
1

4.1

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4. Interrupt

Hardware interrupt:

If a predefined event occurs in an external device (for example I/O interface),
this device issues an interrupt request to the CPU.

Design Issues:

• Source: There may be multiple interrupt sources. How does the processor
determine which device issued the interrupt request?

• Priority: In case of simultaneous, multiple interrupt requests, how does the
processor decide which one to process?

• Start address of the ISR: If the processor accepts the interrupt request of
a device, how does it determine the starting address of the interrupt service
routine (ISR) (or interrupt handler) related to the requesting device?

• Autovectored

• Vectored

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

4.2

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

• There is only one interrupt service routine (ISR).

• The source of the interrupt is identified by polling at the beginning of the ISR.

• The order in which the interrupt sources are polled determines their priorities.

• To make the source device remove its interrupt request (acknowledgment), a
software action is necessary (reading the port of the source , writing to the
control register, etc.).

6802

IRQ

PIA
IRQ

ACIA
IRQ

PTM
IRQ

+5V

R

Open collector
outputs or
AND gate

a) The CPU has a single Interrupt Request (IRQ) input.

It does not have an acknowledgment output.

Example: MC6802

4.1 Interrupt Handling in the CPU

Peripheral (Parallel)
Interface Adapter

Interrupt Sources:

Asynchronous
Communications Interface

Adapter

Programmable Timer
Module

Data Bus

4.3

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

b) The CPU has an Interrupt Request (INT) input and an Interrupt Acknowledge
(INTA) output. The CPU uses vectored interrupts.

• Interrupt sources are connected to the CPU over an interrupt priority controller.

• In the event of multiple interrupt requests, the controller decides which device
gets the acknowledgment signal (INTA).

• The source device that receives the INTA places a word (vector number - VN) on
the data bus.

• The CPU indexes into the interrupt vector table using this vector number and
obtains the starting address of the associated ISR.

Priority
Interrupt
Controller

Data Bus

CPU
INT

INTA

Data Bus

IS1
INT

INTA

VN

IS3
INT

INTA

VN

IS2
INT

INTA

VN

Interrupt
sources (IS)
such as I/O,
Timer

Example: x86 processors

4.4

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.2 Vector Address:

The CPU keeps the information about the interrupt handlers in a vector table.

This table is used to associate an interrupt request with a specific ISR.

There are two different methods for storing this information in the vector
table:

1. The table contains the starting addresses of the ISRs.

The interrupt source gives the CPU an index to table in the form ofthe vector
number.

Using this index, the CPU accesses an entry in the table, gets the starting
address of the ISR, and writes it to the program counter (PC).

Example: MC 68000.

2. The table contains executable code, namely the ISR itself.

In practice, an interrupt handler cannot be stored entirely inside the
interrupt vector table.

Therefore, the code at each entry is "JMP ISR_address", where
ISR_address is the address of the interrupt service routine.

4.5

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

FFFF
FFFE
FFFD
FFFC
FFFB
FFFA
FFF9
FFF8

Vectored interrupt technique: The external interrupt source (for example I/O
interface) supplies its vector address to the processor.

Autovectored interrupt technique: The external device does not supply the
vector number in response to the interrupt acknowledge.

Each interrupt input (or level) of the processor has a fixed and predetermined
vector number (a specific row in the vector table).

For example, in 6802 different interrupts (NMI, IRQ, SWI) have their own rows
in the table.

NMI: Non-maskable interrupt; IRQ: Interrupt request; SWI: Software interrupt

The processor "knows" where to find the address of the ISR if an interrupt is
issued to the NMI pin.

Vectored and Autovectored interrupts:

RESET

NMI

SWI

IRQ

Example:
Vector table of the 6802

Starting address of
the reset program.

Starting addresses of
the interrupt service
programs.

Since the 6802 has an address
bus of 16 bits, each starting
address occupies two 8-bit
memory locations.

4.6

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Interrupt Vector Table
of the MC 68000:

The MC68000 is
capable of handling
both vectored and
autovectored
interrupts.

