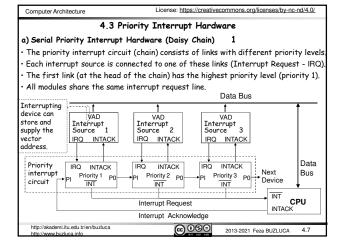
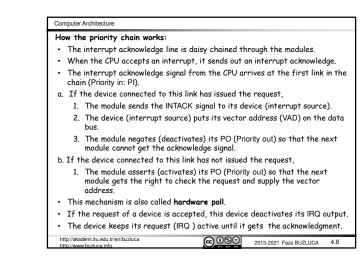
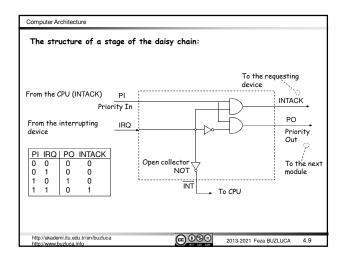
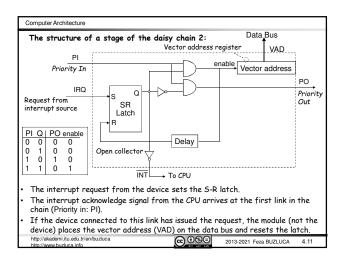
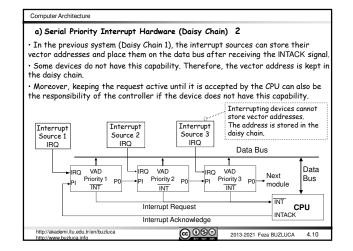

Computer Architecture	License: https://creativecommons.org/licenses/by-nc-nd/4.0/	Computer Architectur
4	. Interrupt	4.1 Interr a) The CPU h
Hardware interrupt:		It does not
this device issues an interr	urs in an external device (for example I/O interface), rupt request to the CPU.	Example: MC66
Design Issues:		
	nultiple interrupt sources. How does the processor issued the interrupt request?	6802
 Priority: In case of simu processor decide which 	ultaneous, multiple interrupt requests, how does the one to process?	IRQ ←
a device, how does it de	SR: If the processor accepts the interrupt request of termine the starting address of the interrupt service upt handler) related to the requesting device?	
 Autovectored 		There is only
 Vectored 		• <u>The source of</u>
		• <u>The order in</u>
		 To make the second secon
		software acti control regist
http://akademi.itu.edu.tr/en/buzluca http://www.buzluca.info	2013-2021 Feza BUZLUCA 4.1	http://akademi.itu.edu.t http://www.buzluca.info

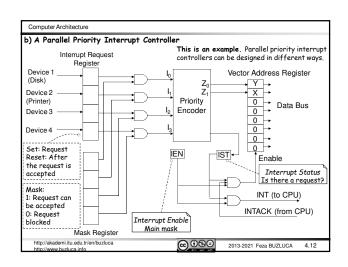


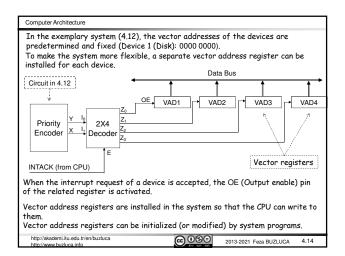

Computer Architecture b) The CPU has an Interrupt Request (INT) input and an Interrupt Acknowledge (INTA) output. The CPU uses vectored interrupts. Interrupt sources are connected to the CPU over an interrupt priority controller. In the event of multiple interrupt requests, the controller decides which device gets the acknowledgment signal (INTA). The source device that receives the INTA places a word (vector number - VN) on the data bus. The CPU indexes into the interrupt vector table using this vector number and obtains the starting address of the associated ISR. Interrupt sources (IS) such as I/O, Timer Data Bus VN Data Bus INT IS1 CPU INTA Priority INT Interrupt VN INTA Controller INT IS2 INTA INT IS3 Example: x86 processors INTA http://akademi.itu.edu.tr/en/buzluca http://www.buzluca.info @ 0 S I 2013-2021 Feza BUZLUCA 4.3


