



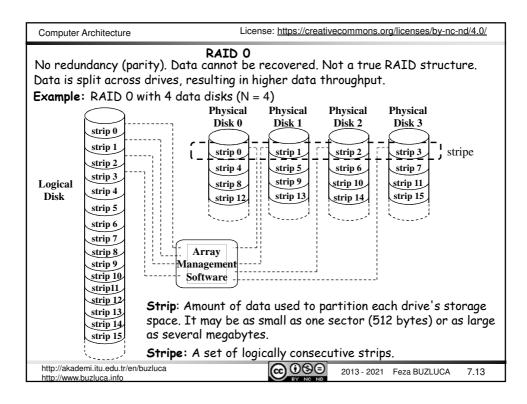



| Computer Architectu                                                                            | ne                                                                                                                                 |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| -                                                                                              | ess time of a disk consists of three components:                                                                                   |
|                                                                                                | = Seek time (Ts) + Rotational latency(Tr) + Transfer Time(Tt)                                                                      |
| • Average seek                                                                                 | time Ts:                                                                                                                           |
|                                                                                                | s to position the head at the track. Typically, 9ms on contemporary<br>ms , depending on device)                                   |
| The time it take<br>After the head<br>appropriate sec<br>This waiting tim<br>full rotation) of | $T_r = \frac{1}{2}r$ r: Rotation time of a disk (in seconds)                                                                       |
|                                                                                                | of disks are given in <b>revolutions per minute</b> (RPM).<br>atency in seconds can be calculated as follows:                      |
| $T_r = \frac{1}{2} \frac{60}{RPM}$                                                             | <b>Example:</b> A disk with a speed of 7200 RPM completes a full rotation in 8.3 ms. Hence, the average rotational latency is 4ms. |
|                                                                                                | For 10000 RPM: Tr = 3ms, For 15000 RPM: Tr = 2ms.                                                                                  |
| http://akademi.itu.edu.<br>http://www.buzluca.inf                                              |                                                                                                                                    |

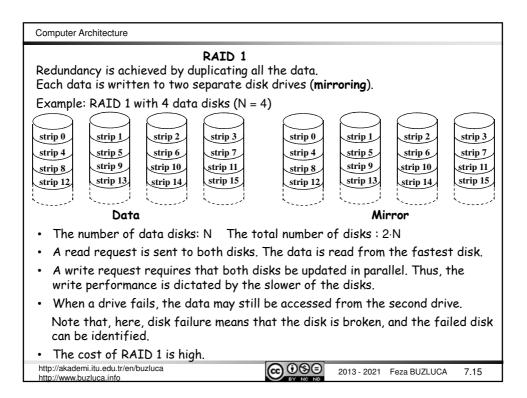


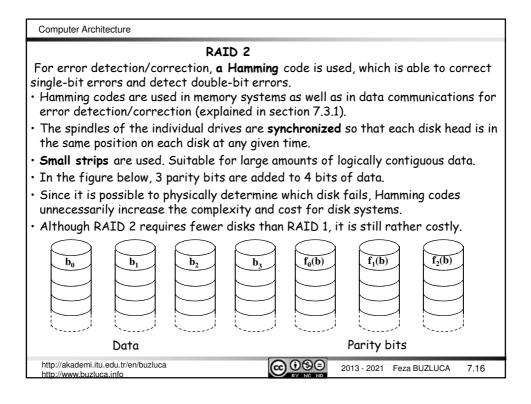
| Computer Architecture                                                                                                                                                                                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Example:                                                                                                                                                                                                            |  |
| - Disk rotation speed = 7200 RPM<br>- Average seek time = 9 ms<br>- Sectors per track (on average) = 400                                                                                                            |  |
| Based on these values:<br>- Rotational latency= 1/2 x (60s / 7200 RPM) x 1000 ms/s = 4 ms<br>- Transfer time = 60/7200 RPM x (1/400 sectors/track) x 1000 ms/sec = 0.02 ms<br>- Access time = 9 ms + 4 ms + 0.02 ms |  |
| The dominating components are the seek time and the rotational latency.                                                                                                                                             |  |
|                                                                                                                                                                                                                     |  |
| http://akademi.itu.edu.tr/en/buzluca<br>http://www.buzluca.info 2013 - 2021 Feza BUZLUCA 7.6                                                                                                                        |  |