2

4.7

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Priority
interrupt
circuit

a) Serial Priority Interrupt Hardware (Daisy Chain) 1

4.3 Priority Interrupt Hardware

• The priority interrupt circuit (chain) consists of links with different priority levels.

• Each interrupt source is connected to one of these links (Interrupt Request - IRQ).

• The first link (at the head of the chain) has the highest priority level (priority 1).

• All modules share the same interrupt request line.

Interrupt Acknowledge

Data Bus

Next
Device

Priority 2PI P0

INTACK

INT

IRQ

Priority 3PI P0

INTACK

INT

IRQ

Priority 1
PI P0

INTACK

INT

IRQ

CPU
INT

INTACK

Data
Bus

Interrupt Request

Interrupt
Source 2

VAD

IRQ INTACK

Interrupt
Source 3

VAD

IRQ INTACK

Interrupt
Source 1

VAD

IRQ INTACK

Interrupting
device can
store and
supply the
vector
address.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

4.8

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

• The interrupt acknowledge line is daisy chained through the modules.

• When the CPU accepts an interrupt, it sends out an interrupt acknowledge.

• The interrupt acknowledge signal from the CPU arrives at the first link in the
chain (Priority in: PI).

a. If the device connected to this link has issued the request,

1. The module sends the INTACK signal to its device (interrupt source).

2. The device (interrupt source) puts its vector address (VAD) on the data
bus.

3. The module negates (deactivates) its PO (Priority out) so that the next
module cannot get the acknowledge signal.

b. If the device connected to this link has not issued the request,

1. The module asserts (activates) its PO (Priority out) so that the next
module gets the right to check the request and supply the vector
address.

• This mechanism is also called hardware poll.

• If the request of a device is accepted, this device deactivates its IRQ output.

• The device keeps its request (IRQ) active until it gets the acknowledgment.

How the priority chain works:

4.9

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

IRQFrom the interrupting
device

The structure of a stage of the daisy chain:

PI IRQ PO INTACK
0 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1 INT

To CPU

Open collector
NOT

PO

Priority
Out

PI

Priority In
INTACK

From the CPU (INTACK)

To the requesting
device

To the next
module

4.10

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

a) Serial Priority Interrupt Hardware (Daisy Chain) 2

• In the previous system (Daisy Chain 1), the interrupt sources can store their
vector addresses and place them on the data bus after receiving the INTACK signal.

• Some devices do not have this capability. Therefore, the vector address is kept in
the daisy chain.

• Moreover, keeping the request active until it is accepted by the CPU can also be
the responsibility of the controller if the device does not have this capability.

Interrupt Acknowledge

Next
module

Priority 2PI P0

VAD

INT

IRQ
Priority 3PI P0

VAD

INT

IRQ

Interrupt
Source 2

IRQ

Interrupt
Source 3

IRQ

Interrupt
Source 1

IRQ

Priority 1
PI P0

VAD

INT

IRQ

CPU
INT

INTACK

Data Bus

Data
Bus

Interrupt Request

Interrupting devices cannot
store vector addresses.
The address is stored in the
daisy chain.

4.11

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

• The interrupt request from the device sets the S-R latch.

• The interrupt acknowledge signal from the CPU arrives at the first link in the
chain (Priority in: PI).

• If the device connected to this link has issued the request, the module (not the
device) places the vector address (VAD) on the data bus and resets the latch.

Data Bus

VAD

SR
Latch

Q
S

R

IRQ

Request from
interrupt source

PI Q PO enable

0 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

INT To CPU

Open collector

Vector address
enable

PI

Priority In

PO

Priority
Out

Delay

The structure of a stage of the daisy chain 2:
Vector address register

4.12

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Priority
Encoder

I0

I1

I2

I3

Z0

Z1

b) A Parallel Priority Interrupt Controller

Device 1
(Disk)

Device 2
(Printer)

Interrupt Request
Register

Device 3

Device 4

INTACK (from CPU)

Enable

Data Bus

IEN

INT (to CPU)

Interrupt Enable
Main mask

Y
X
0
0
0
0
0
0

IST

Vector Address Register

Interrupt Status
Is there a request?