4.2 Ve	ector Address:	
The CPI	U keeps the information about the interrupt h	andlers in a vector table.
This tal	ble is used to associate an interrupt request w	ith a specific ISR.
There a table:	are two different methods for storing this inf	ormation in the vector
1. The t	able contains the starting addresses of the Is	SRs.
The i numb	interrupt source gives the CPU an index to tab per.	le in the form ofthe vector
	g this index, the CPU accesses an entry in the ess of the ISR, and writes it to the program c	
Exam	nple: MC 68000.	
2. The 1	table contains executable code, namely the IS	R itself.
	ractice, an interrupt handler cannot be stored rupt vector table.	entirely inside the
	efore, the code at each entry is "JMP ISR_ad address is the address of the interrupt service	


Computer Architecture	
Vectored and Autovectored in	terrupts:
Vectored interrupt technique: Th interface) supplies its vector add	ne external interrupt source (for example I/O Iress to the processor.
Autovectored interrupt technique vector number in response to the	Ie: The external device does not supply the interrupt acknowledge.
Each interrupt input (or level) of vector number (a specific row in	the processor has a fixed and predetermined the vector table).
For example, in 6802 different in in the table.	nterrupts (NMI, IRQ, SWI) have their own rows
NMI: Non-maskable interrupt; IF	Q: Interrupt request; SWI: Software interrupt
The processor "knows" where to issued to the NMI pin.	find the address of the ISR if an interrupt is
Example: Vector table of the 6802	FFFF RESET Starting address of the reset program.
Since the 6802 has an address bus of 16 bits, each starting address occupies two 8-bit memory locations.	FFFC NMI FFFB SWI Starting addresses of FFFA SWI Programs.
http://akademi.itu.edu.tr/en/buzluca	FFF8 2013-2021 Feza BUZLUCA 4.5


Computer Architecture	Vectors	Vectors Numbers					
	Hex	Decimal	Dec	Hex	Space 6	Assignment	
Interrupt Vector Table	0	0	0	000	SP	Reset: Initial SSP ²	
of the MC 68000:	1	1	4	004	SP	Reset: Initial PC ²	
01 The MC 08000.	2	2	8	800	SD	Bus Error	
	3	3	12	00C	SD	Address Error	
	4	4	16	010	SD	Illegal Instruction	
The MC68000 is	5	5	20	014	SD	Zero Divide	
capable of handling	6	6	24	018	SD	CHK Instruction	
both vectored and	7	7	28	01C	SD	TRAPV Instruction	
	8	8	32	020	SD	Privilege Violation	
autovectored	9	9	36	024	SD	Trace	
interrupts.	A	10	40	028	SD	Line 1010 Emulator	
interrupts.	В	11	44	02C	SD	Line 1111 Emulator	
	С	121	48	030	SD	(Unassigned, Reserved)	
	D	131	52	034	SD	(Unassigned, Reserved)	
	E	14	56	038	SD	Format Error ⁵	
	F	15	60	03C	SD	Uninitialized Interrupt Vector	
	10-17	16-231	64	040	SD	(Unassigned, Reserved)	
			92	05C		-	
	18	24	96	060	SD	Spurious Interrupt ³	
	19	25	100	064	SD	Level 1 Interrupt Autovector	
	1A	26	104	850	SD	Level 2 Interrupt Autovector	
	1B	27	108	06C	SD	Level 3 Interrupt Autovector	
	1C	28	112	070	SD	Level 4 Interrupt Autovector	
	1D	29	116	074	SD	Level 5 Interrupt Autovector	
	1E	30	120	078	SD	Level 6 Interrupt Autovector	
	1F	31	124	07C	SD	Level 7 Interrupt Autovector	
	20-2F	32-47	128	080	SD	TRAP Instruction Vectors ⁴	
			188	OBC		-	
	30-3F	48-831	192	000	SD	(Unassigned, Reserved)	
			255	OFF		-	
http://akademi.itu.edu.tr/en/buzluca	40-FF	64-255	256	100	SD	User Interrupt Vectors	
http://www.buzluca.info	1		1020	3FC		-	CA 4.6





