

Computer Architecture				
Programmable Registers (User Programmer's Model)				
Data Registers:				
 consist of 8 identical registers 				
• can be addressed as 8	, 16, or 32 bits			
31	<u> </u>			
	D0			
	D1			
	D2			
	D0			
	D4			
	D3			
	D7			
www.akademi.itu.edu.tr/buzluca	© 2005-2022 Feza BUZLUCA A.2			
www.buzluca.info	© 2005-2022 Feza BUZLUCA A.2			

Computer Architecture Address Registers: • 8+1 registers (A0 to A7 and A7'). These are typically used as pointers. • The address registers can only be used as 16 or 32 bits. • The A7 register is also the stack pointer. It is duplicated for the user and supervisor states, i.e, A7 (User Stack Pointer -USP) and A7' (System Stack Pointer -SSP). 31 16 15 0 A0 A1 A2 A3 A4 A5 A6 A7 (USP) A7' (SSP) Since the address bus is 24 bits wide, only the first 24 bits of the data in an address register is used. When the low-order word (16 bits) in an address register is used, these bits are sign-extended to 24 bits before being placed on the address bus. www.akademi.itu.edu.tr/buzluca © 2005-2022 Feza BUZLUCA A.3

Computer Architecture			
Addressing Modes			
 The 68000 supports 14 different addressing modes derived from six basic types: 1. Register Direct 2. Immediate 3. Absolute 4. Register Indirect 5. Program Counter Relative 6. Implied 			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
www.akademi.itu.edu.tr/buzluca © 2005-2022 Feza BUZLUCA A.6 www.buzluca.info			

Computer Architecture				
2a. Immediate				
The actual data to be used as the operand is included in the instruction itself	f.			
MOVE.L #\$4A7F0000, D0 ; move the immediate data \$4A7F0000 to D0)			
2b. Quick Immediate				
Can only be used with some instructions.				
The source operand must use immediate mode, and only with an 8-bit signed integer constant (-128,, 127). The destination must be a D register.				
The instruction takes up less space (2 bytes, not 6) and works faster.				
For example, it is used for the MOVE instruction on 8-bit data.				
MOVEQ #5, D0 ; 32 bits of D0 are affected by this instruction	n			
3a. Absolute Short The instruction provides the 16-bit address of the operand in memory. The 16-bit address is sign-extended to 24 bits.				
MOVE.B D0, (\$58AA) ; written to address \$0058AA				
MOVE.B D0, (\$B51A) ; written to address \$FFB51A				
 3b. Absolute Long Used when the address size is more than 16 bits. The instruction provides the 24-bit address of the operand in memory. MOVE.W (\$45C720),D7 ; 16 bits starting at location \$45C720 written to D7 				
www.akademi.itu.edu.tr/buzluca © 2005-2022 Feza BUZLUCA A.7 www.buzluca.info				

Computer	Architecture	Э					
4. Register Indirect							
4a. Ada	dress Re	giste	r Indirect				
And	address r	regis	ter contains the ad	dress o	f the source or de	sti	nation operand.
	[31	$A_n \longrightarrow$	data	a		
	a mple: the exect	ution	of the		er the instruction state of memory:	has	· · · · · · · · · · · · · · · · · · ·
	31	0			MOVE.B D0, (A0)	_	Memory 00100 C8 XX
Regi	sters		Content of D0 writ	ten to			00102 XX XX
D0	4350 A		the address A0 poin	nts to.		ſ	Memory
A0	0000 10	000		ľ	40VE.W D0, (A0)	\neg	00100 A7C8
Mem	ory		content of AO does r	-	•		00102 XX XX
0010	0 XX XX		h-order parts of data rting from lower addr		ced in memory	Γ	Memory
0010	2 XX XX			I	MOVE.L D0, (A0)	\neg	00100 4350
0010	4 XX XX						00102 A7C8
www.akad www.buzlu	emi.itu.edu.tr/ uca.info	buzluca	L		© 2005-2022	Feza	BUZLUCA A.8

Computer Architecture				
Inst	ruction Form	at in MC68000	15 0	
All instructions will be m	Op word			
Each instruction is at least 1 word, at most 5 words. The instruction code (or op word) specifies the instruction's operation and addressing modes of the			Immediate data (if any, one or two words) Source addr. extension	
operands.			Dest. addr. extension	
Instruction Format Examples: Single Operand Instruction Format:				
Instruction word:	15	3 7 6 5 4 3 2 1 0 Size Mode Register		
		01. W	the reference manual odes in the Mode and fields.	
E×ample:				
CLR.W D3 0100	0010 01 000 011			
	CLR W D 3			
www.akademi.itu.edu.tr/buzluca www.buzluca.info		© 200	5-2022 Feza BUZLUCA A.13	