Mask Register

This is an example. Parallel priority interrupt
controllers can be designed in different ways.

Set: Request
Reset: After
the request is
accepted

Mask:
1: Request can
be accepted
0: Request
blocked

3

4.13

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Logical expressions:

0ΦΦ0000

100xxx1

110xx10

101x100

1111000

Vector addresses of the devices in this system:

Device 1: 0000 0000
Device 2: 0000 0001
Device 3: 0000 0010
Device 4: 0000 0011

Truth table of the priority encoder:

X = Z1 = I0’ I1’

Y = Z0 = I0’ I1 + I0’ I2’

(IST) = I0 + I1 + I2 + I3

IST
Y

= Z0

X
= Z1

I3I2I1I0

Inputs Outputs

Priorities:
Device 1 > Device 2 > Device 3 > Device 4

http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

4.14

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

In the exemplary system (4.12), the vector addresses of the devices are
predetermined and fixed (Device 1 (Disk): 0000 0000).
To make the system more flexible, a separate vector address register can be
installed for each device.

Priority
Encoder

Y

X
2X4

Decoder

Z0

Z1

Z2

Z3

I0

I1

INTACK (from CPU)

E

VAD1 VAD2 VAD3 VAD4OE

Data Bus

When the interrupt request of a device is accepted, the OE (Output enable) pin
of the related register is activated.

Vector address registers are installed in the system so that the CPU can write to
them.
Vector address registers can be initialized (or modified) by system programs.

Circuit in 4.12

Vector registers

4.15

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.4 Interrupt Processing: Necessary actions before and after the ISR

Before the ISR:

Reminder: The CPU checks the interrupt requests after the execution cycle.

If a request is accepted, the CPU enters the interrupt cycle (Slide 1.18).

In the interrupt cycle, the following actions are performed by the CPU.

These actions are internal operations of the CPU; they are not performed by a
program.

SP ← SP-1 Stack pointer is decremented (depending on address length: 1, 2, 4)
M[SP] ← PC Return address saved on stack
INTACK ← 1 Interrupt acknowledge
PC ← VAD PC ← Vector address or PC ← Table [Vnum.] (from Vector table)
SP ← SP-1
M[SP] ← SR Status register (SR) saved on stack
IEN ← 0 Other interrupts are masked (disabled). This bit is in SR (Status reg.)

In the next fetch cycle, the CPU continues with the first instruction of the ISR
because the PC includes its starting address (PC ← VAD).

Some CPUs also push internal registers to the stack. Some CPUs leave this job to
the programmer.

Start address of the ISR

4.16

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Reminder: The Interrupt service routines are terminated by a special instruction:
"return from interrupt" (RTI).

This instruction performs the following necessary operations to return from the
ISR to the previously interrupted program.

SR ← M[SP] Status register from stack (Remember IEN is in SR)
SP ← SP+1 Stack pointer is incremented (depending on the length of SR: 1, 2)
PC ← M[SP] Return address
SP ← SP+1 Stack pointer is incremented (depending on address length: 1, 2, 4)
(If internal registers were also pushed to the stack automatically in the
interrupt cycle, they are pulled by the RTI.)

Note that the CPU enters the interrupt cycle only before starting the ISR.

Returning operations are performed by the last instruction (RTI) of the ISR.

Conclusion:

Interrupt processing operations are time-consuming (many memory accesses).

Therefore, frequent interrupt requests can degrade the performance of a system.

For example, interrupt-driven I/O is not suitable for applications where I/O
operations are performed very frequently (e.g., file transfer) .

Returning from the ISR:

4.17

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Problem:

The instruction cycle of a CPU has the following 5 states (cycles) with the given
durations:
1. Instruction fetch: 60 ns, 2. Instruction decode: 20 ns, 3. Operand fetch: 60 ns,
4. Execution: 30 ns, 5. Interrupt: 200 ns.
Housekeeping operations in the interrupt cycle (saving the return address, reading
the vector address, etc.) take 200 ns.

The interrupt-driven I/O technique is used to transfer 10 words from the I/O
interface to the memory.
The interrupt service program takes 500 ns (housekeeping operations in the
interrupt cycle are not included) and transfers one word each time.
Assume that we start a clock (Time = 0) when the CPU begins to run the program.