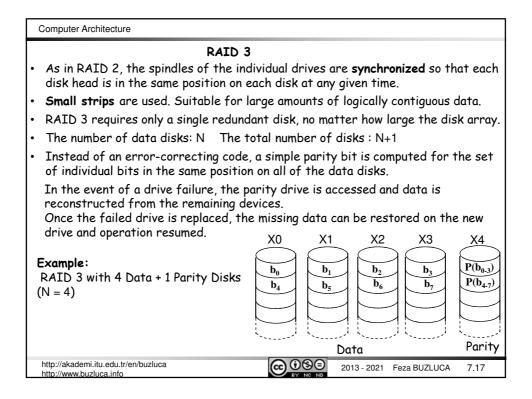
| Computer Architecture                                                          | License: https://creativecommons.org/licenses/by-nc-nd/4.0/                           |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Evolution of disks:                                                            |                                                                                       |
| Improvement in capacity is custom<br>measured in bits per square inch (o       | arily expressed as improvement in <i>areal density,</i><br>r centimeter):             |
| Areal density = $\frac{Tracks}{Inch}$ on a disk surface                        | $xe \times \frac{bits}{lnch}$ on a track                                              |
| Through about 1988, the rate of in thus doubling density every three y         | nprovement of areal density was 29% per year,<br>/ears.                               |
| Between 1988 and about 1996, the                                               | rate improved to 60% per year.                                                        |
| From 1997 to about 2003, the rate                                              | increased to 100%, doubling every year.                                               |
| Between 2003 and 2011, the rate of                                             | lropped back to about 40% per year.                                                   |
| In 2011, the highest density in com inch.                                      | mercial products was 400 billion bits per square                                      |
| Cost per gigabyte has dropped at le<br>smaller diameter drives playing the     | east as fast as areal density has increased, with<br>larger role in this improvement. |
| Costs per gigabyte improved by alm<br>2011.                                    | nost a factor of 1,000,000 between 1983 and                                           |
| <b>Source:</b> John L. Hennessy, David A<br>Quantitative Approach", 6 ed., Mor | -<br>. Patterson "Computer Architecture, A<br>rgan Kaufmann, 2017.                    |
| http://akademi.itu.edu.tr/en/buzluca                                           | 2013 - 2021 Feza BUZLUCA 7.7                                                          |


| Computer Architecture                                                                                                                                                                                                                                            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Evolution of disks (cont'd):                                                                                                                                                                                                                                     |  |
| After 2011, disk improvement has slowed to less than 5% per year.                                                                                                                                                                                                |  |
| One way to increase disk capacity is to add more platters, but there are already seven platters within the one-inch depth of the 3.5-inch form factor disks.                                                                                                     |  |
| There is room for at most one or two more platters.                                                                                                                                                                                                              |  |
| The last hope for real density increase is the Heat-Assisted Magnetic Recording (HAMR).                                                                                                                                                                          |  |
| The HAMR uses a small laser on each disk read-write head to heat a 30 nm spot to 400°C so that it can be written magnetically before it cools.                                                                                                                   |  |
| It is unclear whether Heat Assisted Magnetic Recording can be manufactured economically and reliably.                                                                                                                                                            |  |
| Hard drive manufacturer Seagate promises that hard drives in 18TB and 20TB models will be available in retail channels in 2020.                                                                                                                                  |  |
| In November 2020, hard drive manufacturer Seagate started to ship 20TB hard<br>disk drives on a limited basis in their Enterprise Data Solutions (EDS) products<br>and to select datacenter customers, as they continue collecting production and<br>field data. |  |
| (https://www.techradar.com/news/seagate-confirms-20tb-hamr-hard-disk-drives-have-been-shipped).                                                                                                                                                                  |  |
| http://akademi.itu.edu.tr/en/buzluca                                                                                                                                                                                                                             |  |