Co	mpute	Archited	cture			Lice	ense: <u>http</u>	s://creativecommons.org/licenses/by-nc-nd/4.0/
٧	'ector	addro	esses (of the	device	s in th	is syste	em:
DDD	evice evice evice	2: 00 3: 00 4: 00	00 000 00 000 00 001 00 001	1 0 1	Devi		Devic	e 2 > Device 3 > Device 4
Г	Iruth			: prior	ity enc]
-		Inpu	15		, c	Dutput	5	-
	I ₀	I ₁	I2	I ₃	X = Z ₁	Υ = Z ₀	IST	Logical expressions:
	1	x	x	х	0	0	1	$X = Z_1 = I_0' I_1'$
	0	1	x	х	0	1	1	$Y = Z_0 = I_0' I_1 + I_0' I_2'$
	0	0	1	х	1	0	1	$(IST) = I_0 + I_1 + I_2 + I_3$
	0	0	0	1	1	1	1	
	0	0	0	0	Φ	Φ	0	
		idemi.itu.e w.buzluca	du.tr/en/b .info	uzluca			0	2013-2021 Feza BUZLUCA 4.13

4.4 Interru	pt Processing: Necessary actions before and after the ISR
Before the ISF	2:
Reminder: The (CPU checks the interrupt requests after the execution cycle.
If a request is a	accepted, the CPU enters the interrupt cycle (Slide 1.18).
In the interrupt	cycle, the following actions are performed by the CPU.
These actions a program.	re internal operations of the CPU; they are not performed by a
$\begin{array}{l} SP \leftarrow SP\text{-1} \\ M[SP] \leftarrow PC \\ INTACK \leftarrow 1 \\ PC \leftarrow VAD \\ SP \leftarrow SP\text{-1} \\ M[SP] \leftarrow SR \end{array}$	Stack pointer is decremented (depending on address length: 1, 2, 4) Return address saved on stack Interrupt acknowledge PC ← Vector address or PC ← Table [Vnum.] (from Vector table) Status register (SR) saved on stack
IEN $\leftarrow 0$	Other interrupts are masked (disabled). This bit is in SR (Status reg.)
	ch cycle, the CPU continues with the first instruction of the ISR includes its starting address (PC \leftarrow VAD).
Some CPUs also the programmer	push internal registers to the stack. Some CPUs leave this job to .

Returning from	1 the ISR:
Reminder: The I "return from int	Interrupt service routines are terminated by a special instruction terrupt" (RTI).
	performs the following necessary operations to return from the iously interrupted program.
SP ← SP+1 PC ← M[SP] SP ← SP+1 (If internal re	Status register from stack (Remember IEN is in SR) Stack pointer is incremented (depending on the length of SR: 1, 2) Return address Stack pointer is incremented (depending on address length: 1, 2, 4) egisters were also pushed to the stack automatically in the le, they are pulled by the RTI.)
Note that the C	PU enters the interrupt cycle only before starting the ISR.
Returning opera	tions are performed by the last instruction (RTI) of the ISR.
Conclusion:	
Interrupt proce	ssing operations are time-consuming (many memory accesses).
	juent interrupt requests can degrade the performance of a system
For example, int	rerrupt-driven I/O is not suitable for applications where I/O performed very frequently (e.g., file transfer) .

Computer Architecture

Example: Interrupt-driven I/O

```
Problem:
The instruction cycle of a CPU has the following 5 states (cycles) with the given durations:
```

```
1. Instruction fetch: 60 ns, 2. Instruction decode: 20 ns, 3. Operand fetch: 60 ns, 4. Execution: 30 ns, 5. Interrupt: 200 ns. 5.
```

```
Housekeeping operations in the interrupt cycle (saving the return address, reading the vector address, etc.) take 200 \rm ns
```

The interrupt-driven I/O technique is used to transfer 10 words from the I/O interface to the memory.