The first interrupt request arrives from the I/O interface when the CPU is in the
instruction fetch cycle for the first instruction (Time = 5ns).

a. When (Time =?) can the first word be transferred from the I/O interface to
the memory? Why?

b. When (Time =?) will all 10 words be transferred if the I/O interface is always
ready to transfer?

Example: Interrupt-driven I/O

4.18

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Solution:

Remember: Interrupt requests are checked after the execution of the
instruction. If there is a request and interrupts are enabled, the CPU enters the
interrupt cycle.

The data is transferred in the ISR (Interrupt Service Routine).

RTI and related operations are included in the ISR.

a. First word:

Fetch + Decode + Operand + Execute + Housekeeping + ISR

Time = 60 + 20 + 60 + 30 + 200 + 500 = 870ns

b. 10 words:

One word is transferred in each ISR.

After the ISR, the CPU returns to the main program, runs one instruction, and
enters the ISR again.

Time = 10 x 870 = 8700ns (Time-consuming. Overhead is large.)

Example: Interrupt-driven I/O (cont'd)

4

4.19

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.5 Exceptions
Exceptions are situations that are caused either by programming errors or by
anomalous conditions.

In these cases, the processor stops executing the current code, begins running
an exception handling routine, and then returns to the normal program flow.

Example: Exceptions in MC68000

External:
• Reset
• Bus Error (BERR)
• Interrupts: vectored, autovectored

Internal:

• Trace: If T bit in SR is "1", programs run step-by-step (for debugging).
• Address error : Word/long access attempt to odd addresses
• Software interrupt (TRAP 0 -15), TRAPV (Trap on overflow), CHK

• Illegal instruction: The opcode does not exist.
• Instruction emulation (Instruction starting with $A=1010 and $F=1111)
• Privilege violation: Some instructions are only available in supervisor mode.
• Divide by zero

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

4.20

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

• SR → Temp (A copy of the Status Register SR is created.)

• S←1, T←0 (The CPU switches to supervisor mode. Trace is disabled.)

• The PC (return address) is saved on the supervisor stack.

• The copy of SR in Temp (S and T have their original values) is saved on the
supervisor stack using the SSP (supervisor stack pointer).

• The address of the exception handler is obtained from the vector table.

• Data and address registers are not saved on the stack by the 68000.
It is up to the programmer of the service routine to save only the used registers
on the stack.

Returning from the exception:

• The programmer must pull saved values (if there are any) from the stack.

• Service routines must end with the instruction RTE (Return from Exception).
During the execution of the instruction RTE

• The status register SR is pulled from the stack.
• The return address is pulled from the stack.

In the case of RESET, not all of these operations are performed.

In some exceptions (BERR, interrupts) some additional operations are performed.

When the 68000 receives an exception, the following procedure is performed:

4.21

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

The 68K operates in one of two levels of privilege: the supervisor mode or the user
mode.

The privilege mode determines which operations (instructions) are legal.

The mode is also indicated by the FCO (Function Codes Output) pins of the
processor and optionally used by an external memory management circuit to control
the accesses to certain memory locations (or devices) (Slides 3.23-24).

The mode is also used to choose between the supervisor stack pointer (SSP) and
the user stack pointer (USP) in instruction references.

Supervisor mode:

The supervisor mode has the higher level of privilege.
The mode of the processor is determined by the S bit of the status register (S=1).
All instructions can be executed in the supervisor mode.

User mode:

If the S bit of the status register is clear, the processor is in the user mode.
Most instructions execute identically in either mode. However, some instructions
having important system effects are privileged (e.g., STOP, RESET).
To ensure that a user program cannot enter the supervisor mode except in a
controlled manner, the instructions that modify the entire status register are
privileged.

4.5.1 Privilege Modes

4.22

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

User
Mode

Supervisor
Mode

only if an exception occurs

(S ← 1)

(S ← 0)

RTE (pulls the SR from the stack)
or instructions that modify the SR: MOVE, ANDI, EORI

When the processor is in the user mode, only exception processing can change the
privilege mode.

