
İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DEVOPS FUNDAMENTALS

Dr. SELİN METİN
Orion Innovation Türkiye



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DevOps Fundamentals Overview

• What is DevOps?
• Why DevOps Matters?
• DevOps Core Values: CAMS
• DevOps Principles: The Three Ways
• DevOps Methodologies
• Ten Practices for DevOps Success
• Managing DevOps

– Five Why’s

• DevOps Building Blocks:
– Agile and Lean
– ITIL, ITSM, SDLC
– Infrastructure as Code
– CI / CD
– The Role of QA
– Design for Operation
– Metrics and Monitoring
– Logging

• DevSecOps
• The Future of DevOps



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

What is DevOps?

• DevOps is a culture!

• DevOps ensures collaboration and communication between 
software engineers (Dev) and IT operations (Ops).
– Changes make it to production faster.
– Resources are easier to share.
– Large-scale systems are easier to manage and maintain.

• DevOps can help you whether you are a developer or a system 
admin or something in between.

• It's not a new name for an operations team, a job title or a new tool 
category.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

A Mindshift…

• DevOps is the combination of cultural philosophies, practices, and 
tools that increases an organization’s ability to deliver applications 
and services at high velocity: evolving and improving products at a 
faster pace than organizations using traditional software 
development and infrastructure management processes. This speed 
enables organizations to better serve their customers and compete 
more effectively in the market.

AWS Definition



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Definition

• Practice of operations and development engineers, participating together through 
the entire service lifecycle, from the design and development process all the way 
to production support. 

– Replaces the model where you have separate teams to write, test, to deploy, and operate the 
code.

– Traditionally 
Dev = everyone usually on the code side (developers, front end designers, QA) and 
Ops= everyone traditionally on the system side (Linux admins, network admins, …)

• DevOps is also characterized by operations staff, making use of many of the same 
techniques as developers for their systems work.

• Effective in improving both IT and business outcomes. 
– The Puppet Labs «State of DevOps» survey indicated the teams using DevOps practices 

deployed changes 30x more frequently, with 200x shorter lead times. For quality issues, they 
had 60x fewer failures, and recovered from issues 168x faster than other organizations.

• It makes your daily life easier.
– DevOps approach reduces unplanned work. 
– It increases friendly relationships between coworkers, and it reduces stress on the job.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Why DevOps Matters?

• Software no longer merely supports a business; rather it becomes 
an integral component of every part of a business.

• Companies interact with their customers through software 
delivered as online services or applications and on all sorts of 
devices.

• Software is used to increase operational efficiencies by 
transforming every part of the value chain, such as logistics, 
communications, and operations.

• In the 20th century industrial automation transformed the way to 
design, build, and deliver products.
In the 21st century companies must transform how they build 
and deliver software.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DevOps Core Values: CAMS

• The CAMS model, created by DevOps 
pioneers, John Willis and Damon Edwards.
– Culture

– Automation

– Measurement

– Sharing.

• DevOps is a human, cultural and business 
problem. 



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Culture

• Culture is driven by behavior.
– Culture exists among people with a mutual understanding 

of each other and where they're coming from.

• Early on in IT organizations two majors groups existed: 
Development (creating features) and operations 
(maintaining stability).
Distance, conflicting interests, …

• DevOps is not just about automated tooling, people 
and process. 
– People over process over tools



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Automation

• Once you begin to understand your culture, you 
can create a fabric of automation that allows you 
to control your systems and your applications.

• Automation is the accelerator that's going to get 
you all the other benefits of DevOps. 

• Make sure to prioritize automation as your 
primary approach to the problem. 



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Measurement

• One of the keys to rational approach to our systems is the ability for 
us to measure them.

• Two major pitfalls in metrics:
– Sometimes we choose the wrong metrics to watch. 
– Sometimes we fail to incentivize them properly.

• DevOps strongly advises you to measure key metrics across the 
organization. 
– Look for things like MTTR, the Mean Time to Recovery or cycle time, 

look for costs, revenue, even something like employee satisfaction.
– All of these are part of generating a holistic insight across your system. 