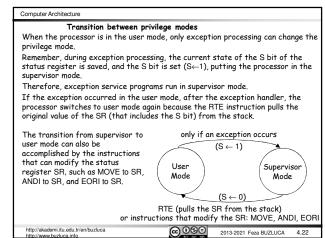
The interrupt service program takes 500 ns (housekeeping operations in the interrupt cycle are not included) and transfers one word each time. Assume that we start a clock (Time = 0) when the CPU begins to run the program.

The first interrupt request arrives from the I/O interface when the CPU is in the instruction fetch cycle for the first instruction (Time = 5ns).

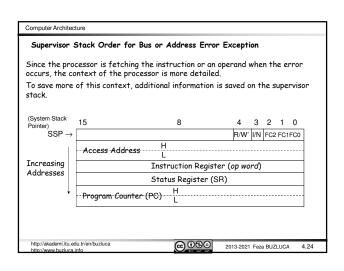
 $\boldsymbol{a}.$ When (Time =?) can the first word be transferred from the I/O interface to the memory? Why?

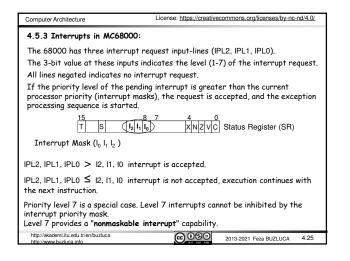
b. When (Time =?) will all 10 words be transferred if the I/O interface is always ready to transfer?

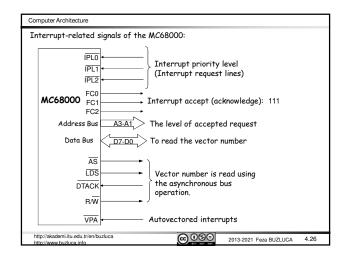
2013-2021 Feza BUZLUCA


4.17

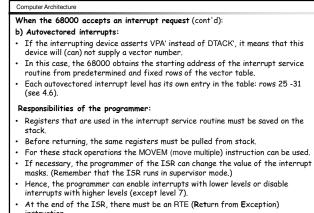
http://akademi.itu.edu.tr/en/buzluca


 Linemanber: Interrupt requests are checked after the execution of the astruction. If there is a request and interrupts are enabled, the CPU enters the atterrupt cycle. The data is transferred in the ISR (Interrupt Service Routine). All and related operations are included in the ISR. First word: Fetch + Decode + Operand + Execute + Housekeeping + ISR Time = 60 + 20 + 60 + 30 + 200 + 500 = 870ns One word is transferred in each ISR. After the ISR, the CPU returns to the main program, runs one instruction, and enters the ISR again. 	Exe	ample: Interrupt-driven I/O (cont'd)
nstruction. If there is a request and interrupts are enabled, the CPU enters the nterrupt cycle. The data is transferred in the ISR (Interrupt Service Routine). RII and related operations are included in the ISR. First word: Fetch + Decode + Operand + Execute + Housekeeping + ISR Time = 60 + 20 + 60 + 30 + 200 + 500 = 870ns Doe words: One word is transferred in each ISR. After the ISR, the CPU returns to the main program, runs one instruction, and enters the ISR again.	Solution:	
RTI and related operations are included in the ISR. I. First word: Fetch + Decode + Operand + Execute + Housekeeping + ISR Time = 60 + 20 + 60 + 30 + 200 + 500 = 870ns In words: One word is transferred in each ISR. After the ISR, the CPU returns to the main program, runs one instruction, and enters the ISR again.		
 i. First word: Fetch + Decode + Operand + Execute + Housekeeping + ISR Time = 60 + 20 + 60 + 30 + 200 + 500 = 870ns i. 10 words: One word is transferred in each ISR. After the ISR, the CPU returns to the main program, runs one instruction, and enters the ISR again. 	The data is transfe	red in the ISR (Interrupt Service Routine).
Fetch + Decode + Operand + Execute + Housekeeping + ISR Time = 60 + 20 + 60 + 30 + 200 + 500 = 870ns 0. 10 words: One word is transferred in each ISR. After the ISR, the CPU returns to the main program, runs one instruction, and enters the ISR again.	RTI and related ope	rations are included in the ISR.
Time = 60 + 20 + 60 + 30 + 200 + 500 = 870ns 0. 10 words: One word is transferred in each ISR. After the ISR, the CPU returns to the main program, runs one instruction, and enters the ISR again.	a. First word:	
 Dowords: One word is transferred in each ISR. After the ISR, the CPU returns to the main program, runs one instruction, and enters the ISR again. 	Fetch + Decode +	Operand + Execute + Housekeeping + ISR
One word is transferred in each ISR. After the ISR, the CPU returns to the main program, runs one instruction, and enters the ISR again.	Time = $60 + 20 + 6$	60 + 30 + 200 + 500 = 870ns
After the ISR, the CPU returns to the main program, runs one instruction, and enters the ISR again.	b . 10 words:	
enters the ISR again.	One word is trans	ferred in each ISR.
lime = 10 x 8/0 = 8/00ns (lime-consuming. Overhead is large.)	Time = 10 x 870 = 3	3700ns (Time-consuming. Overhead is large.)
	http://akademi.itu.edu.tr/en/b	uzluca