| Computer Architecture                                                                         |                                    |
|-----------------------------------------------------------------------------------------------|------------------------------------|
| Disk vs. DRAM vs. Flash Memory                                                                | (Source: Hennessy, Patterson)      |
| Disk vs. DRAM (main memory):                                                                  |                                    |
| DRAM latency is about between 100,000 and                                                     | 1,000,000 times less than disk.    |
| The typical access time of a DRAM is betwee                                                   | n 50ns and 100 ns.                 |
| The typical access time of a disk is between !                                                | 5ms and 100 ms (nano vs. mili!).   |
| A disk is 200-300 times cheaper per bit than                                                  | DRAM.                              |
| Flash Memory:                                                                                 |                                    |
| Many have tried to invent a technology cheap to fill that gap, but thus, far all have failed. | er than DRAM but faster than disk  |
| The closest challenger is <b>Flash memory</b> .                                               |                                    |
| Flash memory is a type of EEPROM (electroni<br>only memory), which is normally read-only but  |                                    |
| This semiconductor memory is nonvolatile.                                                     |                                    |
| Flash is popular in mobile devices and laptops than disks.                                    | because it is more power efficient |
|                                                                                               |                                    |
| http://akademi.itu.edu.tr/en/buzluca<br>http://www.buzluca.info                               | 000 2013 - 2021 Feza BUZLUCA 7.9   |


| Computer Architecture                                                                                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Flash Memory (cont'd):                                                                                                                                                                                                    |  |
| Flash uses a different architecture and has different properties than standard DRAM and magnetic disk.                                                                                                                    |  |
| Properties of flash memory:                                                                                                                                                                                               |  |
| <ul> <li>Read operations: Reads to Flash are sequential and read an entire page, which<br/>can be 512 bytes, 2 KiB, or 4 KiB.</li> </ul>                                                                                  |  |
| Thus Flash has a long delay to access the first byte from a random address (about 25 $\mu s$ ), but can supply the remainder of a page block at about 40 MiB/s.                                                           |  |
| Comparing the time to transfer 2 KiB, Flash is about 150 times slower than DRAM.                                                                                                                                          |  |
| Compared to magnetic disk, a 2 KiB read from Flash is 300 to 500 times faster.                                                                                                                                            |  |
| We can see why Flash is not a candidate to replace DRAM for main memory, but is a candidate to replace magnetic disk.                                                                                                     |  |
| <ul> <li>Write operations: Flash memory must be erased (thus the name flash for the<br/>"flash" erase process) before it is overwritten, and it is erased in blocks rather<br/>than individual bytes or words.</li> </ul> |  |
| For writing, Flash is about 1500 times slower then SDRAM, and about 8-15 times as fast as magnetic disk.                                                                                                                  |  |
| http://akademi.itu.edu.tr/en/buzluca<br>http://www.buzluca.info 2013 - 2021 Feza BUZLUCA 7.10                                                                                                                             |  |

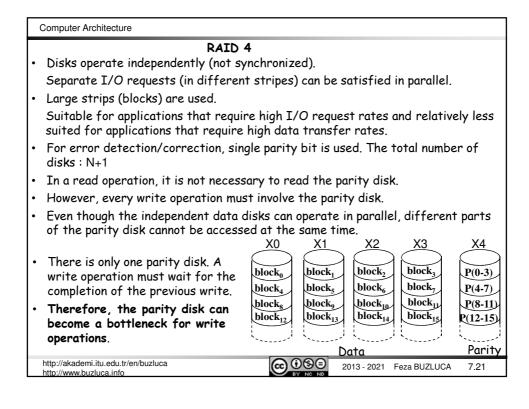

| Computer Architecture                                                                                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Flash Memory (cont'd):                                                                                                                                                                        |  |
| Properties of flash memory (cont'd):                                                                                                                                                          |  |
| <ul> <li>Power consumption: It draws significantly less power when not reading or<br/>writing (from less than half in standby mode to zero when completely inactive).</li> </ul>              |  |
| <ul> <li>Lifetime: Flash memory limits the number of times that any given block can be<br/>written, typically between 100,000 and 1 million.</li> </ul>                                       |  |
| They are not suitable for large servers. Some servers combine disk and Flash-<br>based storage.                                                                                               |  |
| <ul> <li>Cost: Flash memory is cheaper than SDRAM but more expensive than disks:<br/>roughly \$2/GiB for Flash, \$20 to \$40/GiB for SDRAM, and \$0.09/GiB for<br/>magnetic disks.</li> </ul> |  |
| In the past five years, Flash has decreased in cost at a rate that is almost twice as fast as that of magnetic disks.                                                                         |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
| http://akademi.itu.edu.tr/en/buzluca<br>http://www.buzluca.info 2013 - 2021 Feza BUZLUCA 7.11                                                                                                 |  |