• These metrics help engage the team and the overall goal. 



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Sharing 

• Sharing ideas and problems is the heart of 
collaboration. 

• DevOps expect to see a high premium placed 
on openness and transparency.

• This drives Kaizen (discreet continuous 
improvement).



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DevOps Principles: The Three Ways

• The Three Ways model, developed by Gene Kim and Mike Orzen, provide a practical framework.

• Systems thinking tells us that we should make sure to focus on the overall outcome of the entire 
pipeline or value chain.

– You have to understand the whole system to optimize it well.
– From Concept to Cash: If you write all the software in the world, but you can't deliver it to a customer in a 

way that they can use it, you lose.
– Use systems thinking as guidance when defining success metrics and evaluating the outcome of changes.

• Amplifying feedback loops: Creating, shortening, and amplifying feedback loops between the parts 
of the organization that are in the flow of that value chain.

– Use amplifying feedback loops to help you when you're creating multi-team processes, visualizing metrics, 
and designing delivery flows.

• Create a work culture that allows for both continuous experimentation and learning.
– Be open to learning new things by actively trying them out to see what works and what doesn't
– Engage in the continuous practice required to master the skills and tools that are already part of your 

portfolio. 
– Use when creating team processes and standards, and as part of your leadership style.

• No technology is a silver bullet that solves all your problems. It's how you use them that matters 
most.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DevOps Methodologies

• People over process over tools.
– Identify who's responsible for a job function first, then define the process that needs to happen around 

them, and then select and implement the tool to perform that process.

• Continuous Delivery
– Practice of coding, testing and releasing software frequently and really small batches so that you can 

improve the overall quality and velocity.
– It's been shown in studies, that in CD environments, the team spends 22% less time on unplanned work and 

rework. Changes have a three times lower failure rate and the team recovers 24 times faster from failures.

• Lean Management
– Use small batches of work, work in progress limits, feedback loops and visualization.
– Lead to both better organizational outputs, including system throughput and stability. And less burnout and 

greater employee satisfaction at the personal level.

• Changed Control
– There is a direct correlation between operational success and control over changes in your environment.
– There's a lot of old school heavy change control processes out there that do more harm than good.
– Focus on an emphasis of eliminating fragile artifacts, creating a repeatable build process, managing 

dependencies and create an environment of continuous improvement.

• Infrastructure as code
– Systems can and should be treated like code. System specifications should be checked into source control, 

go through a code review, whether a build an automated test, and then we can automatically create real 
systems from the spec and manage them programmatically. With this kind of programmatic system, we can 
compile and run and kill and run systems again, instead of creating handcrafted permanent fixtures that we 
maintain manually over time.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Ten Practices for DevOps Success

1. Incident Command System: Bad things happen to our services  incidents. Use a 
tracking and prioritization system.

2. Developers on Call: Teams have begin putting developers on call for the service 
they created. This creates a very fast feedback loop. Logging and deployment are 
rapidly improved and core application problems get resolved quickly, instead of 
lingering for years

3. Status Pages: Services go down. Have a status page so that users can be notified 
of problems, understand what's being done, and hear what you've learned from 
the problem afterwards.

4. Blameless Postmortems: examine failures and learn from them, while avoiding 
logical fallacies or relying on scapegoating

5. Embedded Teams: Dev team wants to ship new code and the Ops team wants to 
keep the service up  conflict of interest. Some teams reorganized to embed an 
Operations Engineer on each development team to make the team responsible 
for all its own work for close coordination.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Ten Practices for DevOps Success

6. Cloud: Cloud technologies give you an entirely API-driven way to create and control infrastructure. This 
allows you to treat your systems infrastructure exactly as if it were any other program component.

7. Andon cords: This is an innovation originally used by Toyota on its production line. A physical cord like 
the stop request cord on a bus that empowers anyone on the line to pull to stop ship on the production 
line because they saw some problem  a fundamental part of their quality control system to this day.

8. Dependency injection: Connections to external services like databases, rest services, etc. cause most of 
the runtime issues. Focus on loosely coupled dependencies that are passed into the app at runtime.