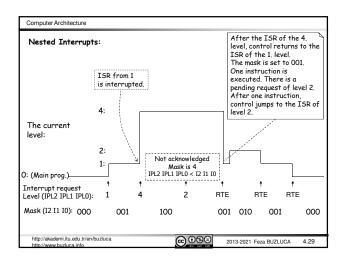

Computer Architecture License: https://creativecommons.org/licenses/by-nc-nd/4.0/	Computer Architecture
4.5 Exceptions Exceptions are situations that are caused either by programming errors or by anomalous conditions. In these cases, the processor stops executing the current code, begins running	 When the 68000 receives an exception, the following procedure is performed: SR → Temp (A copy of the Status Register SR is created.) S←1, T←0 (The CPU switches to supervisor mode. Trace is disabled.) The PC (return address) is saved on the supervisor stack.
an exception handling routine , and then returns to the normal program flow. Example: Exceptions in MC68000	 The copy of SR in Temp (S and T have their original values) is saved on the supervisor stack using the SSP (supervisor stack pointer).
External: • Reset • Bus Error (BERR) • Interrupts: vectored, autovectored	 The address of the exception handler is obtained from the vector table. Data and address registers are not saved on the stack by the 68000. It is up to the programmer of the service routine to save only the used registers on the stack.
Internal: • Trace: If T bit in SR is "1", programs run step-by-step (for debugging). • Address error : Word/long access attempt to odd addresses • Software interrupt (TRAP 0 -15), TRAPV (Trap on overflow), CHK • Illegal instruction: The opcode does not exist. • Instruction emulation (Instruction starting with \$A=1010 and \$F=1111)	 Returning from the exception: The programmer must pull saved values (if there are any) from the stack. Service routines must end with the instruction RTE (Return from Exception). During the execution of the instruction RTE The status register SR is pulled from the stack. The return address is pulled from the stack.
Privilege violation: Some instructions are only available in supervisor mode. Divide by zero <u>http://wkademilu.edu/trenbuduca</u> <u>http://wkubuca.info</u> <u>2013-2021 Feza BUZLUCA 4.19</u>	In the case of RESET, not all of these operations are performed. In some exceptions (BERR, interrupts) some additional operations are performed. http://wakademi.iu.edu.t/enfotuziuca