| Computer Architecture                                                                                                                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>7.2 RAID: (Redundant Array of Independent/Inexpensive Disks)</b> * Data are distributed across the physical drives of an array.    |  |
| Purpose:                                                                                                                              |  |
| Improving the performance and the reliability. Disk Disk Disk                                                                         |  |
| The parallel operation of independent disks improves     1     2     N                                                                |  |
| the rate at which data can be read or written.                                                                                        |  |
| <ul> <li>Redundancy increases the reliability.</li> </ul>                                                                             |  |
| Raid Levels:                                                                                                                          |  |
| RAID 0 - RAID 6: There are 7 main levels and their combinations.                                                                      |  |
| RAID 0, is not a real member of the RAID family due to lack of redundancy.                                                            |  |
| RAID 3 and 5 are used more frequently.                                                                                                |  |
| Common properties:                                                                                                                    |  |
| <ol> <li>There is a set of physical disk drives viewed by the operating system as a<br/>single logical drive.</li> </ol>              |  |
| <ol><li>Logically sequential data are distributed across the physical drives of an array<br/>in a scheme known as striping.</li></ol> |  |
| 3. Redundant disk capacity is used to store <b>parity</b> information.                                                                |  |
| In case of a disk <b>failure</b> , data can be recovered with the help of the parity.                                                 |  |
| * Source: W. Stallings, " Computer Organization and Architecture", 8/e, 2010.                                                         |  |
| http://akademi.itu.edu.tr/en/buzluca                                                                                                  |  |

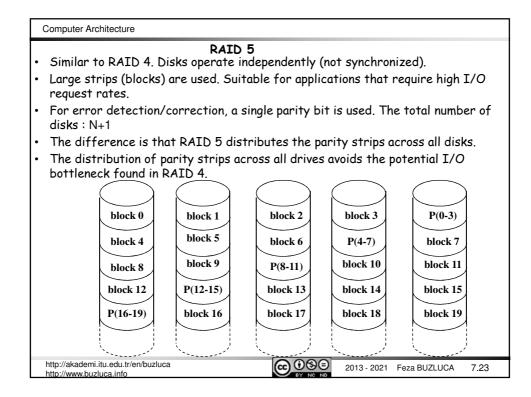


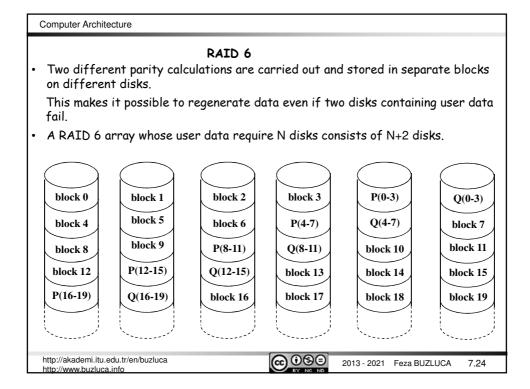
| Computer Architecture                                                                                                                                                                                                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| RAID 0 (cont'd)                                                                                                                                                                                                                                                 |  |
| Increase in throughput (Two cases):                                                                                                                                                                                                                             |  |
| <ol> <li>If a single I/O request consists of multiple logically contiguous strips, then up<br/>to N strips for that request can be handled in parallel, greatly reducing the<br/>I/O transfer time (N : number of data disks operating in parallel).</li> </ol> |  |
| <ol><li>If two different I/O requests are pending for two different blocks of data,<br/>then there is a good chance that the requested blocks are on different disks.</li></ol>                                                                                 |  |
| Thus, the two requests can be issued in parallel, reducing the I/O queuing time.                                                                                                                                                                                |  |
| Effect of strip size on performance                                                                                                                                                                                                                             |  |
| <ul> <li>a) If the typical request is for large amounts of logically contiguous data,<br/>compared to the size of a strip (e.g., copying files or video playback):</li> </ul>                                                                                   |  |
| <ul> <li>Transfer rate is important:</li> </ul>                                                                                                                                                                                                                 |  |
| <ul> <li>Using small strips makes sense: A single I/O request involves the parallel<br/>transfer of data from multiple disks.</li> </ul>                                                                                                                        |  |
| b) If it is a <b>transaction-oriented environment</b> , where many <b>random</b> I/O requests per second are for small amounts of data (e.g., database access):                                                                                                 |  |
| <ul> <li>If the strip size is relatively large, so that a single I/O request only<br/>involves a single disk access, then multiple waiting I/O requests can be<br/>handled in parallel.</li> </ul>                                                              |  |
| http://akademi.itu.edu.tr/en/buzluca                                                                                                                                                                                                                            |  |

