coupled (distributed) System Organization:

Network

Processor

Main
Memory Message passing

I/O

Disk

I/O I/O

Processor. . .

Main
Memory

I/O

Disk

Processor Processor. . .

Some systems may use
shared disk (RAID)
technology. RAID

Shared disk system (optional)

9.17

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9.4 Cache Coherence

To reduce the average access time and the required memory bandwidth, cache
memories are used.

Caching of shared data introduces the cache coherence problem.

Multiple copies of the same data can exist in different caches simultaneously, and
if processors are allowed to update their own copies freely, an inconsistent view of
memory can result.

Processor
1

X = 7L1 Cache

Processor
2

X = 7L1 Cache

X = 7Main Memory

This copy of X has
been updated.

8

9.18

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9.4.1 Software solutions:

• Software cache coherence schemes attempt to avoid the need for additional
hardware circuitry.

• The compiler and operating system deal with the problem at compile time.

• However, they make conservative decisions, leading to inefficient cache
utilization.

• Compiler-based mechanisms perform an analysis on the code to determine
which data items may become (when) unsafe for caching, and they mark those
items.

The operating system or hardware then prevents these items from being
cached.

• The simplest approach is to prevent any shared data variables from being
cached (too conservative and inefficient).

• The more efficient approach is to analyze the code to determine safe and
critical periods for shared variables and to insert instructions into the code to
enforce cache coherence.

4

9.19

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9.4.2 Hardware solutions:

a) Directory protocols:

There is a centralized controller that maintains a directory that is stored in main
memory.

The directory contains information about which processors have a copy of which
lines (frames) in their private caches.

• Writing to (updating) cache:

When a processor wants to write to a local copy of a line, it must request
exclusive access to the line from the controller.

The controller sends a message to all processors, forcing each of them to
invalidate its copy.

After receiving acknowledgments back from each such processor, the
controller grants exclusive access to the requesting processor.

9.20

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Drawbacks:

• The centralized controller is a bottleneck. All requests are sent to the same
controller.

• Overhead of communication between local cache controllers and the central
controller.

Advantage:

• Effective in large-scale systems that involve multiple buses or some other
complex interconnection scheme.

a) Directory protocols (cont'd):

• Reading:

When a processor tries to read a line that is exclusively granted to another
processor, a miss occurs (data is invalid).

If the write-through mechanism is used, the data in main memory is valid.

If the write-back mechanism is used, the controller issues a command to the
processor holding that line that requires the processor to do a write back to
main memory.

The line may now be shared for reading by the original processor and the
requesting processor.

9.21

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

b) Snoopy protocols:

• The responsibility for maintaining cache coherence is distributed among all of
the cache controllers in the multiprocessor system.

• When a shared cache frame (line) is updated, the local controller announces
this operation to all other caches by a broadcast mechanism.

• Each cache controller is able to “snoop” on the network to observe these
broadcasted notifications, and react accordingly (for example, invalidate the
copy).

• Snoopy protocols are suitable for a bus-based multiprocessor because the
shared bus provides a simple mechanism for broadcasting and snooping.

• Remember: Local caches are used to decrease the traffic on the shared bus.

Therefore, care must be taken not to increase the traffic on the shared bus
by broadcasting and snooping.

9.22

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

b) Snoopy protocols (cont'd):

There are two types of snoopy protocols: write-invalidate and write-update

Write-invalidate protocol:

• When one of the processors wants to perform a write to the line in the private
cache, it sends an "invalidate" message.

• All snooping cache controllers invalidate their copies of the appropriate cache
line.

• Once the line is exclusive (not shared), the owning processor can write to its copy.

• If the write-through method is used, the data is also written to main memory.

• If another CPU attempts to read this data a miss occurs and data is fetched
from main memory.

Write-update protocol:

• When one of the processors wants to update a shared line, it broadcasts the new
data to all other processors so that they can also update their private caches.

• At the same time, the CPU updates its own copy in the cache.

Experience has shown that invalidate protocols use significantly less bandwidth.

9.23

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

The MESI (Modified Exclusive Shared Invalid) Protocol

• A snoopy, write-invalidate cache coherence protocol

• It allows the use of the write-back method. Main memory is not updated until
it is necessary to replace the frame.

• Each cache frame (line) can be in one of four states (2 status bits):

M (Modified): The frame in this cache is modified. It is different from the
main memory.
This frame is valid only in this cache.

E (Exclusive): The frame in the cache is the same as that in main memory and is
not present in any other cache.