9. Blue-green deployment: Instead of testing a release in a staging environment and then deploying it to a 
production environment and hoping it works, have two identical systems, blue and green, one is live 
and the other isn't. You upgrade the offline system, test it, and then shift production traffic over to it. If 
there's a problem, you shift back. This minimizes both downtime and risk.

10. Chaos monkey: Focus on making the overall system highly reliable even with unreliable components. 

– Netflix invented a piece of software called the chaos monkey that watches the Netflix system that runs in the 
Amazon cloud and occasionally reaches out and trashes a server, just kills it. This forces the developers and 
operators creating the systems to engineer resiliency into their services instead of making the mistake of thinking 
that their infrastructure is always on. 



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

A Culture Problem



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Managing DevOps

• Organizational issues
– DevOps strongly advocates eliminating silos and thrives in an environment of 

autonomous teams, by putting the right people on a team, focusing them on 
the business problem at hand, and setting up self service tooling to allow 
them to develop, test, deploy and operate their own service.

 You maintain a very high pace 

• Conway's Law: your systems will basically align themselves to your 
communication boundaries.
– Organizational boundaries
– Process boundaries: Agile processes compliment a shift to DevOps.
– You don't add process unless everyone thinks some more process is really the 

solution. And you keep an eye out for processes that you can remove. 

• Use lean agile processes to keep your effort focused on value creation.
– The 2016 State of DevOps Report found that a Lean management approach 

correlated well with organizational performance.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Japanese Terms

• Kaizen literally means change for the better

• Gemba: the real place

• Kaizen emphasizes going to look at the actual place where the value 
is created, or where the problem is. 

• Teach people critical thinking skills
– Toyota refers to this as building people before building cars.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Five Why’s

• Another Kaizen tool to identify root cause

• When there's a problem, you ask the question, why did it happen? 
– When you get an answer, ask again.
– Five times is generally enough to exhaust the chain down to a root cause.

• Keep in mind:
– Focus on underlying causes not symptoms.
– Don’t accept answers like not enough time, we need to know what caused us 

to exceed our constraints.
– Usually there will be multiple causes contribute to one element. A diagram 

can be used to track all of these.
– Do not accept human error as a root cause. That always points to a process 

failure or a lack of a process with sufficient safeguards. 
«People don't fail, processes do.»



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DevOps Building Blocks: Agile and Lean

• Refer to week 9!



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DevOps Building Blocks: ITIL, ITSM, SDLC

• ITIL (Information Technology Infrastructure 
Library) is a set of detailed practices for IT 
activities such as IT service management (ITSM) 
and IT asset management (ITAM) that focus on 
aligning IT services with the needs of business.

– Processes, procedures, tasks, and checklists which are 
not organization nor technology specific, but can be 
applied by an organization toward strategy, delivering 
value, and maintaining a minimum level of 
competency.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Infrastructure as Code

• A large number of operations teams don't use source 
control at all. Even for their scripts or other code.

• Tools exist to configure servers from the bare metal up 
completely automatically. And with virtual servers, cloud 
servers or containers, everything can be created, changed 
and destroyed programmatically.

– AWS: You can completely describe your systems using a JSON 
format called CloudFormation.

– It brings confidence that your Dev, Staging and Production 
environments are identical because they were created from the 
same specification.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Small + Fast = Better

• You have an application that is built automatically on every code commit.
– Unit tests are run and the application is deployed into a production like 

environment. 
– Automated acceptance tests are run and the change either passes or fails 

testing minutes after it's checked in.
 Code is always in a working state with every Continuous Delivery.

• Continuous Integration is the practice of automatically building and unit 
testing the entire application frequently, ideally on every source code 
check-in.

• Continuous Delivery is the additional practice of deploying every change 
to a production like-environment and performing automated integration 
and acceptance testing.

• Continuous Deployment: every change goes through full enough 
automated testing that it's deployed automatically to production.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Continuous Delivery Benefits

• The 2016 State of DevOps Report found that high performing IT 
organizations could deploy on demand as compared to their peers 
that took days, weeks or months.