Computer Architecture		
Examples continued	1:	
CLR.L (A2)+	01000010 10 011 010 CLR L (An)+ 2	Address register indirect postincrement
CLR.B (\$3000)	01000010 00 111 000 CLR B Absolute sh	Absolute addressing (short)
	0011 0000 0000 0000	The address (\$3000) is in the second word.
CLR.B \$4(A6)	01000010 00 101 110 CLR B d(An) 6	Address register indirect with offset
	0000 0000 0000 0100	The offset (\$4) is in the second word as 16 bits.
CLR.B -7(A6)	01000010 00 101 110 CLR B d(An) 6	Address register indirect with offset (negative offset)
	1111 1111 1001	The offset (-7) is in the second word as 16 bits.
www.akademi.itu.edu.tr/buzlu www.buzluca.info	ica	© 2005-2022 Feza BUZLUCA A.14

Computer Architecture	
Additional Word for Register Indirect with Index of	and Offset Addressing Mode:
In the register indirect with index and offset addr additional word.	essing mode, there is an
The additional word contains information about the	index register and offset.
15 14 13 12 11 10 9 8 7 0 D/A Index reg W/L 0 0 offset 0 0:D 0:W 8 bits reserved for offset 1:A 1:L Example:	
CLR.W \$C2(A3, D7.L) 01000010 01 110 011 0 111 1 000 11000010 D 7 L \$C2	CLR.W d(A3,Rn.S) The additional word contains information about the index register and offset (displacement).
www.akademi.itu.edu.tr/buzluca www.buzluca.info	© 2005-2022 Feza BUZLUCA A.15

Computer Architecture				
Instruction Format Examples (continued)				
Two-Operand Instruction Format:				
Example: MOVE 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 Size Reg. Mod. Mod. Reg 01: B 11: W source destination 10: L				
The instruction is not decoded based on just this field; the whole opword is used.				
Example:				
MOVE.W D2, (A5)+ 00 11 101 011 000 010				
W 5 (An)+ D 2				
Example: MOVE.W #\$1234 , \$25(A3) 00 11 011 101 111 100				
0001 0010 0011 0100	\$1234 (immediate data)			
0000 0000 0010 0101	\$0025 (source address extension)			
www.akademi.itu.edu.tr/buzluca www.buzluca.info	© 2005-2022 Feza BUZLUCA A.16			

Computer Architecture	
Quick Instruction Format:1511 10 9 8 70MOVEQ0111Reg.0data	 8-bit immediate data used. Source is a data register. 32 bits of the register are affected by this instruction.
Example: MOVEQ #-5 , D2 0111 010 0 11111011 -5	 Takes up less space than normal immediate addressing.
The normal MOVE instruction that performs th words (48 bits) of space.	e same operation takes up 3
MOVE.L #-5 , D2 L 2 D immediate 00 10 010 000 111 100 1111 1111 1111 1	32-bit "-5"
ADDQ operates on 3-bit immediate data.	
www.akademi.itu.edu.tr/buzluca www.buzluca.info	© 2005-2022 Feza BUZLUCA A.17

Computer Architecture				
MC68000 Instructions In this section, we will introduce some MC68000 instructions. Data Movement Instructions:				
MOVEM	Move	multiple re	gisters	
data from Syntax 1:	specified n MOVEM <re< th=""><th></th><th>ess and pla <ea></ea></th><th>arting at a specific address, or reads aces them in specified registers.</th></re<>		ess and pla <ea></ea>	arting at a specific address, or reads aces them in specified registers.
Examples:	MOVEM.L MOVEM.L	D0-D7/A0-, (A5) , D0/[; save D0-D7/A0-A6 to ; memory starting at \$1234 ; read D0, D5, A0-A3, ; from memory address pointed by A5
Can be used to save working registers on entry to a subroutine and to restore them at the end of a subroutine.				
	L D0-D5/A0- y of subrouti	·A3,-(A7) ne	; Push re	egisters D0-D5/A0-A3 onto the stack
MOVEM. RTS	 L (A7)+,D0-	D5/A0-A3		e registers D0-D5/A0-A3 from the stack to the calling program
www.akademi.itu www.buzluca.info				© 2005-2022 Feza BUZLUCA A.18