S (Shared): The frame in the cache is the same as that in main memory and
may be present in another cache.

I (Invalid): The line in the cache does not contain valid data.

Modified Exclusive Shared Invalid

Is the cache frame valid? Yes Yes Yes No

Is the data in the main memory valid? No Yes Yes -

Do copies exist in other caches? No No Maybe Maybe

9.24

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Two bits are assigned to each cache frame in tag memory to keep the state value.

The state of a cache frame can change because of two reasons:

• Due to local processor activity (i.e., cache access)

• Due to bus activity in snooping (activity caused by another processor)

State transition diagram for locally initiated accesses:

Invalid

Modified

Shared

Exclusive

Read miss

Response: shared
Read block
from memory

Write miss

Read with intent to
modify (broadcast)

Read hit

Write hit

Read hit

Read hit
Write hit

State transitions of frames:

(Event)

(From other CPU)

Operation

5

9.25

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Invalid

Modified

Shared

Exclusive

"Invalidate"
"Read with intent to modify"

Dirty frame
write back

"Read"
From
another
CPU

"R
e
a
d
"

"Read with intent to modify"

Output:
Send
Response:
"Shared"

Send
"Shared"

Inputs in snooping (from other CPUs)

Outputs to other other CPUs

State transition diagram for remotely initiated accesses (in snooping):

States of a line in snooping cache:

9.26

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

The MESI Protocol (cont'd)

Operation of the protocol:

Read Miss (Invalid state):

• The processor starts to fetch the frame from main memory.

• The CPU signals other cache controllers to snoop the operation.

• There are four possible outcomes:

A. If another cache has an unmodified (clean) exclusive copy, it indicates that
it shares this data.

The responding processor then transitions the state of its copy from
exclusive to shared state.

The initiating CPU reads the frame from memory and transitions the cache
frame from invalid to shared.

B. If other caches have unmodified (clean) shared copies, they indicate that
they share this data.

The responding cache frames stay in the shared state.

The initiating CPU reads the frame and transitions the cache frame from
invalid to shared.

9.27

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Read Miss (Invalid state) cont'd:

• Possible responses (cont'd):

C. If another cache has a modified (dirty) copy, it blocks the memory read
operation and provides the requested frame.

This data is also written to main memory.

There are different implementations. The requesting CPU can read the data
from the responding CPU or from main memory after the memory has been
updated.

The responding CPU changes its line from modified to shared.

The initiating CPU transitions the cache frame from invalid to shared.

D. If no other cache has a copy of the requested frame, then no signals are
returned.

The initiating CPU reads the frame from memory and transitions the cache
frame from invalid to exclusive.

Read Hit:

• The CPU simply reads the required data from the cache.
• The cache frame remains in the same (current) state: modified, shared, or

exclusive.

9.28

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Write Miss (Invalid state):

• The processor starts to fetch the frame from main memory.

• The CPU issues the signal read-with-intent-to-modify on the bus.

• There are two possible scenarios:

A. If another cache has a modified copy of the frame, it signals the requesting
CPU (some words in this frame have been modified).

The requesting CPU terminates the bus operation and waits.

The other CPU writes the modified cache frame back to main memory, and
transitions the state of the cache from modified to invalid.

The initiating CPU again issues the signal read-with-intent-to-modify on the
bus and reads the frame from main memory.

The CPU modifies the word in the frame and transitions the state of the
frame to modified.

B. If no other cache has a modified copy of the requested frame, then no
signals are returned.

The initiating CPU reads the frame from main memory and modifies it.

If one or more caches have a clean copy of the frame in the shared or
exclusive state, each cache invalidates its copy of the frame.

9.29

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Write Hit:

The CPU attempts to write (modify a variable), and the variable (frame) is in the
local cache.

Operations depend on the state of the frame being modified.

Shared:

• The CPU broadcasts the "invalidate" signal on the shared bus.

• Each CPU that has a shared copy of the frame in its cache transitions the state
of that frame from "shared" to "invalid".

• The initiating CPU updates the variable and transitions its copy of the frame
from "shared" to "modified".

Exclusive:

• The CPU already has the sole (exclusive) copy of the data.

• The CPU updates the variable and transitions its copy of the frame from
"exclusive" to "modified".

Modified:

• The CPU already has the sole modified copy of the data.

• The CPU updates the variable. The state remains as "modified".

9.30

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Example:

In a symmetric multiprocessor (SMP) system with a shared bus, there are two
CPUs (CPU1 and CPU2) that have local cache memories.