Remember, during exception processing, the current state of the S bit of the
status register is saved, and the S bit is set (S←1), putting the processor in the
supervisor mode.

Therefore, exception service programs run in supervisor mode.

If the exception occurred in the user mode, after the exception handler, the
processor switches to user mode again because the RTE instruction pulls the
original value of the SR (that includes the S bit) from the stack.

Transition between privilege modes

The transition from supervisor to
user mode can also be
accomplished by the instructions
that can modify the status
register SR, such as MOVE to SR,
ANDI to SR, and EORI to SR.

4.23

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.5.2 Bus Error (BERR) and Address Error:

A bus error exception occurs when the external logic asserts the BERR’ (active
low) input of the 68000. See slide 3.19 Avoiding Infinite Waiting.

An address error exception occurs when the processor attempts to access a word
(16-bit) or long word (32-bit) operand or an instruction at an odd address.

An address error is similar to an internally generated bus error.

Unlike interrupts, the current bus cycle is aborted.

The current instruction is not finished (even the bus cycle is not completed).

The current processor activity, whether instruction or exception processing, is
terminated, and the processor immediately begins exception processing.
Exception processing for a bus error/address error follows the usual sequence of
steps.
However, additional information is saved on the supervisor stack.

If a bus error occurs during the exception processing for a bus error, an
address error, or a reset, the processor halts and isolates itself from the
system bus (high impedance).

This halt simplifies the detection of a system failure and protects memory
contents from erroneous accesses.

Only an external RESET operation can restart a halted processor.

4.24

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Supervisor Stack Order for Bus or Address Error Exception

Since the processor is fetching the instruction or an operand when the error
occurs, the context of the processor is more detailed.

To save more of this context, additional information is saved on the supervisor
stack.

R/W’ I/N FC2 FC1FC0

15 8 4 3 2 1 0

Access Address
H
L

Instruction Register (op word)

Status Register (SR)

Program Counter (PC)
H
L

(System Stack
Pointer)

SSP →

Increasing
Addresses

5

4.25

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.5.3 Interrupts in MC68000:

The 68000 has three interrupt request input-lines (IPL2, IPL1, IPL0).

The 3-bit value at these inputs indicates the level (1-7) of the interrupt request.

All lines negated indicates no interrupt request.

If the priority level of the pending interrupt is greater than the current
processor priority (interrupt masks), the request is accepted, and the exception
processing sequence is started.

I0

15 8 7 4 0

Status Register (SR)CVZNXS I1I2T

Interrupt Mask (I0 I1 I2)

IPL2, IPL1, IPL0 > I2, I1, I0 interrupt is accepted.

IPL2, IPL1, IPL0 ≤ I2, I1, I0 interrupt is not accepted, execution continues with
the next instruction.

Priority level 7 is a special case. Level 7 interrupts cannot be inhibited by the
interrupt priority mask.
Level 7 provides a "nonmaskable interrupt" capability.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

4.26

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

MC68000

Data Bus D7-D0

AS

LDS

VPA

Vector number is read using
the asynchronous bus
operation.

Address Bus A3-A1

R/W

Interrupt-related signals of the MC68000:

The level of accepted request

To read the vector number

Autovectored interrupts

IPL0

IPL1

IPL2

Interrupt priority level
(Interrupt request lines)

FC0

FC1

FC2

Interrupt accept (acknowledge): 111

DTACK

4.27

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

• SR → Temp (a copy of SR is created.)

• S←1, T←0

• The PC (return address) is saved on the supervisor stack.

• The copy of SR in Temp (where S and T have their original values) is saved on
the stack.

• I2, I1, I0 ← IPL2, IPL1, IPL0 The level of the interrupt being acknowledged is
written to the masks. Hence, interrupt requests
with lower or equal levels are disabled.

• FC2, FC1, FC0 ← 111 (Interrupt Acknowledge)

• A3, A2, A1 ← The level of the interrupt being acknowledged.

a) Vectored interrupts:

• The interrupting device places a vector number on the data bus and asserts
DTACK' to acknowledge the cycle.