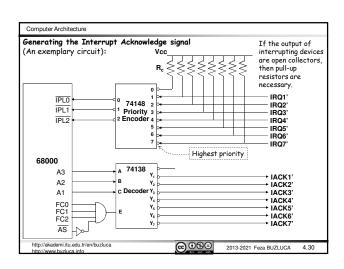

Computer Architecture	Computer Ar
4.5.1 Privilege Modes The 68K operates in one of two levels of privilege: the supervisor mode or the user mode.	When the privilege
The privilege mode determines which operations (instructions) are legal. The mode is also indicated by the FCO (Function Codes Output) pins of the processor and optionally used by an external memory management circuit to control the accesses to certain memory locations (or devices) (Slides 3.23-24).	Remember status re superviso Therefor
The mode is also used to choose between the supervisor stack pointer (SSP) and the user stack pointer (USP) in instruction references. Supervisor mode:	If the ex processo original v
The supervisor mode has the higher level of privilege. The mode of the processor is determined by the S bit of the status register (S=1). All instructions can be executed in the supervisor mode. User mode:	The tran user mod accomplis
If the S bit of the status register is clear, the processor is in the user mode. Most instructions execute identically in either mode. However, some instructions having important system effects are privileged (e.g., STOP, RESET). To ensure that a user program cannot enter the supervisor mode except in a controlled manner, the instructions that modify the entire status register are	that can register ANDI to S
privileged. http://wkademi.itu.edu.tr/en/buzluca http://www.buzluca.info	http://akader http://www.b

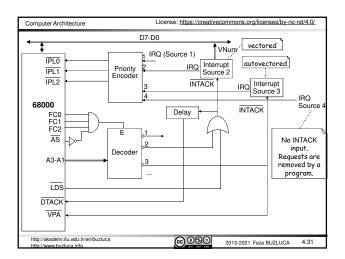
Computer Architecture
4.5.2 Bus Error (BERR) and Address Error:
A bus error exception occurs when the external logic asserts the BERR' (active low) input of the 68000. See slide 3.19 Avoiding Infinite Waiting.
An address error exception occurs when the processor attempts to access a word (16-bit) or long word (32-bit) operand or an instruction at an odd address.
An address error is similar to an internally generated bus error.
Unlike interrupts, the current bus cycle is aborted.
The current instruction is not finished (even the bus cycle is not completed).
The current processor activity, whether instruction or exception processing, is terminated, and the processor immediately begins exception processing. Exception processing for a bus error/address error follows the usual sequence of steps. However, additional information is saved on the supervisor stack.
If a bus error occurs during the exception processing for a bus error, an address error, or a reset, the processor halts and isolates itself from the system bus (high impedance).
This halt simplifies the detection of a system failure and protects memory contents from erroneous accesses.
Only an external RESET operation can restart a halted processor.
http://akademi.itu.edu.tr/en/buzluca http://akademi.itu.edu.tr/en/buzluca



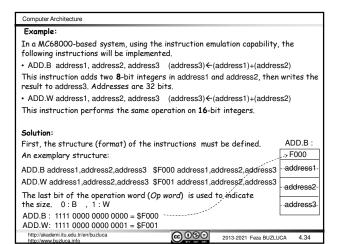
When the 68000 accepts an interrupt request: $\bullet~$ SR \rightarrow Temp (a copy of SR is created.) • S←1, T←0


Computer Architecture


- The PC (return address) is saved on the supervisor stack.
- The copy of SR in Temp (where S and T have their original values) is saved on the stack.
- I2, I1, I0 ← IPL2, IPL1, IPL0 The level of the interrupt being acknowledged is (Mask ← Interrupt Level) written to the masks. Hence, interrupt requests with lower or equal levels are disabled.
- FC2, FC1, FC0 ← 111 (Interrupt Acknowledge)
- A3, A2, A1 ← The level of the interrupt being acknowledged.
- a) Vectored interrupts:
- The interrupting device places a vector number on the data bus and asserts DTACK' to acknowledge the cycle.
- The 68000 reads the 8-bit vector number on the data bus lines D7-D0.
- The vector number provides the number of the row of the vector table where the starting address of the interrupt service routine is placed.
- As each row of the table is 4 bytes long, to calculate the address of the row, the vector number is multiplied by 4 (see the table in 4.6). http://akademi.itu.edu.tr/en/buzluca 2013-2021 Feza BUZLUCA 4.27