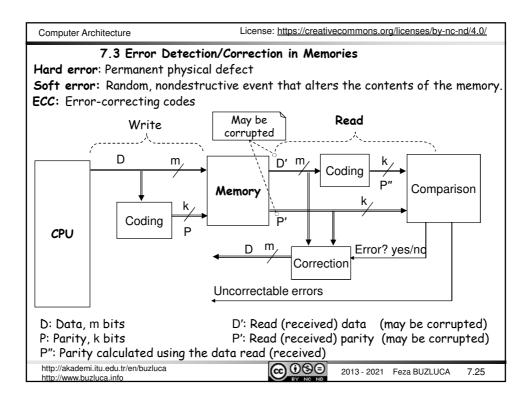


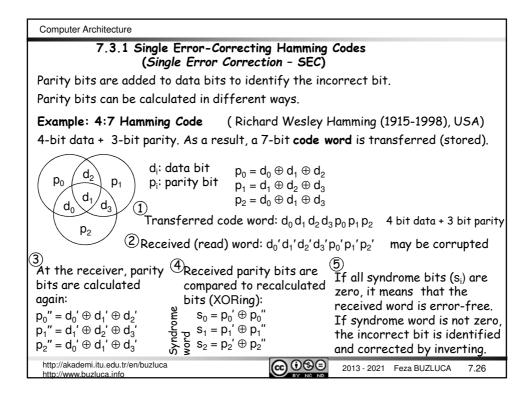






| Computer Architecture                                          | RAID 3 (cont'd)                                                                                                                      |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Parity:                                                        |                                                                                                                                      |
| <ul> <li>The parity bit is cal</li> </ul>                      | ulated using the exclusive-OR "XOR" ( $\oplus$ ) function.                                                                           |
| The parity bit is set<br>number.                               | so that the total number of 1s in data + parity is an even                                                                           |
| If X0-X3 are data d<br>calculated as follows                   | sks and X4 is the parity disk, the parity for the i <sup>th</sup> bit is<br>:                                                        |
| $X4(i) = X0(i) \oplus X1(i)$                                   | $9$ X2(i) $\oplus$ X3(i) ; Now, the total number of 1s is even.                                                                      |
| Examples (4-bit dat                                            | , 1 even parity bit):                                                                                                                |
| 0000 0; 000                                                    | 1; 1001 0; 1110 1; 1111 0                                                                                                            |
| • Normally, parity che                                         | cking can only <u>detect a single error</u> but not correct it.                                                                      |
|                                                                | of a disk error, we can reasonably expect to know which<br>nence which bit. Data can be reconstructed from the<br>d the parity disk. |
| For example, suppos                                            | e that drive X1 has failed:                                                                                                          |
| If we add X4(i) $\oplus$ X <sup>2</sup>                        | (i) to both sides of the preceding equation, we get                                                                                  |
| X1(i) = X0(i) ⊕ X2(i) ↔                                        | → X3(i) ⊕ X4(i)                                                                                                                      |
|                                                                | f each strip of data on X1 can be regenerated from the<br>esponding strips on the remaining disks in the array.                      |
| <ul> <li>This principle is use</li> </ul>                      | for RAID levels 3 through 6.                                                                                                         |
| http://akademi.itu.edu.tr/en/buzluc<br>http://www.buzluca.info | CONSCIENT NO NO 2013 - 2021 Feza BUZLUCA 7.18                                                                                        |