• The 68000 reads the 8-bit vector number on the data bus lines D7-D0.

• The vector number provides the number of the row of the vector table where
the starting address of the interrupt service routine is placed.

• As each row of the table is 4 bytes long, to calculate the address of the row,
the vector number is multiplied by 4 (see the table in 4.6).

When the 68000 accepts an interrupt request:

(Mask ← Interrupt Level)

4.28

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

• Registers that are used in the interrupt service routine must be saved on the
stack.

• Before returning, the same registers must be pulled from stack.

• For these stack operations the MOVEM (move multiple) instruction can be used.

• If necessary, the programmer of the ISR can change the value of the interrupt
masks. (Remember that the ISR runs in supervisor mode.)

• Hence, the programmer can enable interrupts with lower levels or disable
interrupts with higher levels (except level 7).

• At the end of the ISR, there must be an RTE (Return from Exception)
instruction.

Responsibilities of the programmer:

b) Autovectored interrupts:

• If the interrupting device asserts VPA' instead of DTACK', it means that this
device will (can) not supply a vector number.

• In this case, the 68000 obtains the starting address of the interrupt service
routine from predetermined and fixed rows of the vector table.

• Each autovectored interrupt level has its own entry in the table: rows 25 -31
(see 4.6).

When the 68000 accepts an interrupt request (cont'd):

4.29

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Nested Interrupts:

The current
level:

0: (Main prog.)

1:

2:

4:

Interrupt request
Level (IPL2 IPL1 IPL0):

Mask (I2 I1 I0): 000

1 4 2 RTE RTE RTE

001 100 001 010 001 000

After the ISR of the 4.
level, control returns to the
ISR of the 1. level.
The mask is set to 001.
One instruction is
executed. There is a
pending request of level 2.
After one instruction,
control jumps to the ISR of
level 2.

Not acknowledged
Mask is 4

IPL2 IPL1 IPL0 < I2 I1 I0

ISR from 1
is interrupted.

4.30

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

68000

A3

A2

A1

Generating the Interrupt Acknowledge signal
(An exemplary circuit):

74148
Priority
Encoder

74138

Decoder

IACK1’
IACK2’
IACK3’
IACK4’
IACK5’
IACK6’
IACK7’

A

B

C

Y1

Y2

Y3

Y4

Y5

Y6

Y7

E

IRQ1’
IRQ2’
IRQ3’
IRQ4’
IRQ5’
IRQ6’
IRQ7’

Vcc

Rc

If the output of
interrupting devices
are open collectors,
then pull-up
resistors are
necessary.

IPL0

IPL1

IPL2

FC0
FC1
FC2

AS

0

1

2

3

4

5

6

7

Highest priority

0

1

2

6

4.31

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

68000

IPL0

IPL1

IPL2

Priority
Encoder

IRQ (Source 1)1

D7-D0
vectored

IRQ
Source 4

4

No INTACK
input.

Requests are
removed by a

program.

FC0
FC1
FC2

AS

A3-A1
Decoder

E

2

Interrupt
Source 3

IRQ3

autovectored

3

INTACKDelay

DTACK

VPA

Interrupt
Source 2

IRQ2

VNum

LDS

INTACK

...

1

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

4.32

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

In the MC68000, there are 16 software interrupts, which are called traps:

TRAP #0 – TRAP #15

These instructions generate internal interrupts and start exception processing.
Each TRAP has its own entry (rows 32-47) in the vector table (slide 4.6).

What is the difference between procedure calls (CALL, JSR instructions) and
software interrupts (TRAP instructions)?

Exception service programs of TRAP instructions run in supervisor mode.

System programmers write necessary system programs (for example, for using
system resources, such as the PIA) and install them as exception service routines
in the system.

The authors of the user programs can call these routines to access the system
resources (for example, I/O units) by executing the TRAP instructions.

Since exception service programs run in supervisor mode, using these routines, the
user can access some system resources in a controlled manner.

Normally, a user may not write directly to a register of the PIA (if it is protected
in user mode), but using a service routine, the user can send data over the PIA.