4.28



Computer Architecture
4.5.4 Software Interrupts
In the MC68000, there are 16 software interrupts, which are called traps: TRAP #0 – TRAP #15
These instructions generate internal interrupts and start exception processing. Each TRAP has its own entry (rows 32-47) in the vector table (slide 4.6).
What is the difference between procedure calls (CALL, JSR instructions) and software interrupts (TRAP instructions)?
Exception service programs of TRAP instructions run in supervisor mode.
System programmers write necessary system programs (for example, for using system resources, such as the PIA) and install them as exception service routines in the system.
The authors of the user programs can call these routines to access the system resources (for example, I/O units) by executing the TRAP instructions.
Since exception service programs run in supervisor mode, using these routines, the user can access some system resources in a <u>controlled manner</u> .
Normally, a user may not write directly to a register of the PIA (if it is protected in user mode), but using a service routine, the user can send data over the PIA.
Software interrupts are also used to return from user programs to the operating system.
http://akademi.itu.edu.tr/en/buzluca http://www.buzluca.info

Computer Architecture 4.5.5 Instruction Emulation (Unimplemented instructions) In the instruction set of the MC68000, there are no instructions (in machine language) starting with \$A (1010) or \$F (1111). Opcodes starting with bit patterns equaling 1010 (Line A) and 1111(Line F) are distinguished as unimplemented instructions, and separate exception vectors are assigned to these patterns to permit efficient emulation. System designers (system programmers) can create their own instructions that start with these opcodes and place them in a program with other instructions. When the 68000 fetches such an instruction and tries to decode it, it discovers that the instruction is unimplemented and starts exception processing. The exception service routine related to the instruction is written by the system programmer. This routine performs the required operation. The address in PC that is saved on the stack as a return address before starting the exception's service routine is the address of the unimplemented instruction. <u>@0</u>\$9

http://akademi.itu.edu.tr/en/buzluca

2013-2021 Feza BUZLUCA 4.33

Computer Architecture
We must write an exception service routine that performs the desired operations for the instructions.
Before we write the service routine, we can implement a main program that can be used to test the service routine:
main lea stack,a7 // Stack pointer initial address adda.1 #40,a7 // Stack grows downward move.l #service,(\$2C) // Service routine starting address to table dc.w \$1000,0,\$1000,0,\$1100,0,\$1200 //ADD.B \$1000,0,\$1200 dc.w \$1001,0,\$2000,0,\$2100,0,\$2200 //ADD.W \$2000,\$2100,\$2200
org \$500 stack ds.b 40 // Memory allocation for stack
The vector address of the Line F exception is (\$2C) in the vector table (11th row). The starting address of the service routine must be written to this entry.
Remember that at the beginning of the service routine, the used registers must be saved on the stack.
Which registers must be saved can be only determined after the service program is completely written.
service movem.I d0/a0-a3,-(a7) // D0, A0, A1, A2, A3 to stack
http://akademi.itu.edu.tr/en/buzluca

The p	rocessor s	saves the SI	R and PC on the st	ack.		
At th	e beainnin	a of the ser	vice routine, five i	registers are sav	ed bv ·	the program.
	5	5	ack is as shown on	5	, P → [A3 H
service movem.I d0/a0-a3,-(a7)						A3 L
			PC \rightarrow a0 points to	the instruction	+4	A2 H
			First 16 bits of the in			A2 L
	movea.l	(a0)+,a1	Address1 → a1	Instruction	+8	A1 H
	movea.l	(a0)+,a2	Address2 → a2	Fetch	+10	A1 L
	movea.l	(a0)+,a3	Address3 → a3	reich	+12	A0 H
	tst.b	d0	B/W? Instruction decoding		+14	A0 L
	bne	word			+16	D0 H
	move.b	(),	Byte operations		+18	D0 L
	add.b	(a2),d0		Operand Fetch	+20	SB
	move.b	d0,(a3)		and	+22	PC H
	bra	ret		Instruction		PC L
word	move.w	(a1),d0	Word operations	Execution	1	10_2
	add.w	(a2),d0				_ 16 bits
	move.w					`
ret	move.l	,	PC in the stack	is updated. «、		
		(a7)+,d0/a0		}		
	rte		The PC in the	stack points to	the ne	xt instruction