| Computer Architecture                              | License: https://creativecommons.org/licenses/by-nc-nd/4.0/                                         |  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| R                                                  | AID 3 (cont'd)                                                                                      |  |
| Performance:                                       |                                                                                                     |  |
|                                                    | of the individual drives are <b>synchronized</b> (each disk head<br>n each disk at any given time). |  |
| Reading:                                           |                                                                                                     |  |
| <ul> <li>Words in the same st<br/>time.</li> </ul> | ripe (row) (same track/sector) can be read at the same                                              |  |
| For example, words b<br>parallel.                  | $_{0},b_{1},b_{2},\text{and}b_{3}$ in the figure on slide 7.17 can be read in                       |  |
| <ul> <li>Words in different s</li> </ul>           | tripes (rows) can only be read sequentially.                                                        |  |
| For example, to read<br>necessary.                 | words $\mathbf{b}_0,$ and $\mathbf{b}_5,$ two successive access operations are                      |  |
| Example:                                           |                                                                                                     |  |
| If the access time of                              | a disk including, one read or write operation is <b>ta</b> ,                                        |  |
|                                                    | ords, $b_0$ , $b_1$ , $b_2$ , and $b_3$ , is ta.                                                    |  |
| The time to read 2 w                               | ords, $b_0$ and $b_5$ , is 2 ta.                                                                    |  |
|                                                    |                                                                                                     |  |
| http://akademi.itu.edu.tr/en/buzluca               | 2013 - 2021 Feza BUZLUCA 7.19                                                                       |  |


| Computer Architecture                                                                                                                                                                                                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Writing: RAID 3 Performance: (cont'd)                                                                                                                                                                                |  |
| • Even if only one word is written, all disks are busy because to calculate parity, the other words in the same stripe (row) must be read.                                                                           |  |
| This does not create any additional problems for RAID 3 because disks are synchronized and different stripes cannot be accessed independently.                                                                       |  |
| For example, to modify word $b_0$ , words $b_1$ , $b_2$ , and $b_3$ must be read. Since these words reside in the same location (same track/sector), these write and read operations are performed at the same time. |  |
| Parity is calculated and then written to the parity disk.                                                                                                                                                            |  |
| • N words can be written in parallel to the same location (same track/sector) on different disks (for example, words $b_0$ , $b_1$ , $b_2$ , and $b_3$ can be modified at the same time).                            |  |
| The parity can be calculated in advance, then written with the data.                                                                                                                                                 |  |
| Since disks are synchronized, there is no need to spend seek and rotation time for the parity disk.                                                                                                                  |  |
| Summary:                                                                                                                                                                                                             |  |
| <ul> <li>Synchronized disks with small strips are suitable for large transfers (file<br/>servers).</li> </ul>                                                                                                        |  |
| <ul> <li>In a transaction-oriented environment, performance suffers.</li> </ul>                                                                                                                                      |  |
| http://akademi.itu.edu.tr/en/buzluca<br>http://www.buzluca.info 2013 - 2021 Feza BUZLUCA 7.20                                                                                                                        |  |