Software interrupts are also used to return from user programs to the operating
system.

4.5.4 Software Interrupts

4.33

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

In the instruction set of the MC68000, there are no instructions (in machine
language) starting with $A (1010) or $F (1111).

Opcodes starting with bit patterns equaling 1010 (Line A) and 1111(Line F) are
distinguished as unimplemented instructions, and separate exception vectors are
assigned to these patterns to permit efficient emulation.

System designers (system programmers) can create their own instructions that
start with these opcodes and place them in a program with other instructions.

When the 68000 fetches such an instruction and tries to decode it, it discovers
that the instruction is unimplemented and starts exception processing.

The exception service routine related to the instruction is written by the system
programmer. This routine performs the required operation.

The address in PC that is saved on the stack as a return address before starting
the exception's service routine is the address of the unimplemented instruction.

4.5.5 Instruction Emulation (Unimplemented instructions)

4.34

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

In a MC68000-based system, using the instruction emulation capability, the
following instructions will be implemented.

• ADD.B address1, address2, address3 (address3)(address1)+(address2)

This instruction adds two 8-bit integers in address1 and address2, then writes the
result to address3. Addresses are 32 bits.

• ADD.W address1, address2, address3 (address3)(address1)+(address2)

This instruction performs the same operation on 16-bit integers.

Solution:

First, the structure (format) of the instructions must be defined.

An exemplary structure:

ADD.B address1,address2,address3 $F000 address1,address2,address3

ADD.W address1,address2,address3 $F001 address1,address2,address3

Example:

F000

address1

address2

address3

ADD.B :

The last bit of the operation word (Op word) is used to indicate
the size. 0 : B , 1 : W

ADD.B : 1111 0000 0000 0000 = $F000
ADD.W: 1111 0000 0000 0001 = $F001

4.35

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Before we write the service routine, we can implement a main program that can be
used to test the service routine:

We must write an exception service routine that performs the desired operations
for the instructions.

main lea stack,a7 // Stack pointer initial address

adda.l #40,a7 // Stack grows downward

move.l #service,($2C) // Service routine starting address to table

dc.w $f000,0,$1000,0,$1100,0,$1200 //ADD.B $1000,$1100,$1200
dc.w $f001,0,$2000,0,$2100,0,$2200 //ADD.W $2000,$2100,$2200
....
org $500

stack ds.b 40 // Memory allocation for stack

Remember that at the beginning of the service routine, the used registers must
be saved on the stack.

Which registers must be saved can be only determined after the service program
is completely written.

service movem.l d0/a0-a3,-(a7) // D0, A0, A1, A2, A3 to stack

The vector address of the Line F exception is ($2C) in the vector table (11th row).

The starting address of the service routine must be written to this entry.

4.36

Computer Architecture

2013-2021 Feza BUZLUCA
http://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

At the beginning of the service routine, five registers are saved by the program.

Now, the picture of the stack is as shown on the right:

The processor saves the SR and PC on the stack.

A3_H

A3_L

A2_H

A2_L

A1_H

A1_L

A0_H

A0_L

D0_H

D0_L

SR

PC_H

PC_L

SP

+2

+4

+6

+8

+10

+12

+14

+16

+18

+20

+22

service movem.l d0/a0-a3,-(a7)
movea.l 22(a7),a0 PC a0 points to the instruction

move.w (a0)+,d0 First 16 bits of the instr OpCode ->d0

movea.l (a0)+,a1 Address1 a1
movea.l (a0)+,a2 Address2 a2

movea.l (a0)+,a3 Address3 a3
tst.b d0 B/W?

bne word
move.b (a1),d0 Byte operations

add.b (a2),d0
move.b d0,(a3)
bra ret

word move.w (a1),d0 Word operations

add.w (a2),d0
move.w d0,(a3)

ret move.l a0,22(a7) PC in the stack is updated.

movem.l (a7)+,d0/a0-a3
rte The PC in the stack points to the next instruction.

Operand Fetch
and
Instruction
Execution

Instruction decoding

Instruction
Fetch
Instruction
Fetch
Instruction
Fetch

16 bits