The system does not have a shared L2 cache.

The cache control units use the set associative mapping technique, where each set
contains two frames (two-way set associative).

In write operations, Flagged Write Back (FWB) with Write Allocate (WA)
methods are used.

Assume that there is a shared variable X in the system. To provide cache
coherence, the snoopy MESI protocol is used.

The following questions can be answered independently.

a) Assume that caches of both CPUs include valid copies of variable X. If the copy
of X is in set:1, frame:0 in the cache of CPU1, can we know its location in the cache
of CPU2? Why?

Solution:

In a symmetric multiprocessor (SMP) system, CPUs use the same memory space.
Therefore, variable X has the same address in spaces of both CPU1 and CPU2.

If it is in set:1, frame:0 in the cache of CPU1, then it must be also in set:1 in the
cache of CPU2. However, we cannot know which frame of set 1 it is in.

6

9.31

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

Example (cont'd):

b) Assume that the frame in the cache of CPU1 containing variable X is in state
“exclusive”. What is the state of the corresponding frame in the cache of CPU2?

Solution:

In this case, valid copies of variable X are in main memory and in the cache of
CPU1. Therefore, the state of the corresponding frame in the cache of CPU2 must
be in state “invalid”.

c) Assume that the frame in the cache of CPU1 containing variable X is in state
“modified”, and CPU2 wants to write to variable X. List the operations performed
by the MESI protocol.

Solution:

If it is in state “modified” in CPU1, then it does not exist (invalid) in CPU2.

• CPU2 (write miss) issues the signal read-with-intent-to-modify.
• CPU1 signals the requesting CPU2 "Main memory is not valid".
• CPU1 writes the modified cache frame back to main memory and transitions the

state of the cache from "modified" to "invalid".
• CPU2 issues the signal read-with-intent-to-modify again and reads the frame

from main memory.
• CPU2 modifies the word in the frame and transitions the state of the frame to

“modified”.

9.32

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9.5 Challenges of parallel processing

• Limited parallelism in programs. Some processors cannot be used
(load imbalance).

• Overhead for communication. High cost of communications between
processors.

• Writing parallel programs is difficult.

• Partitioning into independent parts with similar loads: Scheduling and
load balancing problem.

• Synchronization: Dependencies, critical sections

9.33

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

9.6 Exemplary Multiprocessor Systems 1

1 Source: Patterson & Hennessy, Computer Organization and Design, Morgan Kaufmann,
Elsevier, 2009.

A SMP system with 2 × quad-core Intel Xeon e5345 (Clovertown):

When more than one processor is implemented on a single chip, the system is
called a multicore chip processor.

L1 Cache:
128 KB (code)
128 KB (data)

9.34

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

2 × quad-core AMD Opteron 2356 (Barcelona)

Source: Patterson & Hennessy, Computer Organization and Design, Morgan Kaufmann,
Elsevier, 2009.

9.35

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

2 × oct-core Sun UltraSPARC T2 5140 (Niagara 2)

Source: Patterson & Hennessy, Computer Organization and Design, Morgan Kaufmann,
Elsevier, 2009.

9.36

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

2 × oct-core IBM Cell QS20:

Source: Patterson & Hennessy, Computer Organization and Design, Morgan Kaufmann,
Elsevier, 2009.

7

9.37

Computer Architecture

2013 - 2020 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

The performance wall and search for new solutions *

*Source: T. M. Conte, E. P. DeBenedictis, P. A. Gargini, and E. Track, “Rebooting Computing: The Road
Ahead,” Computer, vol. 50, no. 1, pp. 20–29, Jan. 2017.

Computing has evolved because of improvements in semiconductor devices
(transistors) and computer architecture (cache memories, pipeline, etc.).

However, these improvements (especially, Moore’s Law) are ending.

Designers increase the clock frequency and/or the number of transistors in an
integrated circuit (IC) to increase the processing speed of computers.

However, this causes heat/cooling problems (power wall).

Architectural solutions such as pipelining and multicore systems also have their
own problems.

However, demands for performance in excess of 1 million trillion floating-point
operations per second (1 exaflops) are arising from novel software paradigms to
address problems in big data, machine learning, and security.

Many industry experts believe that, by 2020, computing will reach the long-
predicted performance wall.

Visit the web site of the IEEE Rebooting Computing Initiative to explore the
future of computing systems in the architecture, device, and circuit domains.

http://rebootingcomputing.ieee.org/