• Increase in quality 
– Instead of doing inspection at the end of the development life cycle, 

we're integrating testing earlier in the delivery pipeline.
– Instead of one huge go live consisting of hundreds of changes, we 

evaluate and deploy changes one by one testing every commit and 
making sure the software is in a running state.

• Two factors making your meantime to recover shorter:
– Once you've come up with fix, it can be treated just like any other 

change and rolled out quickly.
– Find the cause of failures: which commit broke the code?



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

The Role of QA

• Unit testing: the tests done at the lowest level of the language or framework that it supports. Write a test 
inside the code base to validate that function - Usually the fastest testing available.

• Code hygiene: Code hygiene is the sum of the best practices from your development community for the 
particular language or framework that you're using. 

• Integration testing: technical testing similar to unit testing, but performed with all the apps components 
and dependencies operating in a test environment.

• Testing from an outside in perspective:
– Test driven development (TDD): writing tests before you write any code. You start with the desired outcome written as a test.

You then write code to pass the test. Bonus: while the app is being written, a comprehensive test suite is also being developed.
– Behavior driven development (BDD): encourages the developer to work with a business stakeholder to describe the desired 

business functionality of the app and expresses the test in a script. 
– Acceptance test driven development (ATDD): builds on TDD and BDD and it's involved defining scenarios from the end user's 

perspective. Automated tests with examples of these use cases are written and run. 

• Infrastructure testing: involves starting up a host and running the configuration management code, 
running all the tasks and then turning it all off.

• Performance testing: load tests, stress tests, soak tests, and spike tests - great for out-of-band nightly 
runs, they're usually long running and they consume a lot of resources.

• Security testing: might be useful to think about this as a simulated attack test.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Design for Operation

• Software architecture patterns

• In modern architectures, especially in 
microservice architectures apps end up having 
so many integration points that the likelihood of 
one of them going bad is very high.

• Identify risk items and develop platform level 
fixes.

• A good manifesto for how to produce service 
ready software is called the 12 factor app, 
described at https://12factor.net/ . 

The Twelve Factors

I. Codebase

II. Dependencies

III. Config

IV. Backing services

V. Build, release, run

VI. Processes

VII. Port binding

VIII. Concurrency

IX. Disposability

X. Dev/prod parity

XI. Logs

XII. Admin processes



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Operate for Design: Metrics and Monitoring

• Complexity creates risk for failure

• Create a minimum viable monitoring stack just enough to accomplish our goals.

• Measure: get a metric from each area you monitor
– Service performance and uptime monitoring: implemented at the very highest level

– Software component metrics: done on ports or processes, usually located on the host.

– System metrics: CPU, memory, etc. time series metrics which can be stored in graph that help to answer the 
question, is this service or host or process, is it functioning normally?

– Application metrics: telemetry about what your application is actually doing (how long a certain function call 
is taking, or maybe the number of logins in the last hour or account of all the error events that have 
happened). These are custom to your app.

– Performance metrics: usually uses front-end instrumentation and captures the performance observed by 
the users of the actual system.

– Security monitoring: includes four key areas. System, application security, custom events in the application 
(things like password resets, invalid logins, or new account creations), and anomalies



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Operate for Design: Logging

• Logs are a great DevOps monitoring tools 
– They can be consumed by an operations team
– They can provide meaningful feedback to developers

• Five Ws of logging: 
– What happened
– When it happened
– Where did it happen
– Who was involved
– Where the entity came from

• Logging principles:
– Do not collect log data that you're never planning to use.
– Retain log data for as long as it's conceivable that it could be used or longer if it's prescribed 

by regulations.
– Log all you can, but alert only on what you must respond to. Clearly define your log levels: 

error, warn, info, etc.
– Logging should meet business needs, not exceed them.
– Logs change, as in their format or their messages with new versions of software.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DevSecOps

• Development, security, and operations

• In the collaborative framework of DevOps, DevSecOps is an 
approach to culture, automation, and platform design that 
integrates security as a shared responsibility throughout 
the entire IT lifecycle.

– Think about application and infrastructure security from the 
start.