Computer Architecture

Operation: [A Used to copy th						
Sample syntax: LEA Table,A0 LEA (Table,PC),A0 LEA (-6,A0,D0.L),A6 LEA (Table,PC,D0),A6		; register A0 will point to the ; beginning of Table ; calculates effective address of ; Table w.r.t. to PC, deposits it in A0. ; calculates A0+D0.L sign-extended ; to 32 bits minus 6, deposits it in A6.				
Example: ARRAY	LEA ARRAY , A0 MOVE.B (A0)+, D1 DS.B 100	; Array address to A0 ; Load first element of array to D1, ; increment A0 to point to next elmt. ; Define Storage (directive)				
www.akademi.itu.edu.tr/bi www.buzluca.info	uzluca	© 2005-2022 Feza BUZLUCA A.19				

Comput	Computer Architecture				
Flow	Flow Control Instructions:				
Bcc	Branch on condition cc				
cc spe	cc specifies the condition.				
If o	If $cc = 1$ THEN [PC] \leftarrow [PC] + d				
d: 8- c	or 16-bit signed offset.				
Remin	der: When the instruction is being r	un, PC points to the instruction after Bcc.			
Synta	x: Bcc <label></label>				
Relativ	ve size can be specified if needed: E	BEQ.B (EQual) or BNE.W (Not Equal)			
If the	If the size is not specified, the compiler computes the relative address of an				
appropriate size based on the distance of the label.					
Conditions (cc):					
BCC	branch on carry clear	branch if $C = 0$			
BEQ	branch on equal	branch if Z=1			
BGT	branch on greater than	branch if $(Z + (N \oplus V)) = 0$			
BHI	branch on higher than	branch if $(C + Z) = 0$			
BGE	branch on greater than or equal	branch if $(N \oplus V) = 0$			
BLT	branch on less than	branch if $(N \oplus V) = 1$			
BLS	branch on lower than or same	branch if $(C + Z) = 1$			
	ademi.itu.edu.tr/buzluca zluca.info	© 2005-2022 Feza BUZLUCA A.20			

Computer Architecture					
DBcc Test condition, de	cc Test condition, decrement, and branch				
Syntax: DBcc Dn, <label></label>					
Here, the label is a 16-bit relative address.					
16 bits of Dn is used as a counter.					
Operation:					
<pre>IF(condition cc false) THEN [Dn] ← [Dn] - 1 (decrement loop counter) IF [Dn] = -1 THEN instruction after DBcc (PC incremented by 2 in fetch cyc.) ELSE [PC] ← [PC] + d (branch relative) ELSE instruction after DBcc (PC incremented by 2 in fetch cycle.)</pre>					
Example: Loop (10 times)					
MOVEQ	; Start value 9, because exiting on D0=-1 ; Inside the loop				
DBF D0,L1	; Here, F: False, condition always false, ; branches if false				
www.akademi.itu.edu.tr/buzluca www.buzluca.info	© 2005-2022 Feza BUZLUCA A.22				

Computer Architecture					
Example: Comparing Two Arrays (Are all elements equal?) The first array starts at address ARRAY1, the second starts at address ARRAY2. The arrays have 50 8-bit elements. The contents of the arrays have been filled in before the program starts. DBcc exits					
LOOP	LEA LEA MOVE.W SUBQ.W CMPM.B DBNE TST.W BMI ENT	#1, D0	; Start addresses of the arrays ; A0 points to ARRAY1, A1 points to ARRAY2 ; Size of arrays ; Decrement D0 by 1 for use in DBNE later ; Array elements compared as pair of bytes ; Test, decrement D0, and loop until not equal ; Why did loop exit? (D0?), sets N &Z based on D0 ; Branch if neg. (If D0=-1 on exit, all elmts. equal)		
EQUAL					
ARRAY1 ARRAY2 SIZE	20.2	50 50 50	; Allocate memory for elements of 1st array: 50B ; Allocate memory for elements of 2nd array: 50B ; Define constant in memory of length one word ; 50 elements in each array		
www.akao www.buzl	demi.itu.edu.tr/b uca.info	uzluca	© 2005-2022 Feza BUZ	ZLUCA A.23	