| Computer Architecture                                                                                                                                                                                                                                                                                   |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| RAID 4 (cont'd)<br>Write penalty:                                                                                                                                                                                                                                                                       |  |  |  |  |
| Each time that a write occurs, the array management software must update not only the user data but also the corresponding parity bits.                                                                                                                                                                 |  |  |  |  |
| Assume that X0-X3 are data disks and X4 is the parity disk.                                                                                                                                                                                                                                             |  |  |  |  |
| A write is performed that only involves a strip on disk X1.                                                                                                                                                                                                                                             |  |  |  |  |
| The parity for the i <sup>th</sup> bit (X4'(i)) is updated as follows:                                                                                                                                                                                                                                  |  |  |  |  |
| <b>X4'(i)</b> = X0(i) ⊕ <b>X1'(i)</b> ⊕ X2(i) ⊕ X3(i)<br>X1'(i), X4'(i) : The updated data                                                                                                                                                                                                              |  |  |  |  |
| For this update, 3 disks must be read (X0, X2, X3), and 2 disks must be written to (X4, X1). All disks are occupied.<br>To simplify the equation, we add the terms $\oplus$ X1(i) $\oplus$ X1(i) to the right.<br>Remember XOR of any quantity with itself is 0, this does not affect the equation.     |  |  |  |  |
| $X4'(i) = X4(i) \oplus X1'(i) \oplus X1(i) = X1(i) \oplus X1(i) \oplus X2(i) \oplus X3(i)$                                                                                                                                                                                                              |  |  |  |  |
| In this case, two reads and two writes are necessary.<br>To calculate the new parity (X4'), the array management software must read the<br>old user strip (X1) and the old parity strip (X4).<br>Then, it can update these two strips with the new data (X1') and the newly<br>calculated parity (X4'). |  |  |  |  |
| http://akademi.itu.edu.tr/en/buzluca<br>http://www.buzluca.info 2013 - 2021 Feza BUZLUCA 7.22                                                                                                                                                                                                           |  |  |  |  |









| Syndrome impact table :<br>This table shows which syndrome bit is<br>affected by which code bit.<br>$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Syndrome Table:                                                   |                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                                                                                                                            | <b>S</b> <sub>0</sub> <b>S</b> <sub>1</sub> <b>S</b> <sub>2</sub> | Meaning                                                                             |
|                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$              | No error<br>$p_2$ (incorrect)<br>$p_1$<br>$d_3$<br>$p_0$<br>$d_0$<br>$d_2$<br>$d_1$ |
| <b>Determining the number of parity bits:</b><br>Number of data bits: m                                                                                    |                                                                   |                                                                                     |
| Number parity bits: k                                                                                                                                      |                                                                   |                                                                                     |
| If we have k parity bits, then the syndrome w range between 0 and $2^k - 1$ .                                                                              | ord is also k bits                                                | wide and has a                                                                      |
| The value 0 indicates that no error was detect                                                                                                             | red.                                                              |                                                                                     |
| Remaining $2^k - 1$ values indicate which bit was                                                                                                          | in error.                                                         |                                                                                     |
| Since an error can occur on any of the m data<br>$m + k \le 2^k - 1$ .                                                                                     | bits or k parity l                                                | bits, we must hav                                                                   |
| http://akademi.itu.edu.tr/en/buzluca                                                                                                                       | 2013 - 2021                                                       | Feza BUZLUCA 7                                                                      |

| Computer Architecture                                                                                                                                                            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 7.3.2 Single-Error Correcting, Double-Error Detecting (SEC-DED) Codes                                                                                                            |  |  |  |
| The previous code was single-error correcting code (SEC).                                                                                                                        |  |  |  |
| To add the "double-error detection" capability, we add an extra parity bit to each code word.                                                                                    |  |  |  |
| This extra parity bit can be calculated so that the total number of all 1s in the code word is odd (odd parity) or even (even parity).                                           |  |  |  |
| Transmitted code word: d <sub>0</sub> d <sub>1</sub> d <sub>2</sub> d <sub>3</sub> p <sub>0</sub> p <sub>1</sub> p <sub>2</sub> q 4 + 3 + 1 bits                                 |  |  |  |
| d: Data , p: Error-correcting parities, q: Odd/even parity                                                                                                                       |  |  |  |
| At the receiving end, if the syndrome word is not zero (there is an error), but<br>the extra parity bit indicates "no error", then there must be two errors in the<br>code word. |  |  |  |
| Double-errors cannot be corrected by this scheme, but at least, corrupt data can be discarded.                                                                                   |  |  |  |
| The most common SEC-DED coding scheme is 64 + 7 + 1 coding.                                                                                                                      |  |  |  |
| This coding system has 12.5% redundancy.                                                                                                                                         |  |  |  |
|                                                                                                                                                                                  |  |  |  |
|                                                                                                                                                                                  |  |  |  |
| http://akademi.itu.edu.tr/en/buzluca                                                                                                                                             |  |  |  |