– Automate some security gates to keep the DevOps workflow 
from slowing down.

– Select the right tools to continuously integrate security.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DevOps security is built-in

• Build in information security and set a plan for security automation.

• Help developers code with security in mind.

• Identify risks to the software supply chain by emphasizing the 
security of open source software components and dependencies 
early in the software development lifecycle.

• A good DevSecOps strategy:
– Determine risk tolerance and conduct a risk/benefit analysis.
– What amount of security controls are necessary within a given app?
– How important is speed to market for different apps?
– Automate repeated tasks. 



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DevOps security is automated

• Maintain short and frequent development cycles

• Integrate security measures with minimal disruption to operations

• Keep up with innovative technologies like containers and 
microservices

• Foster closer collaboration between commonly isolated teams

• What to automate: source control repositories, container registries, 
the continuous integration and continuous deployment (CI/CD) 
pipeline, application programming interface (API) management, 
orchestration and release automation, and operational 
management and monitoring



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DevOps security for containers and microservices

• Cloud-native technologies don’t lend 
themselves to static security policies and 
checklists.Environment and data security Introduce secure API gateways

Standardize and automate the 
environment

Integrate security scanners for containers

Centralize user identity and access control 
capabilities

Automate security testing in the CI process

Isolate containers running microservices 
from each other and the network

Add automated tests for security 
capabilities into the acceptance test 
process

Encrypt data between apps and services Automate security updates, such as 
patches for known vulnerabilities

Introduce secure API gateways Automate system and service 
configuration management capabilities



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

DevSecOps Tools

• Veracode: cloud-based, offers remediation tips for detected vulnerabilities

• Checkmarx: AI-powered software security solutions

• OWASP ZAP: free and open-source web application security scanner, 
highly customizable, works by intercepting аnd modifying HTTР аnd HTTРS 
trаffic between the wеb аpplicаtion аnd сlient

• Burp Suite: for web application security testing

• SonarQube: popular code quality tool that offers security-focused plugins

• Fortify: static, dynamic, and interactive application security testing

• Snyk: developer-first application security tool

• Coverity: static analysis tool

• AppScan: AI-powered solution, supports both static and dynamic 
applications



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

The Future of DevOps

• Cloud to containers to serverless

• Security

• AI/ML in the DevOps framework

• Low-code application

• GitOps growing adoption



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Summary

• DevOps is the combination of cultural philosophies, practices, and tools that increases an organization’s ability to 
deliver applications and services at high velocity.

• DevOps is a human, cultural and business problem. 
– Culture
– Automation to increase pace and eliminate errors
– Measurement to understand and locate
– Sharing to drive Kaizen

• The Three Ways model: Systems thinking , amplifying feedback loops, a work culture for continuous 
experimentation and learning.

• Managing DevOps: Closely aligns with Lean and Agile principles
– Conway's Law: your systems will basically align themselves to your communication boundaries.

• Ask «Why?» recursively five times to identify root cause

• Infrastructure as Code: Use configuration management and source control for your Ops tools.

• Continuous Integration and Continuous Delivery

• The Role of QA – different types of tests for control and monitoring

• Use architectural patterns to minimize fragility of your software. Measure metrics that you will use, don’t forget to 
update logging as your software evolves.

• Build in information security and set a plan for security automation.



İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

References

• DevOps Foundations, by Ernest Mueller and James Wickett
https://www.linkedin.com/learning/devops-foundations/

• DevOps Foundations: Continuous Delivery/Continuous Integration 
https://www.linkedin.com/learning/devops-foundations-continuous-delivery-continuous-
integration-14449917?u=89254810

• 12 factor app: https://12factor.net/

• Bite-sized introduction to architectural terms: https://martinfowler.com/

• How Complex Systems Fail https://how.complexsystems.fail/

• What is DevSecOps? https://www.redhat.com/en/topics/devops/what-is-devsecops

• An Unlikely Union: DevOps and Audit https://itrevolution.com/product/an-unlikely-union-devops-and-audit/

• The Future of DevOps: 2023 and Beyond https://www.knowledgehut.com/blog/devops/future-of-devops


